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Abstract: In recent years, more attention has been paid to vehicles that can travel between air and
water, known as trans-media vehicles. They are often designed as cylindrical bodies in order to
reduce the impact load during water entry. In this paper, the water-entry processes of small-sized
cylindrical trans-media vehicles, with a characteristic length of 1 m, were investigated numerically by
solving the unsteady Reynolds-averaged Navier–Stokes equations using the volume-of-fluid method,
the dynamic grid method and the six degrees of freedom solver. The numerical methods were first
validated by comparing the numerical results with the existing experimental data. Then, the effects
of the body mass, the diameter-to-length ratio, the water-entry angle and the head shape on the
water-entry process were investigated. The results show that the peak impact load, measured by
the peak force exerted by water on the body, can be significantly reduced by decreasing the body
mass, decreasing the diameter, entering the water at an optimum water-entry angle or installing an
ellipsoidal head. In particular, the peak impact load was found to be approximately proportional
to the square of the body mass or the cube of the cylinder diameter. Furthermore, installing an
ellipsoidal head can reduce about 94% of the peak impact load experienced by a cylindrical body.

Keywords: trans-media vehicle; unmanned vehicle; cylindrical body; water entry; volume of fluid

1. Introduction

The vehicles that can travel freely between air and water, known as trans-media
vehicles, have become technically feasible in recent years. These vehicles are often designed
as cylindrical bodies with a circular section or close to a circular section. This design
has mostly been driven by the requirement to reduce the impact load during water entry.
Operating at sea, the trans-media vehicles either accidentally or intentionally enter free
water. The water entry of the object is a transient trans-media process that involves
interactions between solids, liquids and gasses. When the object touches the surface of
the water or is about to be completely immersed in the water, the object’s velocity and the
impact force exerted by the water will undergo drastic nonlinear changes. Therefore, it is of
great interest to investigate the hydrodynamic characteristics of cylindrical bodies entering
the water. The research on water entry can be divided according to the research methods
used, including theoretical research, experimental research and numerical research.

In terms of theoretical research, the earliest research on water entry can be traced
back to 1929. Von Kármán [1] idealized the water-entry process of an airplane as a two-
dimensional (2D) wedge-shaped object falling into water, thus developing the earliest fluid
dynamic theory for such problems. This theory provides the earliest theoretical basis for
the study of impact loads. Wagner [2] introduced the principle of potential flow theory
and proposed that the wedge-shaped body is equivalent to an extended plate structure.
He solved the fluid velocity potential equation and then used Bernoulli’s equation to find
the distribution of the impact loads on the plate surface. Zhao et al. [3] proposed a method
for calculating the slamming force of an object with a general shape falling into water.
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Verhagen [4] smoothed the pressure distribution to some extent by using the principle of jet
effect on the edge of the plate, thus calculating the pressure distribution of the plate edge.
Peseux et al. [5] combined the three-dimensional (3D) Wagner theory and the finite element
method (FEM) in order to analyze a cone slamming into the water.

Experimental research is also an indispensable part of this field of study. May and
Woodhull [6] conducted experiments on spheres composed of different materials and with
different radii, and studied the influence of sphere density and volume on the water-
entry process. Chu et al. [7] studied the hydrodynamic characteristics of a 3D cylinder
slamming into the water horizontally, and studied the influence of physical parameters,
including diameter, length and center of gravity, and initial falling conditions on the
trajectory of the 3D cylinder. Yettou et al. [8] conducted a water-entry experiment for
a 3D wedge. They used pressure sensors and velocity sensors to obtain variations in
the velocity, displacement and pressure distributions of the 3D wedge during the water-
entry process. This detailed experimental data can be used to validate the numerical
simulation methods. Alaoui et al. [9] installed a pressure sensor on the head of the cone
and successfully measured the pressure distribution on the surface of the cone during the
water-entry process. Truscott et al. [10] compared a large number of spheres and cylinders
in their water-entry experiments in order to analyze the formation and closure of cavitation,
water splashing and the cavitation effects for objects entering the water at a high velocity.
Van Nuffel et al. [11] conducted a water-entry experimental study on a rigid cylinder and
measured the local pressure on its surface.

