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Abstract: During aircraft braking, the change of ground adhesion forces can cause forward and
backward vibration of the landing gear, and the performance of the brake disc may exacerbate this
vibration. In order to solve this problem, a rigid–flexible coupling dynamic model of a two-wheel
strut landing gear considering the friction characters of brake discs with different materials and a
hydraulic brake system model is established in this paper. The brake disc friction characteristics
effect on the low-frequency brake-induced vibration of the landing gear given different brake disc
materials and ambient temperatures is studied. It is shown that the C/SiC brake disc has a “negative
slope” phenomenon between the friction coefficient of the brake disc and the wheel speed, and this
variable friction characteristic has a great effect on the low-frequency braking-induced vibration of
the landing gear. In addition, the variable friction characteristics of the C/SiC brake disc are easily
affected by ambient temperature, while the friction coefficient of the C/C brake disc changes stably.

Keywords: landing gear; variable friction brake disc; gear walk; rigid–flexible coupling dynamics

1. Introduction

In the process of aircraft braking, the landing gear is affected by the combination of the
braking torque and the ground adhesion torque, resulting in vibration. These vibrations
can be divided into low-frequency vibration, medium-high-frequency vibration, and high-
frequency vibration, which are collectively referred to as brake-induced vibration [1]. In
this paper, low-frequency brake-induced vibration–gear walk is studied. Gear walk not
only affects the braking efficiency of aircraft [2,3], but also affects the structural life of the
aircraft landing gear. Many scholars use time domain simulation studies on gear walk.
They basically ignored the friction characteristics of brake discs, and the brake disc friction
coefficient is usually set to a fixed value in the research and analysis. However, the friction
characteristics of brake discs will cause self-excited vibration of the landing gear under the
natural state [4]. Therefore, the results of simulation analysis will be different from those
obtained from actual tests. Aiming at the problem of gear walk, the brake discs friction
characteristics under different materials and ambient temperatures and their effect on gear
walk are studied so as to provide reference for the time domain simulation analysis of gear
walk in the future.

In view of the gear walk, Gualdi [5] uses a simple main landing gear multibody model
to study the application of multidisciplinary multibody modelling to the analysis of gear
walk, and it is necessary to replace the parameters of each element of the landing gear
with the experimental data. Avico [6] established a control-oriented dynamic model of the
landing gear based on the automotive single-corner model and presented a deceleration-
based control algorithm to reduce the gear walk. Balasubramanian [7] obtained a set
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of fourth-order and second-order nonlinear motion control differential equations for the
system using the Lagrange equation of independent generalized coordinates. The reduced–
scale landing gear was used for half physical simulation in order to study the influence
of the landing gear structural parameters on gear walk. Yin [8] established a nonlinear
dynamic model of the semi-axle landing gear to study and optimize the anti-skid brake
control law between gear walk and braking efficiency. Liao [9] established a rigid–flexible
coupling model of a six-wheel landing gear and analyzed the characteristics of gear walk.
Khapane [10] established a flexible model of the landing gear by using SIMPACK to study
the influence of different anti-skid brake control law parameters on characteristics of gear
walk. The analysis model of gear walk has gradually developed from the theoretical model
to the rigid–flexible coupling dynamic model. In the time domain simulation analysis
of gear walk, the influence of the landing gear structural parameters and anti-skid brake
control parameters are more thoroughly considered, and the friction characteristics of the
brake disc are considered less. Based on the previous research, a rigid–flexible coupling
dynamic model of a two-wheel strut landing gear considering the friction characteristics of
the brake disc is established in this paper in order to analyze the gear walk.

At present, research on the variable friction characteristics of brake discs is mainly in
the field of railway braking. Rovira [11], based on simplified Kalker theory, established
variable friction functions of brake discs and studied the influence of pressure on the fric-
tion coefficients of different functions. Lee [12] established a variable friction characteristic
model of the brake disc considering the influence of temperature and analyzed the influ-
ence of brake disc variable friction characteristics on the braking performance of a train.
Ehret [13] established a variable friction coefficient of a brake disc mathematical model
considering the rotation speed, temperature, and normal pressure of the brake disc, studied
the longitudinal motion characteristics of the train, and pointed out that the relationship
between variables and the friction coefficient of the brake disc was generally nonlinear.
Liu [14], based on BP neural network, established a variable friction characteristic model of
a C/C brake disc considering the influence of temperature and speed and simulated the
braking process of aircraft. Some references found that the variable friction characteristics
of the C/SiC brake disc are different from those of a C/C brake disc by conducting friction
tests on brake discs, and there is an obvious “negative slope” phenomenon between the
friction coefficient of the C/SiC brake disc and the speed of the brake disc [15,16]. With the
progress of C/SiC brake material manufacturing technology, the frictional properties are
improved, and the negative slope phenomenon is more obvious [17,18]. Moreover, relevant
references show that the existence of such a “negative slope” phenomenon will have an
impact on the stability of the aircraft anti-skid brake control system [19,20]. The friction
characteristics of brake discs with different materials are often ignored during the analysis
of gear walk. Therefore, C/SiC and C/C brake disc variable friction models considering the
influence of brake disc temperature, rotation speed, and brake pressure will be established
in this paper.

