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Abstract: Due to the super flexibility and strong nonlinearity of space membrane antennas, the
dynamic response of a space membrane antenna will be affected by the rigid–flexible coupling effect
in the process of orbital maneuvering. In this case, the dynamic model of a tensioned membrane
antenna is significantly different from that under the general condition (fixed boundary). In this study,
a nonlinear dynamic model of a tensioned space membrane antenna experiencing maneuvering is
established, and the influence of the rigid–flexible coupling effect on structural stiffness and damping
characteristics is described. Through a numerical solution, the effects of rigid body motion and
structural natural frequency on the rigid–flexible coupling effect are discussed. The results show that
the vibration frequency and amplitude of the antenna are positively correlated with the acceleration
and initial velocity of rigid body motion. With the increase of the natural frequency of the antenna,
the vibration frequency increases but the amplitude decreases. The rigid–flexible coupling nonlinear
dynamic model proposed in this work is more applicable in intelligent vibration control compared to
finite element software.

Keywords: tensioned membrane antenna; nonlinearity; rigid–flexible coupling; orbital maneuvering

1. Introduction

Due to its low cost, lightweight, and high deployment ratio properties, the space
membrane antenna can realize high-resolution observation of the earth with an extremely
light load, which has become a promising antenna structure in radar remote sensing.
However, the space membrane antenna also shows strong nonlinearity and flexibility,
which makes its dynamic characteristics complex and vulnerable to external interference.
The adjustment of its attitude and observation angle to the earth is one of the main factors
causing the disturbance of its surface shape. Under the rigid–flexible coupling effect,
the rigid body motion of the whole structure will have a great influence on the working
performance of the space membrane antenna.

The nonlinear dynamics and response of membrane structures have been systemati-
cally studied in recent years. Zheng et al. [1–3] investigated the free and forced nonlinear
vibration responses of membranes under large displacement based on power series method,
multiple scale perturbation method and Lindstedt Poincaré perturbation method. The
results were compared with those under small displacement. Liu et al. [4,5] established
the nonlinear dynamic models of large amplitude vibration of membranes by Krylov–
Bogolubov–Mitropolsky (KBM) perturbation method and homology perturbation method
(HPM), and proved the high efficiency of HPM by solving the model. Sunny et al. [6]
developed the dynamic equation of tensioned membranes under lateral dynamic load by
using Adomian decomposition method. Fang et al. [7] established a two-variable-parameter
membrane model and solved the natural frequencies and mode shapes of the membrane
antenna by distributed transfer function method (DTFM). Liu et al. [8–10] conducted a
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series of studies on clamped membranes and tensioned space membrane antennas based
on the modal assumption method and nonlinear finite element method. However, in the
majority of the current researches, the membrane structures are assumed to have fixed
boundaries, or the frames of the membrane antennas are fixed. In addition, the exciting
forces on the membranes are always assumed to be local harmonic excitations or pulse
excitations on the membrane surfaces. However, when the satellite/antenna adjusts atti-
tude, the rigid motion of the satellite may cause the vibration of the membrane antenna
because of its strong flexibility. Few studies have been done on these issues. Therefore, it
is of great value to study the rigid–flexible coupling nonlinear dynamic characteristics of
space membrane antennas under attitude adjustment disturbance.

At present, there are few researches on the rigid–flexible coupling dynamic charac-
teristics of space membrane structures. In most studies, the space flexible accessories are
simplified to flexible rod, beam and thin plate structures. Zhang and Deng et al. [11,12]
established the rigid–flexible coupling finite element model of a spatial curved beam, tak-
ing into account the interaction between ‘rigid’ and ‘flexible’. Yoo et al. [13] studied the
influence of the motion-induced stiffness variation on the dynamic response of the plate,
which is neglected in the conventional linear modeling method. Based on continuum
mechanics, Fan et al. [14] deduced the dynamic equations of a rotating flexible rectangular
plate by using the Lagrange equation of the second type, and compared the first-order
model with the zero-order model. Yuan et al. [15] analyzed the coupling effect of translation
and rotation of solar panels. Based on Hamilton’s principle, Liu et al. [16] regarded solar
panels as thin plates, established a discrete dynamic model through the global coordinate
method, and compared it with the simulation results. Some other studies focus on the
impact of the dynamic response of space membrane structures on satellites or other satellite
accessories. Li et al. [17] established the rigid–flexible coupling dynamic model of a solar
sail. The dynamic responses of the hub tips under different maneuvering processes and
different light pressures are calculated. Zhang et al. [18] analyzed the influence of solar sail
vibration on satellite orbit, attitude and its control torque through a rigid–flexible coupling
model. Considering the Von-Karman nonlinear strain–displacement relationship of the
solar sail, Liu et al. [19] studied the influence of its rigid–flexible coupling effects on the
pitching motion of the satellite.