Meanwhile, various numerical methods have been developed and applied to solve
the water-entry problems. Takagi [12] numerically simulated the water-entry process of an
elliptic paraboloid and used the displacement potential approach to calculate the additional
water entry mass, water entry velocity attenuation and immersion displacement of the
object. Aquelet et al. [13] developed a coupling algorithm by using the slamming penalty
function in the LS-DYNA software. Stenius et al. [14] used the LS-DYNA software to
study the impact problem of a 2D wedge slamming into water. Subsequently, Stenius
et al. [15] investigated the hydroelastic effect of 2D elastomers by using explicit finite
element methods. Wick et al. [16] employed the finite volume method (FVM) to study
the slamming force exerted by water on an unmanned aerial vehicle (UAV). Yang and
Qiu [17] used the CIP method to simulate the water-entry process of 2D and 3D objects.
Abraham et al. [18] studied the water-entry process of small balls with different initial
velocities. Van Nuffel et al. [11] used the volume-of-fluid (VOF) method to study the effects
of cylinder diameter, length, velocity and density on the water-entry process of a horizontal
3D cylinder. Qu et al. [19] used the VOF method and dynamic grid method to simulate
the relative motion of objects and the water surface. Facci et al. [20] used the OpenFOAM
software to simulate the water-entry process of a multi-curvature structure. Xiao et al. [21]
used the SPH method to investigate the performance of a helicopter landing on the water.
Xiang et al. [22] employed the OpenFOAM software to investigate the falling process of a
horizontal cylinder. Shi et al. [23] investigated the cavity characteristics and impact loads
of an autonomous underwater vehicle (AUV) by using the arbitrary Lagrange–Euler (ALE)
numerical algorithm. Subsequently, Wang et al. [24] studied the trajectories of AUVs with
asymmetric nose shapes during high-speed water entry. Wu et al. [25] conducted a study
on the impact forces of an air-launched underwater glider under wave conditions by using
the commercial software STAR-CCM+ and found that the water-entry point has a great
influence on the peak value of the vertical impact force.

The aforementioned numerical studies are summarized in Table 1. It can be seen
that these studies mostly focus on wedge-shaped bodies, spheres, horizontal cylindrical
bodies or AUVs. The water-entry processes of cylindrical trans-media vehicles are still not
fully understood. Therefore, this paper aims to investigate the water-entry processes of
small-sized cylindrical bodies by solving the unsteady Reynolds-averaged Navier–Stokes
(RANS) equations using the VOF method, the dynamic grid method and the six degrees
of freedom (6DOF) solver. The effects of body mass, the diameter-to-length ratio, the
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water-entry angle and head shape on the water-entry process will be fully investigated in
order to understand the key factors for reducing the impact load. It is believed that the
current study is valuable for developing the next generation of unmanned trans-media
vehicles.

Table 1. Summary of the relevant studies.