The research purpose of this paper is to study the effect of brake disc friction charac-
teristics on gear walk. In Section 2, a rigid–flexible coupling dynamic model of a two-wheel
strut landing gear is established considering the friction characters of brake discs with dif-
ferent materials and a hydraulic brake system model. In Section 3, based on the gear walk
system model established by Section 2, the effect of variable friction coefficient and constant
friction coefficient on gear walk is compared, and the effects of the friction characteristics of
the brake disc on gear walk are studied given different materials and ambient temperature.
Based on the acceleration spectrum obtained through short-term Fourier transform, the
main gear walk vibration frequency is discussed. Conclusions are drawn in Section 4.

2. The Model of Gear Walk System
2.1. The Rigid–Flexible Coupling Dynamics Model of Landing Gear

In this paper, a rigid–flexible coupling dynamics model of a two-wheel strut landing
gear including the buffer force, tire force, fuselage gravity, and braking force is established
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in the Simcenter 3D multi-body dynamics software, as shown in Figure 1. The buffer forces
include the oil damping force, air spring force, and structure limiting force.
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Figure 1. Rigid–flexible coupling dynamics model of a landing gear.

The tire force includes the tire longitudinal force, lateral force, and vertical force, and
the basic tire model in Simcenter 3D was used to establish the tire model required for
simulation. The basic properties of the tire, such as its roll radius, tire friction coefficient,
vertical stiffness, vertical damping, and cornering stiffness, can be customized through
the vehicle component module in Simcenter 3D. Fuselage gravity is concentrated on the
equivalent mass, and the brake torque produced by the hydraulic brake system is applied
to the revolute pair between the tire and the axle.

2.1.1. Model of Buffer

The type of buffer is oil-gas, and its buffer forces mainly consists of air spring force,
oil damping force, and structural limiting force. The equation for the air spring force Fair is:

Fair = Aa ·
[
P0 · (V0/(V0 − Aa · s))n − Patm

]
(1)

where Aa is the effective pressure area of the air chamber,P0 is the initial inflation pressure of
the air chamber, V0 is the initial inflation volume of the air chamber, s is the distance of buffer
movement, n is the variable index of gas compression, and Patm is the atmospheric pressure.

The oil damping force Foil is the relation curve of the damping coefficient and the buffer
move distance obtained by interpolation according to the experimental data, the data having
been imported into Simcenter 3D and calculated by establishing a mathematical function.

Foil = d(s) · vbu f f er ·
∣∣∣vbu f f er

∣∣∣ (2)

where d(s) is the relation curve of the damping coefficient and the buffer movement
distance and vbu f f er is the speed of the buffer movement.

The equation for the structural limiting force is:

Fst =


Kst · s

0
Kst · (s − smax)

s < 0
0 ≤ s ≤ smax

s > smax

(3)

where Kst is the structural limiting stiffness and smax is the maximum compression distance.

2.1.2. Flexible Processing and Constraint Relations

For the analysis of gear walk, the flexibility of the rigid body model can better simulate
the elastic deformation and the load transfer of landing gear struts. It is not necessary to
concentrate the stiffness of the landing gear struts into the moving pair between the landing
gear and the equivalent mass, and the simulation results of the flexible model are more
realistic. Therefore, in this paper, the outer cylinder, piston rod, torque arm, and side strut
of the landing gear are flexible.