There are also researches which put emphasis on model identification and the non-
linear behavior of nonlinear vibrations. Song et al. [20] realized the model updating
based on nonlinear normal modes extracted from vibration data via Bayesian interference.
Luis et al. [21] took an algebraic approach to identify the parameters of a class of nonlin-
ear vibration, with Hilbert transformation criterion and calculus of Mikusinski applied.
Habib et al. [22] explored the relationships between nonlinear damping and isolated reso-
nance curves. This work, by contrast, focuses on dynamic modelling of objects with a high
degree of freedom, such as membrane antenna and investigates the rigid–flexible coupling
effect during maneuvering of space appendages. The results can facilitate the intelligent
control of large and complicated structures.

In this study, the rigid–flexible coupling nonlinear dynamic model of the space mem-
brane antenna is established first using the finite element method. Then, based on the
established model, the influences of rigid body motion and structural fundamental fre-
quency on the dynamic response of the membrane antenna under a large range of rigid
body motion are analyzed through several numerical examples. The results of this work
lay a theoretical foundation for the in-orbit vibration suppression of membrane structures.
Additionally, in contrast to the black-box-like operation of commercial finite element soft-
ware, the proposed model can guide intelligent vibration control agent training, helping
the finite element method play a role in the control of large and complex structures such as
membrane antennas.
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2. Nonlinear Dynamic Modeling of a Tensioned Membrane Antenna

Figure 1 shows the schematic diagram of an in-orbit satellite with a deployable mem-
brane antenna. Usually, the cutting lace of the membrane (see Figure 1a) is to avoid wrinkles
at the edge of the membrane, but this will introduce complex boundary conditions of the
membrane. When the stress distribution on the membrane is relatively uniform, the lace
will have little influence on the mode shape and frequency of the membrane structure [23].
Therefore, in the modeling process, the lace-free tensioned membrane antenna, as shown in
Figure 1b, is adopted, which can simplify the boundary conditions. The membrane antenna
consists of the thin-walled frame, the cables and the membrane. The whole structure
is placed in the Cartesian coordinate system and the geometric parameters of each part
are shown in Figure 1b. In this section, the geometric nonlinearity and the rigid–flexible
coupling effect of the space membrane antenna will be described, respectively.
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where l is the axial length of frame element, and e is the ratio of x to l. 

Figure 1. Schematic diagram of the in-orbit satellite with a membrane antenna. (a) The satellite and
its membrane antenna (b) Schematic diagram of the membrane antenna.

2.1. Finite Element Model of the Membrane Antenna

In this paper, the finite element method is used to establish the dynamic model of
the membrane antenna. The thin-walled frame, cable, and membrane are, respectively,
equivalent to the Euler–Bernoulli beam element, pre-tensioned rod element and triangular
membrane element. In this section, the displacement field of each element is shown
in details.

For the thin-walled Euler–Bernoulli beam element, it is assumed that each node of
the frame has six spatial degrees of freedom: a three-axis displacement ub, vb, wb and a
three-axis rotation θbx, θby, θbz. Its displacement field δb can be expressed by element shape
function Nb and element node displacement qb as follows:

δb =


ub
vb
wb
θbx

 =


Nb1
Nb2
Nb3
Nb4

 · qb = Nb · qb (1)

Nb =


φ1(e) φ2(e)

φ3(e) φ4(e) φ5(e) φ6(e)
φ3(e) −φ4(e) φ5(e) −φ6(e)

φ1(e) φ2(e)

 (2)

{
φ1(e) = 1− e φ3(e) = 1− 3e2 + 2e3 φ5(e) = 3e2 − 2e3

φ2(e) = e φ4(e) = l
(
e− 2e2 + e3) φ6(e) = l

(
e3 − e2) (3)

where l is the axial length of frame element, and e is the ratio of x to l.
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For the pretensioned cable element, it is assumed that each node of the cable has three
spatial degrees of freedom: three-axis displacement uc, vc, wc. Its displacement field δc can
be expressed by element shape function Nc and element node displacement qc as follows:

δc =

uc
vc
wc

 =

Nc1
Nc2
Nc3

 · qc = Nc · qc (4)

Nc =

1− e e
1− e e

1− e e

 (5)

where e is the ratio of x to the axial length of cable element.
For the triangle membrane element, it is assumed that each node of the frame has

three spatial degrees of freedom um, vm, wm. Its displacement field δm can be expressed by
element shape function Nm and element node displacement qm as follows:

δm =

um
vm
wm

 =

Nm1
Nm2
Nm3

 · qm = Nm · qm (6)

Nm =

Nm1
Nm2
Nm3

 =

Li Lj Lm
Li Lj Lm

Li Lj Lm

 (7)

where Li, Lj, Lm are the area coordinates of a point in membrane element.
The following derivation and modelling are based on the finite element method, using

the stated displacement fields.

2.2. Geometric Nonlinearity of the Membrane Antenna

In this paper, it is considered that flexible and thin-walled structures experience
large displacement, but the relative deformation inside the element is still limited to small
deformation, that is, the large displacement and small deformation problem. Taking second-
order effect into consideration, geometric nonlinearity of the antenna will be described by
geometric equations, physical equations and element potential energy. It has to be noted
that gravitational potential energy is not included, as the membrane antenna is mostly
applied in space.

2.2.1. Nonlinear Description of the Frame Element

Regarding the deformation of the frame element as a large displacement but finite
rotation, the strain field of the frame beam element can be written as

εb =


εbx
εby
εbz
ϕbx

 =



∂ub
∂x + 1

2

(
∂vb
∂x

)2
+ 1

2

(
∂wb
∂x

)2

y ∂2vb
∂x2

z ∂2wb
∂x2

∂θbx
∂x

 =

(
Bbl +

1
2

IT
4 qT

b BT
bnBbn

)
qb (8)

where
Bbl =

[
N′Tb1 y N′′ Tb2 z N′′ Tb3 N′Tb4

]T
(9)

Bbn =
[

N′Tb2 N′Tb3

]T
(10)

I4 =
[
1 0 0 0

]
(11)
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where Bbl and 1
2 IT

4 qT
b BT

bnBbn are linear and nonlinear geometric matrixes of the frame beam
element, respectively. It is considered that the material of the structure is linear elastic
and isotropic. According to generalized Hooke’s law, the constitutive relation of the beam
element is

σb = Dbεb =


Eb

Eb
Eb

Gb

(Bbl +
1
2

IT
4 qT

b BT
bnBbn

)
qb (12)

where σb is the element stress field, Db is the elastic matrix of frame element, Eb is the
Young’s modulus of the material, and Gb is the shear modulus of the material. Taking the
variation of the element potential energy and then integrating it over time gives∫ t2

t1

δΠe
bdt =

∫ t2

t1

1
2

∫
Ω

σT
b εbdΩdt =

∫ t2

t1

δqT
b (Kbl + Kbn)qbdt (13)

where Kbl and Kbn are linear and nonlinear part of the stiffness matrix of the beam element,
respectively, which can be expressed as

Kbl =
∫

Ω
BT

blDbBbldΩ (14)

Kbn =
∫

Ω BT
bnBbnqbI4DbBbldΩ + 1

2

∫
Ω BT

blDbIT
4 qT

b BT
bnBbndΩ

+ 1
2

∫
Ω BT

bnBbnqbI4DbIT
4 qT

b BT
bnBbndΩ

(15)

2.2.2. Nonlinear Description of the Cable Element

Since the cable extends only in the axial direction, only axial strain is considered in its
strain field. In case of large displacement nonlinearity, the relationship between strain and
displacement of cable element is similar to that of the frame beam element, which can be
written as

εcs =
∂sc

∂x
=

∂uc

∂x
+

1
2

(
∂vc

∂x

)2
+

1
2

(
∂wc

∂x

)2
(16)

where sc denotes the nodal axial displacement, ∂uc/∂x is the strain of the element in x
direction, εcs is the axial strain, including the geometric nonlinearity caused by the lateral
displacement. Then the axial strain of the cable element can be written as