Year Authors Research Objects Numerical Methods

2004 Takagi [12] 3D elliptic paraboloids Potential method

2006 Aquelet et al. [13] 2D wedges Explicit FEM

2006 Stenius et al. [14] 2D wedges Explicit FEM

2007 Stenius et al. [15] 2D elastomers Explicit FEM

2007 Wick et al. [16] A UAV VOF method

2012 Yang and Qiu [17] 2D and 3D wedges CIP method

2014 Abraham et al. [18] 3D balls VOF method

2014 Van Nuffel et al. [11] Horizontal cylinders VOF method

2015 Qu et al. [19] An airplane VOF method

2016 Facci et al. [20] Multi-curvature structures VOF method

2017 Xiao et al. [21] A helicopter SPH method

2019 Shi et al. [23] AUVs Explicit FEM

2020 Xiang et al. [22] Horizontal cylinders VOF method

2021 Wang et al. [24] AUVs VOF method

2022 Wu et al. [25] An air-launched
underwater glider VOF method

2. Problem Definition

In this study, a cylinder with a length of 1 m, a diameter of 0.2 m and a mass of 31.416 kg
was first defined as the baseline model. It was considered a small-sized unmanned trans-
media vehicle with a characteristic length of 1 m, as shown in Figure 1. The trans-media
vehicle, developed by the first and second authors [26], can transform into a cylindrical
body by the variant structure. Then, the water-entry processes were investigated by varying
its mass, diameter-to-length ratio, water-entry angle and head shape.
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In total, four arrays of computational models were designed for this study. The first
array is shown in Figure 2. The cylinder with a length of 1 m and a diameter of 0.2 m
was chosen, and its mass was either 15.708 kg, 31.416 kg or 47.124 kg. The second array
(shown in Figure 3) consists of three cylinders with the same mass of 31.416 kg. In addition,
Model 1 was 1 m in length and 0.2 m in diameter, Model 2 was 0.5 m in length and 0.2 m in
diameter and Model 3 was 1 m in length and 0.4 m in diameter. The third array (shown in
Figure 4) used the same cylinder with a length of 1 m, a diameter of 0.2 m and a mass of
31.416 kg, and the water-entry angle (α) was set to 30◦, 45◦, 60◦, 75◦ or 90◦. The fourth array
is shown in Figure 5. The cylinders with a cylindrical head, a spherical head, a conical head
or an ellipsoidal head were studied, and all of them were 1 m in length, 0.2 m in diameter
and 31.416 kg in mass.
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3. Numerical Methods
3.1. Governing Equations

The Ansys Fluent 19.4 software was employed to simulate the flow field of a falling
object. The three-dimensional, incompressible and unsteady RANS equations were adopted
as the governing equations [27], which include the continuity equation and the momentum
conservation equations. The continuity equation for the fluid flow is expressed as follows:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)

where u, v and w represent the flow velocity in the x, y and z directions, respectively. The
momentum conservation equations for the fluid flow are expressed as follows:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= fx −
1
ρ

∂P
∂x

+
µ + µT

ρ
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∂2u
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∂2u
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∂2u
∂z2

)
(2)

∂v
∂t

+ u
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+ v
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∂2v
∂y2 +

∂2v
∂z2

)
(3)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
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= fz −
1
ρ

∂P
∂z

+
µ + µT

ρ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
(4)

where P represents the fluid pressure; fx, fy and fz represent the unit mass force in the x,
y and z directions, respectively; ρ represents the fluid density; µ represents the dynamic
viscosity coefficient of fluid; and µT represents the turbulence eddy viscosity solved by the
standard k–ε two-equation model [28].

3.2. VOF Method

The VOF method was employed in this study due to its high accuracy and good
robustness in numerical simulations. For each grid cell in the flow field, the fluid volume
fraction was defined as the ratio of the volume of the target fluid to the grid cell volume.
Then, the free surface was tracked by calculating the value of the fluid volume fraction on
each grid cell. The phase change of the flow field is presented by solving the governing
equation for the fluid volume function [29], which is expressed as follows:

∂F
∂t

+ u
∂F
∂x

+ v
∂F
∂y

+ w
∂F
∂z

= 0 (5)

where F represents the fluid volume function.

3.3. 6DOF Motion Solver

The 6DOF motion solver can deal with the six-degrees-of-freedom motions of the
falling rigid bodies in translational or rotational modes. The mass attributes, such as the
mass, the center of gravity and the inertia tensor, were defined by the user-defined function.



Aerospace 2022, 9, 805 6 of 19

The displacement of the object was obtained by monitoring variations in the center of
gravity. Assuming the variation of displacement is ∆s and the variation of time is ∆t, the
vertical force exerted by water on the object was obtained by solving the following formula:

v =
∆s
∆t

=
si+1 − si
ti+1 − ti

(6)

a =
∆v
∆t

=
vi+1 − vi
ti+1 − ti

(7)

Ftotal = Mg − Fw = Ma (8)

where v represents the vertical velocity, a represents the vertical acceleration, s represents
the vertical displacement, Ftotal represents the total vertical force, M represents the mass
and Fw represents the vertical force exerted by water on the object.