The constraints between the components of the landing gear model are shown in
Figure 2. The red box indicates the flexible body, the black box indicates the rigid body, and
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the blue box indicates the constraint. When the outer cylinder and piston rod are flexible, in
order to simulate the motion characteristics of the buffer, a point on a flexible curve pair is
established between the outer cylinder and the piston rod. The up and down torque arms
are constrained by a spherical pair, and most of the other components are constrained by
revolute pairs and fixed pairs. In order to simulate the landing and braking process, there
is a short distance between the tire and the ground at the initial moment, and the fuselage
has a specific initial speed.
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2.2. Variable Friction Model of the Brake Disc

The friction coefficient of the brake disc is closely related to the brake pressure, wheel
speed, and the temperature of the brake disc. This paper assumes that the brake pressure
and wheel speed affect the temperature, and that this then affects the friction coefficient.
The variable friction model of the brake disc is established in MATLAB/Simulink. The
variable friction coefficient models of the C/C brake disc and the C/SiC brake disc are
established according to the different materials in the brake disc. The variable friction model
of brake disc is divided into a temperature variation model and a temperature–friction
coefficient model.

2.2.1. Temperature Variation Model

The temperature variation model includes the heat rise model and the heat dissipation
model [21]. The frictional heat rise and heat flux of the brake disc temperature are calculated
according to the brake pressure and the relative rotation speed in the heat rise model. Based
on the forced flow of air and natural convection heat transfer, the heat flux of air flow heat
dissipation at a given brake disc temperature are calculated using the heat dissipation
model. The internal heat change of the brake disc is calculated according to the heat flux of
the brake disc heat change, and then the temperature change is calculated according to the
specific heat capacity of the material and the mass of the brake disc:

Qp =
∫

(qP − qS) · SPdt (4)

∆T =
Qp

Cp · mp
(5)

where QP is the internal heat change of the brake disc, qP is the frictional heat rise/heat
flux of the brake disc temperature, qS is the heat flux of the air flow heat dissipation at
the given brake disc temperature, SP is the friction contact area of the brake disc, ∆T is
the temperature change of the brake disc, Cp is the specific heat capacity of the brake disc
material, and mp is the mass of the brake disc.

The equation for calculating the frictional heat rise/heat flux of the brake disc temper-
ature is:

qp =
µb · F · ω · (R + r)

2Sp
(6)
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where µb is the friction coefficient of the brake disc, F is the normal pressure of the brake
disc, ω is the brake wheel rotation speed, R is the friction radius of the rotating disc, and r
is the friction radius of the static disc.

The equation for calculating the heat flux of the air flow heat dissipation at a given
brake disc temperature is:

qs = hs · (T − T0) (7)

hs =
Nu · λ

L0
(8)

where hs is the surface heat transfer coefficient, T is the temperature of the brake disc, T0
is the ambient temperature, Nu is the Nusselt number, λ is the convective heat transfer
coefficient, and L0 is the solid wall characteristic length.

During the whole braking process, the external surface of the brake disc and the air
are in a state of forced flow heat transfer. The Nusselt number is calculated according to
the empirical equation:

Nu =

{
0.193 · Re0.618 · Pr

1
3 4 × 103 < Re < 4 × 105

0.026 · Re0.808 · Pr
1
3 4 × 105 < Re < 4 × 107

(9)

where Re is the Reynolds number, Pr is the Prandtl number.
During the whole braking process, the external surfaces of the moving disc and the

static disc are in a state of natural convection heat transfer in a limited space. The Nusselt
number is calculated according to the empirical equation:

Nu ≈ 0.2(Grδ · Pr)1/4
m 103 < Grδ · Pr < 109 (10)

Grδ =
g · β · ∆t · δ3

v2 (11)

where Gr is the Grashof number and the subscript δ is the thickness of the interlayer,
subscript m is used in tm = 1

2 (tω,1 − tω,2) as a qualitative temperature, tω,1 and tω,2 are
the temperature of the interlayer at both ends of the brake disc, g is the gravitational
acceleration, β is the volume expansion coefficient, ∆t is the difference between the surface
temperature and the fluid temperature, and v is the kinematic viscosity of air.

2.2.2. Temperature–Friction Coefficient Model

During braking, the heat generated causes the temperature of the brake disc to rise.
The change in temperature causes the friction coefficient between the brake discs to change.
The relationship between the friction coefficient and the temperature of the C/C and C/SiC
brake discs is different.

For the C/C brake disc, a piecewise function is used to describe the influence of the
law of temperature on the friction coefficient, and the specific equation is [22]:

µb =

{
a1 · T2 + b1 · T + c1 T < T1
a2 · T2 + b2 · T + c2 T1 < T < Tmax

(12)

where a1, a2, b1, b2, c1, c2 are the correlation coefficient, T1 is the optimum temperature, and
Tmax is the limit temperature of the brake disc.