εcs =

(
Bcl +

1
2

qT
c BT

cnBcn

)
qc (17)

where
Bcl = N′c1 (18)

Bcn =
[

N′Tc2 N′Tc2

]T
(19)

where Bcl and Bcn are the linear geometric matrix of the cable element and the nonlinear
geometric matrix caused by the second-order effect. Considering that the material of
the structure is linear elastic and isotropic, according to generalized Hooke’s law, the
constitutive relation of the cable element is

σcx = Ecεcs (20)

where Ec is the Young’s modulus of the material. Since the cable is subject to pretension, the
potential energy of the cable includes the strain energy caused by vibration and the initial
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elastic potential energy induced by pretension force. Taking the variation of the element
potential energy and then integrating it over time gives∫ t2

t1
δΠe

cdt =
∫ t2

t1

(
1
2

∫
Ω

σT
c εc dΩ +

∫ lc
0 Tc0εcsdx

)
dt

=
∫ t2

t1
δqT

c (Kcl + Kc0 + Kcn)qcdt +
∫ t2

t1
δqT

c QcΠdt
(21)

where Kcl and Kcn are linear part of the stiffness matrix of the cable element and the
nonlinear part caused by the second order effect; Kc0 denotes the equivalent stiffness matrix
induced by pretension force; QcΠ denotes the equivalent load vector induced by pretension
force, which are expressed as

Kcl =
∫

Ω
BT

clEcBcldΩ (22)

Kcn =
1
2

∫
Ω

BT
clEcqT

c BT
cnBcndΩ+

∫
Ω

BT
cnBcnqcEcBcldΩ+

1
2

∫
Ω

BT
cnBcnqcEcqT

c BT
cnBcndΩ (23)

Kc0 =
∫ lc

0
BT

cnTc0Bcndx (24)

QcΠ =
∫ lc

0
Tc0BT

cldx (25)

2.2.3. Nonlinear Description of the Membrane Element

Based on Kirchhoff’s thin plate hypothesis and Von Karman’s nonlinear theory, the
relationship between the strain and displacement field of the membrane element can be
expressed as:

εm =
[

εmx εmy γmxy
]T

=

[
∂um
∂x + 1

2

(
∂wm
∂x

)2
∂vm
∂y + 1

2

(
∂wm
∂y

)2
∂um
∂y + ∂vm

∂x + ∂wm
∂x

∂wm
∂y

]T

=
(

Bml +
1
2 Hh

)
qm

(26)

where
Bml =

[
N′Tm1x N′Tm2y N′Tm2x + N′Tm1y

]T
(27)

H =

[
N′m3xqm 0 N′m3yqm

0 N′m3yqm N′m3xqm

]T

(28)

h =
[

N′Tm3x N′Tm3y

]T
(29)

where εmx, εmy and γmxy are normal stress and shear stress of the membrane element in x
and y directions. Bml and 1

2 Hh are the linear geometric matrix of the membrane element and
the nonlinear geometric matrix generated by the interaction of in-plane and out-of-plane
displacements. Since membrane structures belong to plane stress problems, the constitutive
relation of the membrane element is

σm = Dmεm =
Em

1− µ2


1 µ 0

µ 1 0

0 0 (1−µ)
2

εm (30)

where Dm is the elastic matrix of the membrane element, Em and µ are Young’s modulus
and Poisson ratio of the material, respectively. Assume that the pretension stress of the
membrane element is

σm0 =
[
σmx0 σmy0 τmxy0

]T (31)
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Similar to the cable element, taking the variation of the element potential energy and
then integrating it over time gives∫ t2

t1
δΠe

mdt =
∫ t2

t1

(
1
2

∫
Ω σT

mεmdΩ +
∫

Ω σT
m0εmdΩ

)
dt

=
∫ t2

t1
δqT

m(Kml + Km0 + Kmn)qmdt +
∫ t2

t1
δqT

mQmΠdt
(32)

where Kml and Kmn are the linear part of the stiffness matrix of the membrane element and
the nonlinear part caused by the second-order effect; Km0 is the equivalent stiffness matrix
induced by pretension; QmΠ is the equivalent load vector induced by pretension, which
are expressed as

Kml =
∫

Ω
BT

mlDmBmldΩ (33)