3.4. Grid, Boundary and Initial Conditions

The dynamic grid method, combining the spring-based smoothing algorithm and the
mesh reconstruction algorithm, was adopted in the simulations. As shown in Figure 6a, the
external flow field, denoted as the overall grid region, adopts the tetrahedral grid cells, due
to the fact that the tetrahedral grid cells are more robust in the grid deformation compared
with the hexahedral grid cells. As shown in Figure 6b, a square-shaped moving grid
region is generated around the cylindrical body, which is dominated by the high-quality
hexahedral grid cells for better spatial resolution. In order to accurately capture the water
splashing phenomenon around the cylindrical body, the grid cells in the square-shaped
moving grid region were specifically refined. In addition, the grid cells in the moving grid
region were assumed to be rigid and to have moved together with the cylindrical body.
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The computational region is a box of 6 m × 6 m × 6 m, as shown in Figure 7. The
top surface is defined as the pressure-outlet boundary, and the remaining surfaces are
defined as the solid wall boundaries. The initial location of the body’s bottom was set to
0.5 m above the water surface, and the initial velocity was assumed to be 5 m/s. Since
the initial pressure field has a great impact on the water-entry process, it was necessary to
perform a pretreatment in order to obtain a steady-state flow field as the initial flow field of
an unsteady simulation. As shown in Figure 8a, the pressure field under the water was
calculated using the following formula:

P = ρgh (9)

where P represents the relative pressure, ρ = 998.2 kg/m3 represents the density of water,
g = 9.81 m/s2 represents the acceleration of gravity, h represents the depth of the water
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and the operating pressure is the standard atmospheric pressure of 101,325 Pa. The phase
contour is shown in Figure 8b. Note that the volume fraction of air is 0, the volume fraction
of water is 1 and the volume fraction in the air–water interface is between 0 and 1.
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3.5. Grid Convergence Study

The baseline model defined in the previous section was used for the grid convergence
study. Three grids with different densities were generated for the grid convergence study,
as shown in Table 2.

Table 2. The details of three grids for the grid convergency study.

Grid Name
Minimum Size of

Moving Grid Region
(mm)

Minimum Size of
Overall Grid Region

(mm)
Number of Grid Cells (×106)

Grid 1 1.210 37.372 2.754
Grid 2 0.903 37.372 3.878
Grid 3 0.903 29.066 4.565

Figure 9 shows that the results for the three grids are very close to each other, indicating
that the solution is sufficiently convergent. The following numerical simulations proceeded
with the medium grid, denoted as Grid 2.
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3.6. Validation of Numerical Methods

This section refers to the water-entry experiment involving a 3D wedge that was
carried out by Yettou et al. [8]. The simulation results were compared with the experimental
data in order to validate the accuracy of the numerical methods. As shown in Figure 10a,
the simulated wedge had the same geometry as the experimental model. The initial velocity
of the wedge was set to 0 m/s and the mass was set to 94 kg. The computational region
was a box of 8 m × 8 m × 7.3 m, as shown in Figure 10b. The initial location of the wedge’s
bottom was 1.3 m above the water surface and the water depth was 4 m.
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As shown in Figure 11, the splash phenomenon was accurately captured. Figure 12
compares the numerical results and the experimental data. It can be seen that the numerical
results agree well with the experimental data, indicating sufficient numerical accuracy for
the current study.
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4. Results and Discussion
4.1. The Effect of Body Mass

This section studies the influence of body mass on the water-entry process. The
geometries of the cylindrical bodies are shown in Figure 2. The inertia tensor of the
cylinders is shown in Table 3. In addition, the initial location of the body’s bottom was set
to 0.5 m above the water surface and the initial velocity was assumed to be 5 m/s.

Table 3. The inertia tensor of the cylinders with varying masses.

Mass (kg) Ixx
(kg·m2)

Iyy
(kg·m2)

Izz
(kg·m2)

Ixy
(kg·m2)

Ixz
(kg·m2)

Iyz
(kg·m2)