When the temperature is lower than the optimum temperature, then the friction
coefficient of the brake disc increases with the increase of the brake temperature. When
the temperature is the optimum temperature, then the friction coefficient of the brake disc
is the largest. When the temperature is higher than the optimum temperature, then the
friction coefficient of the brake disc decreases with the increase of the brake temperature,
as shown in Figure 3.
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For the C/SiC brake disc, an approximate fitting curve is obtained by interpolation
and fitting according to the test data of relevant reference [16–18] in order to describe
the influence of the law of temperature on the friction coefficient, as shown in Figure 4.
With the increase of temperature, the friction coefficient decreases rapidly to below 0.28
and maintains a stable change. When the temperature reaches 400 ◦C, then the friction
coefficient rises rapidly to above 0.52.
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2.3. Hydraulic Brake System Model

A slip rate PID control hydraulic anti-skid brake system is adopted in this paper, and
the brake control schematic is shown in Figure 5. According to the axle speed Vb, wheel
speed ω, and wheel rotation radius Rg, the wheel slip rate σ is calculated, the PID controller
controls the difference between the optimum slip rate and the actual slip rate to generate
anti-skid current I, and the hydraulic system of the brake apparatus amplifies the anti-skid
current, generating the corresponding brake pressure F. The variable friction coefficient
model calculates the brake disc temperature T through the wheel speed ω and the brake
pressure F, and then it outputs the corresponding friction coefficient of the brake disc µb to
the brake apparatus.
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Brake apparatus as shown in Figure 6. Rotating disc connected to the wheel, the
rotating speeds of rotating disc and the wheel are the same. The static disc is fixed on the
axle. Under the brake pressure F, the friction between the rotating disc and the static disc
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produces the braking torque Mb which is required for the anti-skid brake. Under the joint
action of the braking torque Mb and the ground adhesion torque M f , the wheel starts to

brake and decelerate with the angular acceleration
.
θ.
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The specific calculation equation of the hydraulic brake system model is as follows:

σ =
Vb − ω · Rg

Vb
(13)

∆σ = σm − σ (14)

F = k · I (15)

Mb = F · µb ·
R + r

2
(16)

M f = N · Rg · µ f (17)

.
θ =

Mb − M f

J
(18)

where σm is the optimum slip rate (σm is 0.12 in this paper), k is the anti-skid current
amplification factor, µb is the friction coefficient of the brake disc, R is the friction radius of
the rotating disc, r is the friction radius of the static disc, N is the ground support force,
µ f is the ground adhesion coefficient (by σ according to the “Pacejka” magic tire equation
calculated in [23]), and J is the wheel’s moment of inertia.

2.4. Co-Simulation Method

In this paper, the rigid–flexible coupling dynamics model of a landing gear was
established in Simcenter 3D. Due to the complexity of the brake disc variable friction model
and hydraulic brake model, it is difficult to established in Simcenter 3D. Therefore, the
brake disc variable friction model and the hydraulic brake system model are established
in MATLAB/Simulink, and the anti-skid braking control system adopts the slip rate PID
control. In this paper, the co-simulation method was used to complete the data exchange
between the Simcenter 3D and MATLAB/Simulink, and the data exchange process is
shown in Figure 7.
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The parameters required in the simulation process are shown in the Table 1.
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Table 1. Simulation parameters.

Model Parameter Value

The rigid–flexible coupling
dynamics model of

landing gear

Vertical stiffness of tire 3.4 × 106 N/m
Vertical damping of tire 5.5 × 105 N · s/m

Cornering stiffness of tire 3000 N/◦

Radius of tire 0.625 m
Inertia of tire 10.473 Kg · m2

Mass of fuselage 77,600 Kg
Inertia of fuselage roll 1.493 × 106 Kg · m2

Inertia of fuselage yaw 4.68 × 106 Kg · m2

Inertia of fuselage pitch 3.317 × 106 Kg · m2

Density 7.83 × 103 Kg/m3

Elastic Modulus 2 × 105 MPa
Poisson’s ratio 0.3

Variable friction model of the
brake disc

Reference viscosity of air 17.5 × 10-6 Pa · s
Volume expansion coefficient 0.0033

Mass of the brake disc 36 Kg
Radius of rotating disc 0.141 m

Radius of static disc 0.209 m
Density of air 1.225 Kg/m3

Thickness of the interlayer 0.05 m

Hydraulic brake system
model

Anti-skid current
amplification factor 50

Proportional coefficient 200
Integral coefficient 150

Derivative coefficient 60

3. Analysis of the Brake Disc Friction Characteristics Effect on Gear Walk
3.1. C/SiC Brake Disc Variable Friction Characteristics Effect on Gear Walk

The gear walk analysis model of a landing gear with a C/SiC variable friction co-
efficient and a constant friction coefficient were simulated, respectively. The constant
friction coefficient is 0.45, and the landing gear initial speed is 70 m/s [3]. Considering the
phenomenon of the landing gear spin-up and spring-back, the hydraulic anti-skid brake
system controlled by the slip rate PID would start at 2 s [24]. The simulation results for the
C/SiC brake disc variable friction characteristics’ effect on gear walk are shown in Figure 8.

The gear walk motion trend of the landing gear with constant friction coefficients is
the same as that with a variable friction coefficient: the gear walk displacement vibration is
more severe, and the gear walk load is weak. The displacement and acceleration of gear
walk fluctuate greatly at 6 s, and at the same time, the load of gear walk rises rapidly. With
a constant friction coefficient, the amplitude of the gear walk decreases slowly and tends to
be stable. The addition of a variable friction coefficient model will greatly affect the gear
walk, so it is necessary to consider the friction characteristics of the brake disc during gear
walk analysis.

It can be seen that the acceleration fluctuates frequently. Therefore, short-term Fourier
transform is used to obtain the spectrum diagram of the gear walk acceleration. The
vibration frequency under variable friction conditions is mainly 20 Hz, the vibration
amplitude below 20 Hz is about 10 to 15 m/s2, and the vibration amplitude above 20 Hz
is about 5 to 10 m/s2. The vibration frequency under constant friction conditions is the
same as that under variable friction conditions. Due to the existence of variable friction
characteristics, the maximum amplitude under variable friction conditions is larger than
that under constant friction conditions. When the coefficient of friction is above 0.5, then
the friction coefficient reaches above 0.5 and the vibration frequency remains stable.
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Figure 8. C/SiC brake disc variable friction characteristics’ effect on gear walk.

The gear walk fluctuation phenomenon in the simulation of a C/SiC variable friction
coefficient can be found in Figure 9. The temperature of the brake disc reaches to 400 ◦C
at 6 s. It can be seen from Figure 4 that the friction coefficient of the C/SiC brake disc is
in a rapidly changing stage at this time. The brake torque also starts to vibrate due to the
sudden change of the C/SiC brake disc friction coefficient, which leads to the rapid increase
of the load of the gear walk. The fluctuation phenomenon of the gear walk is caused by the
sudden change of the C/SiC brake disc friction coefficient.
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During the actual braking process, it is difficult to measure the temperature of the
brake disc, so it is difficult to draw the relation curve between the friction coefficient and
the temperature, while it is easier to obtain the wheel speed. Therefore, it is more applicable
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to draw the relation curve between the wheel speed and the friction coefficient of a C/SiC
brake disc, as shown in Figure 10. It can be seen that there will be a phenomenon of
“negative slope” between the wheel speed and the friction coefficient, which will decrease
the wheel speed and increase the friction coefficient.
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Figure 10. Relationship between the wheel speed and the friction coefficient of a C/SiC brake disc.

In the process of aircraft braking, the wheel speed decreases and the brake disc
temperature rises. With the increase of temperature, the friction coefficient decreases
rapidly to below 0.28 and maintains a stable change. When the temperature reaches 400 ◦C,
the friction coefficient rises rapidly to above 0.52. This causes the brake torque to be affected
with the same trend of change, and the brake torque causes changes to the wheel slip rate.
The adhesion coefficient between the tire and the ground and the ground adhesion moment
decreased first and then increased. The load of the gear walk also decreased at first and
then increased due to the influence of the ground adhesion moment. The “negative slope”
phenomenon of the C/SiC brake disc will affect the braking stability of the landing gear
and exacerbate the gear walk.

3.2. Brake Disc Friction Characteristics Effect on Gear Walk under Different Ambient Temperatures

In different seasons and places, the ambient temperature will vary greatly, which has a
great impact on the heat dissipation performance of the brake disc. Therefore, the ambient
temperature is set to −30 ◦C, 15 ◦C, and 60 ◦C, respectively, for simulation. The landing
gear initial speed is 70 m/s, and the hydraulic anti-skid brake system controlled by the slip
rate PID starts at 2 s. The simulation results for brake disc friction characteristics’ effect on
gear walk under different ambient temperatures are shown in Figure 11.