15.708 1.388 1.388 0.157 0.000 0.000 0.000
31.416 2.775 2.775 0.314 0.000 0.000 0.000
47.124 4.163 4.163 0.417 0.000 0.000 0.000
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Figure 13 shows the instantaneous pressure contours of the cylinders with varying
masses. When the cylinders touched the water surface, the pressure at their bottoms
increased dramatically. After entering the water, the bottom pressure gradually decreased.
In addition, the peak value of the bottom pressure was directly related to the body mass.
As the mass increased, the bottom pressure also increased. Thus, it can be inferred that
decreasing the mass can decrease the impact force. The instantaneous phase contours
of the cylinders are shown in Figure 14. As expected, the cylinder with more mass fell
faster under the water. Additionally, when the cylinders approached the water surface,
they captured some air beneath them. In the figure, it is clear that some air was trapped
beneath these cylinders, and the volume of the air trapped by the cylinder increased as the
mass increased.
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Figure 15 shows the time histories of the vertical velocity, the vertical displacement,
the vertical acceleration and the vertical force. From the figure, it can be seen that before
t = 0.094 s, the vertical acceleration of these cylinders was equal to the acceleration of
gravity, and the vertical force exerted by the air was negligible. At t = 0.094 s, the cylinders
began to touch the water surface and the vertical force exerted by water increased suddenly,
confirming the observations in Figure 13. This peak impact load was the major reason for
the damage that the vehicle structure sustained. A second peak impact load can be seen at
the moment that the body completely fell into the water. However, compared with the first
peak impact load, the second peak impact load was almost negligible. Further examination
of the first peak load is presented in Figure 16. It was estimated that the peak load was
approximately proportional to the square of the body mass. Thus, decreasing the mass
of the body is an effective way to reduce the impact load. However, this may not be very
practical due to the load-carrying requirements, so other methods of reducing the impact
load have to be pursued as well.
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4.2. The Effect of Diameter-to-Length Ratio

In order to study the influence of the diameter-to-length ratio on the water-entry
process, three cylinders with varying diameter-to-length ratios were chosen as the com-
putational models, as shown in Figure 3. The inertia tensor of the cylinders is shown in
Table 4, and the initial conditions were the same as those in the previous section.

Table 4. The inertia tensor of the cylinders with varying diameter-to-length ratios.

Model Ixx
(kg·m2)

Iyy
(kg·m2)

Izz
(kg·m2)

Ixy
(kg·m2)

Ixz
(kg·m2)

Iyz
(kg·m2)

Model 1 0.812 0.812 0.314 0.000 0.000 0.000
Model 2 2.775 2.775 0.314 0.000 0.000 0.000
Model 3 3.246 3.246 1.257 0.000 0.000 0.000

Figure 17 shows the instantaneous pressure contours of the cylinders. The cylinder
with a lower diameter-to-length ratio (Model 1) produced a slightly higher peak pressure
at the bottom. However, as shown in Figure 18, the cylinder with a diameter that was
twice that of Model 1 (Model 3) experienced a peak impact load almost six times higher
than that of Model 1 at the moment the body touched the water. The reason for this is
that the volume is proportional to the cube of the diameter. Therefore, an increase in
diameter greatly increased the total force, which is directly related to the volume of the
displaced water. Due to the very high resistance, Model 3 was not fully immersed in water,
as shown in Figure 19. On the other hand, decreasing the length has minor effects on the
water-entry process. The behaviors of Model 1 and Model 2 were almost the same, except
that noticeable differences were observed after the bodies completely entered the water. It
can be concluded that the peak impact load is approximately proportional to the cube of
the cylinder diameter, and decreasing the diameter of the cylinder is another effective way
to reduce the peak impact load exerted by water on the object.
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4.3. The Effect of Water-Entry Angle

In order to study the effect of the water-entry angle on the water-entry process, five
water-entry angles (30◦, 45◦, 60◦, 75◦ and 90◦) were chosen, as shown in Figure 4. The
inertia tensor of the cylinders is shown in Table 5, and the initial conditions were the same
as those in the previous section.
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Table 5. The inertia tensor of the cylinders with varying water-entry angles.

Water-Entry
Angle

Ixx
(kg·m2)

Iyy
(kg·m2)

Izz
(kg·m2)

Ixy
(kg·m2)

Ixz
(kg·m2)

Iyz
(kg·m2)

30◦ 2.775 0.929 2.160 0.000 0.000 −1.066
45◦ 2.775 1.545 1.545 0.000 0.000 −1.230
60◦ 2.775 2.160 0.929 0.000 0.000 −1.066
75◦ 2.775 2.610 0.479 0.000 0.000 −0.615
90◦ 2.775 2.775 0.314 0.000 0.000 0.000