The variation trends of gear walk displacement, acceleration, and load are the same
under different ambient temperatures. The load of the gear walk rapidly decreased to a
lower load level and remained unchanged, then it rapidly increased to a larger load level
and began to change statically. When the braking system is first started, with the rapid
change of the gear walk load, the displacement of the gear walk has a large vibration, and
the acceleration of the gear walk also has a short-term high-frequency vibration.

The displacement and acceleration of the gear walk also suddenly produced high-
frequency vibration when the gear walk load rapidly increased, which ceased after 0.1 s
and tended to be a stable vibration. The variation trend of the gear walk load is the same as
the C/SiC brake disc friction coefficient variation trend. The friction characteristics of the
C/SiC brake disc leads to the rapid increase of the gear walk load.

The vibration frequency under different ambient temperature is mainly 20 Hz, the
vibration amplitude below 20 Hz is about 10 to 20 m/s2, and the vibration amplitude
above 20 Hz is about 5 to 10 m/s2. The variation trend of the gear walk load is the same as
the C/SiC brake disc friction coefficient variation trend. The friction characteristics of the
C/SiC brake disc lead to the rapid increase of the gear walk load.



Aerospace 2022, 9, 809 11 of 15

Aerospace 2022, 9, x FOR PEER REVIEW 11 of 16 
 

 

3.2. Brake Disc Friction Characteristics Effect on Gear Walk under Different  
Ambient Temperatures 

In different seasons and places, the ambient temperature will vary greatly, which has 
a great impact on the heat dissipation performance of the brake disc. Therefore, the ambi-
ent temperature is set to −30 °C , 15 °C , and 60 °C , respectively, for simulation. The 
landing gear initial speed is 70 m/s , and the hydraulic anti-skid brake system controlled 
by the slip rate PID starts at 2 s. The simulation results for brake disc friction characteris-
tics’ effect on gear walk under different ambient temperatures are shown in Figure 11. 

The variation trends of gear walk displacement, acceleration, and load are the same 
under different ambient temperatures. The load of the gear walk rapidly decreased to a 
lower load level and remained unchanged, then it rapidly increased to a larger load level 
and began to change statically. When the braking system is first started, with the rapid 
change of the gear walk load, the displacement of the gear walk has a large vibration, and 
the acceleration of the gear walk also has a short-term high-frequency vibration. 

The displacement and acceleration of the gear walk also suddenly produced high-
frequency vibration when the gear walk load rapidly increased, which ceased after 0.1 s 
and tended to be a stable vibration. The variation trend of the gear walk load is the same 
as the C/SiC brake disc friction coefficient variation trend. The friction characteristics of 
the C/SiC brake disc leads to the rapid increase of the gear walk load. 

  
(a) Displacement (b) Load 

  
(c) Acceleration (c1) Spectrum diagram of 60 °C  

  
(c2) Spectrum diagram of 15 °C  (c3) Spectrum diagram of −30 °C  

Figure 11. Effects of different ambient temperatures on gear walk. Figure 11. Effects of different ambient temperatures on gear walk.

With the increase of ambient temperature, the heat dissipating capacity of the brake
disc shrinks, temperature changes the speed, the friction coefficient of the C/SiC brake
disc and the gear walk displacement to reach stationary vibration occur earlier, and the
gear walk acceleration amplitude increases. The C/SiC brake disc is more sensitive to the
change of ambient temperature. Ambient temperature has a great effect on the gear walk
displacement and load.

3.3. Brake Disc Material Effect on Gear Walk

The temperature variable friction characteristics of C/C brake discs and C/SiC brake
discs are different. With the development of aviation materials, the materials used in
landing gear brake discs gradually changed from C/C to C/SiC. Therefore, analyzing the
different materials of brake discs’ variable friction characteristics and their effect on the
gear walk is of great significance. A landing gear with brake discs of different materials
will be used for simulation at an initial speed of 70 m/s and an ambient temperature of
15 ◦C. The hydraulic anti-skid brake system controlled by the slip rate PID starts at 2 s.
Brake disc materials’ effect on gear walk are shown in Figures 12–14.



Aerospace 2022, 9, 809 12 of 15Aerospace 2022, 9, x FOR PEER REVIEW 13 of 16 
 

 

  
(a) Displacement (b) Load 

 

 
(c1) Spectrum diagram of C/C 

 
(c) Acceleration (c2) Spectrum diagram of C/SiC 

Figure 12. Brake disc materials’ effect on gear walk. 

The vibration frequency of a C/C brake disc is typically 20 Hz , the vibration ampli-
tude below 20 Hz is about 12 to 18 2m/s , and the vibration amplitude above 20 Hz is 
about 2 to 7 2m/s . As the friction coefficient of a C/SiC brake disc changes greatly, the 
maximum vibration amplitude of acceleration and the corresponding vibration frequency 
are higher than that of C/C brake discs. 

 
Figure 13. Comparison of wheel slip rate. 

Figure 12. Brake disc materials’ effect on gear walk.

Aerospace 2022, 9, x FOR PEER REVIEW 13 of 16 
 

 

  
(a) Displacement (b) Load 

 

 
(c1) Spectrum diagram of C/C 

 
(c) Acceleration (c2) Spectrum diagram of C/SiC 

Figure 12. Brake disc materials’ effect on gear walk. 

The vibration frequency of a C/C brake disc is typically 20 Hz , the vibration ampli-
tude below 20 Hz is about 12 to 18 2m/s , and the vibration amplitude above 20 Hz is 
about 2 to 7 2m/s . As the friction coefficient of a C/SiC brake disc changes greatly, the 
maximum vibration amplitude of acceleration and the corresponding vibration frequency 
are higher than that of C/C brake discs. 

 
Figure 13. Comparison of wheel slip rate. Figure 13. Comparison of wheel slip rate.

Aerospace 2022, 9, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 14. Comparison of brake disc temperature. 

Combined with the analysis of the brake disc materials’ effect on gear walk in Table 
2 and the information shown in Figures 3 and 4, the friction coefficient of the C/C brake 
disc fluctuates between 0.39 and 0.4, while the friction coefficient of the C/SiC brake disc 
increases to about 0.52 in the middle and late stage. The brake pressure required by a 
C/SiC brake disc is smaller, and the specific heat capacity of C/SiC material is larger. 
Therefore, the temperature variation of the C/SiC brake disc is reduced by 1.49%, the am-
plitude of the gear walk displacement is increased by 51.08%, the amplitude of the gear 
walk acceleration is increased by 99.37%, and the amplitude of the gear walk load is in-
creased by 59.11% compared with that of a C/C brake disc. 

Thus, the effect of the friction characteristics of brake discs made from different ma-
terials on the gear walk are different. The influence of the C/C brake disc’s friction coeffi-
cient on the temperature change is smaller, and the C/SiC brake disc’s friction coefficient 
with the temperature change is larger. The C/SiC brake discs have a great effect on the 
gear walk, especially on the amplitude of gear walk acceleration, which reached more 
than 99%. Attention should be paid to the effect of the friction characteristics of brake discs 
made from different materials upon gear walk. 

Table 2. Effect analysis of brake disc materials. 

Brake Disc Material The Temperature 
Change ( °C ) 

Amplitude of Gear Walk 
Displacement (m ) 

Amplitude of Gear 
Walk Load ( N ) 

Amplitude of Gear Walk 
Acceleration ( 2m/s ) 

C/C 676.62 1.36 × 10-3 8.96 × 103 0.25 
C/SiC 666.70 2.77 × 10-3 21.91 × 103 39.98 

Effect comparison of brake 
discs of different materials 

−1.49% +51.08% +59.11% +99.37% 

4. Conclusions 
A rigid–flexible coupling dynamic model of a two-wheel strut landing gear consid-

ering the friction characters of brake discs constructed from different materials is estab-
lished in this paper. A co-simulation method is used for analysis. The brake discs’ friction 
characteristics under different materials and ambient temperatures and their resultant ef-
fect on gear walk are studied. The conclusions are drawn as below: 
1. In the time domain simulation analysis of gear walk, there is a “negative slope” phe-

nomenon between the C/SiC brake disc friction coefficient and the wheel speed. The 
friction coefficient changes greatly when the temperature is below 600 °C . This phe-
nomenon has a great effect on the gear walk characteristics and the control effect of 
the slip rate PID brake control law. The friction coefficient of the C/C disc has little 
change, and the variable friction characteristic is stable. Attention should be paid to 
the effect of the friction characteristics of the brake disc on the accuracy of simulation 
results; 

2. The variable friction characteristics of C/SiC are easily affected by ambient tempera-
ture. The occurrence time of the “negative slope” phenomenon will be affected by 

Figure 14. Comparison of brake disc temperature.