Figure 20 shows the instantaneous pressure contours of the cylinders with varying
water-entry angles. As expected, it can be seen that the peak pressure on the body decreased
as the water-entry angle decreased. This is because a lower water-entry angle has increased
the wettened area, and therefore has relieved the peak impact load. This observation
was confirmed by further examination, as seen in Figure 21. It can be seen that the peak
impact load at an angle of 90◦ was about 4.5 times larger than that at an angle of 60◦.
However, as shown in Figure 21d, the cylinder entering the water at a small water-entry
angle experienced a bumpy force, which is unfavorable in some applications. Note that
although a higher water-entry angle resulted in a higher peak load, the cylinder with a
higher water-entry angle reached the target location at a faster speed, as shown in Figure 22.
Depending on the requirements of the mission, an optimum water-entry angle should be
pursued in practical applications.
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4.4. The Effect of Head Shape

In this section, the effect of head shape on the water-entry process is studied. The
geometries of the chosen head shapes are shown in Figure 5. The inertia tensor of the
cylindrical bodies is shown in Table 6, and the initial conditions were the same as those in
the previous section.

Table 6. The inertia tensor of the cylindrical bodies with varying head shapes.

Head
Shape

Ixx
(kg·m2)

Iyy
(kg·m2)

Izz
(kg·m2)

Ixy
(kg·m2)

Ixz
(kg·m2)

Iyz
(kg·m2)

Cylinder 2.775 2.775 0.314 0.000 0.000 0.000
Sphere 2.278 2.278 0.314 0.000 0.000 0.000

Ellipsoid 1.833 1.833 0.314 0.000 0.000 0.000
Cone 2.278 2.278 0.314 0.000 0.000 0.000

The instantaneous pressure contours of the cylindrical bodies with varying head
shapes are shown in Figure 23. It was observed that the cylindrical bodies with non-
cylindrical head shapes had less pressure at the bottom compared to the cylinder. Figure 24
shows the instantaneous phase contours of the cylindrical bodies. Except for the cylinder
and the cylindrical body with the cone head, the other models carried very few air bubbles
at their heads. In addition, the cylinder with the ellipsoidal head had the fastest falling
velocity among them.
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Figure 25 shows the time histories of the cylindrical bodies. It can be seen that the
vertical force decreased in the order of cylinder, cone, sphere and ellipsoid, and the vertical
displacement increased in that order as well. Note that among the chosen head shapes, the
peak vertical force of the cylinder with the ellipsoidal head was the lowest. Specifically,
installing an ellipsoidal head can reduce about 94% of the peak impact load experienced by
a cylindrical body. Similar observations were also made in the work of Shi et al. [23], who
used a different numerical method, namely the ALE method. Compared with changing the
water-entry angle, changing the head shape is a more effective means of reducing the peak
impact load without any unfavorable effects.
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Figure 25. Comparisons between the time histories of the cylindrical bodies with varying head
shapes. (a) Vertical velocity; (b) Vertical displacement; (c) Vertical acceleration; (d) Vertical force.
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5. Conclusions

The unsteady water-entry processes of small-sized cylindrical trans-media vehicles,
with a characteristic length of 1 m, were investigated by solving the unsteady RANS
equations using the VOF method, the dynamic grid method and the 6DOF motion solver.
We found that the peak impact load, measured by the peak force exerted by water on the
body, strongly depends on four key parameters, including the body mass, the diameter-
to-length ratio, the water-entry angle and the head shape. In particular, the peak impact
load was found to be approximately proportional to the square of the body mass or the
cube of the cylinder diameter. Furthermore, installing an ellipsoidal head can reduce about
94% of the peak impact load experienced by a cylindrical body. Therefore, for practical
application, decreasing the body mass, decreasing the diameter, entering the water at an
optimum water-entry angle or installing an ellipsoidal head are recommended in order to
relieve the peak impact load exerted by water on the body. Note that the current study
mainly focuses on the water-entry processes of small-sized trans-media vehicles at a low
speed (5 m/s). In some applications, bigger trans-media vehicles are designed to enter
the water at a very high speed, thus the fluid compressibility, the cavitation effect and the
Reynolds number effect cannot be neglected. In addition, fluid–solid interactions need to
be addressed in future studies.
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