Aerospace 2022, 9, 809 13 of 15

Comparing a C/SiC brake disc with a C/C brake disc, the displacement amplitude
and acceleration amplitude of the gear walk is larger. However, C/SiC brake discs have a
“negative slope” phenomenon, which makes the displacement, acceleration, and load of
the gear walk fluctuate greatly. Therefore, the slip rate of a landing gear using C/SiC brake
discs suddenly changes at 6 s, and the acceleration of the gear walk also suddenly changes
at this moment. Following this sudden change, the slip rate will gradually adjust to the
optimum slip rate. The variable friction characteristics of the C/SiC brake disc have a great
effect on the control of the slip rate by the PID control law. The slip rate of a landing gear
wheel using a C/C brake disc fluctuates around the optimum slip rate, and the braking
efficiency is higher.

The vibration frequency of a C/C brake disc is typically 20 Hz, the vibration amplitude
below 20 Hz is about 12 to 18 m/s2, and the vibration amplitude above 20 Hz is about 2
to 7 m/s2. As the friction coefficient of a C/SiC brake disc changes greatly, the maximum
vibration amplitude of acceleration and the corresponding vibration frequency are higher
than that of C/C brake discs.

Combined with the analysis of the brake disc materials’ effect on gear walk in Table 2
and the information shown in Figures 3 and 4, the friction coefficient of the C/C brake
disc fluctuates between 0.39 and 0.4, while the friction coefficient of the C/SiC brake disc
increases to about 0.52 in the middle and late stage. The brake pressure required by a C/SiC
brake disc is smaller, and the specific heat capacity of C/SiC material is larger. Therefore,
the temperature variation of the C/SiC brake disc is reduced by 1.49%, the amplitude of the
gear walk displacement is increased by 51.08%, the amplitude of the gear walk acceleration
is increased by 99.37%, and the amplitude of the gear walk load is increased by 59.11%
compared with that of a C/C brake disc.

Table 2. Effect analysis of brake disc materials.

Brake Disc Material The Temperature
Change (◦C)

Amplitude of Gear Walk
Displacement (m)

Amplitude of Gear
Walk Load (N)

Amplitude of Gear Walk
Acceleration (m/s2)

C/C 676.62 1.36 × 10-3 8.96 × 103 0.25
C/SiC 666.70 2.77 × 10-3 21.91 × 103 39.98

Effect comparison of
brake discs of different

materials
−1.49% +51.08% +59.11% +99.37%

Thus, the effect of the friction characteristics of brake discs made from different materi-
als on the gear walk are different. The influence of the C/C brake disc’s friction coefficient
on the temperature change is smaller, and the C/SiC brake disc’s friction coefficient with
the temperature change is larger. The C/SiC brake discs have a great effect on the gear
walk, especially on the amplitude of gear walk acceleration, which reached more than 99%.
Attention should be paid to the effect of the friction characteristics of brake discs made
from different materials upon gear walk.

4. Conclusions

A rigid–flexible coupling dynamic model of a two-wheel strut landing gear considering
the friction characters of brake discs constructed from different materials is established
in this paper. A co-simulation method is used for analysis. The brake discs’ friction
characteristics under different materials and ambient temperatures and their resultant
effect on gear walk are studied. The conclusions are drawn as below:

1. In the time domain simulation analysis of gear walk, there is a “negative slope”
phenomenon between the C/SiC brake disc friction coefficient and the wheel speed.
The friction coefficient changes greatly when the temperature is below 600 ◦C. This
phenomenon has a great effect on the gear walk characteristics and the control effect
of the slip rate PID brake control law. The friction coefficient of the C/C disc has
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little change, and the variable friction characteristic is stable. Attention should be
paid to the effect of the friction characteristics of the brake disc on the accuracy of
simulation results;

2. The variable friction characteristics of C/SiC are easily affected by ambient temper-
ature. The occurrence time of the “negative slope” phenomenon will be affected
by different ambient temperatures. The change of ambient temperature has a great
influence on the displacement and load of gear walk;

3. A C/SiC brake disc can solve the defect of a C/C brake disc’s low friction coefficient
to a certain extent, which requires less brake pressure to be provided by the hydraulic
system in the braking process and saves on energy consumption. However, the prob-
lem of large braking torque fluctuation caused by the “negative slope” phenomenon
will also exacerbate gear walk and affect the braking efficiency of aircraft.
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