Kmn =
1
2

∫
Ω

BT
mlDmHhdΩ +

∫
Ω

hTHTDmBmldΩ +
1
2

∫
Ω

hTHTDmHhdΩ (34)

Km0qm =
∫

Ω
hTHTσm0dΩ (35)

QmΠ =
∫

Ω
BT

mlσm0dΩ (36)

2.3. Rigid–Flexible Coupling Dynamic Model of the Membrane Antenna

The dynamic model of membrane antenna will be established in terms of Hamilton’s
principle, which can be expressed as∫ t2

t1

(−δT + δΠ− δW)dt = 0 (37)

where T is kinetic energy; Π is potential energy; and W is the work done by external
force on the system. In this section, the kinematic description will be given first, and the
rigid–flexible coupling dynamic model will be therefore achieved.

When the space membrane antenna works in orbit, its attitude is mainly adjusted
by the angle between the reflecting surface and the ground, i.e., the rigid body motion
rotating around the x axis (see Figure 1) [24]. Therefore, in this work, it is assumed that
the membrane antenna rotates around the x axis at a certain initial velocity and finally
stops. Kane pointed out that for the rigid–flexible coupling effect caused by large-scale
rigid body motion, the coupling term introduced by the influence of rigid body motion
on the dynamic characteristics of elastic motion can be captured when considering the
second-order nonlinearity [25].

Based on this principle, a global coordinate system and a floating coordinate system
are established on the space membrane antenna by using the mixed coordinate system
method, as shown in Figure 2, where ogxgygzg is the global coordinate system, obixbiybizbi
is the floating coordinate system of the i-th beam on the frame, ocjxcjycjzcj is the floating
coordinate system of the j-th cable, and omxmymzm is the floating coordinate system of the
membrane. The rotation angle of the membrane antenna around x axis is θ, the rotation
angular velocity and angular acceleration are

.
θ and

..
θ, respectively. The position vector of

the origin of the floating coordinate system in the global coordinate system is r0, and the
spatial transformation matrix from floating coordinate system to global coordinate system
is A. Based on Hamilton’s principle, the rigid–flexible coupling nonlinear dynamic model
of space membrane antenna will be established in this section.
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The position vector Rp of an arbitrary point P on the membrane antenna in the global
coordinate system can be expressed as

Rp = r0 + A(rp + Nq) (38)

where rp is the position vector of point P in the floating coordinate system before elastic
deformation; Nq denotes the elastic deformation of point P in the floating coordinate system.
Furthermore, the velocity and acceleration vectors of point P in the global coordinate system
are written as .

Rp =
.
r0 +

.
A(rp + Nq) + AN

.
q (39)

..
Rp =

..
r0 +

..
A(rp + Nq) + 2

.
AN

.
q + AN

..
q (40)

Taking the variation of the element kinetic energy and then integrating it over time yields∫ t2
t1
−δTedt =

∫ t2
t1

δqT∫
Ω ρNTAT

..
RpdΩdt

=
∫ t2

t1
δqT[M ..

q + G
.
q + KTq + QT

]
dt

(41)

where M is the element mass matrix; G and KT are the additional mass matrices caused
by the rigid–flexible coupling effect, which exhibit damping and stiffness characteristics,
respectively; QT is the external load caused by the acceleration of rigid motion. When the
rigid–flexible coupling effect is not considered, G = KT = 0, and Equation (41) degenerate
to a general rigid body dynamic equation. The above matrices are specifically expressed as

M =
∫

Ω
ρNTAT ANdΩ (42)

G = 2
∫

Ω
ρNTAT .

ANdΩ (43)

KT =
∫

Ω
ρNTAT ..

ANdΩ (44)

QT =
∫

Ω
ρNTAT

(..
r0 +

..
Arp

)
dΩ (45)

For fixed-axis rotation, the spatial transformation matrix A is the function of the
rotation angle. Equations (43)–(45) can be turned into

G = Gp ·ω(t) (46)

KT = KT1 · α(t) + KT2 ·ω2(t) (47)

qT = qT1 · α(t) + qT2 ·ω
2(t) (48)
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where α(t) and ω(t) are the acceleration and velocity of rigid rotation, respectively. G,
KT1, KT2, QT1, QT2 are constant parts separated from G, KT, QT. It is clear that rigid–
flexible coupling effect is relevant with acceleration and velocity, which will be discussed
in details later.

In Section 2.1, the integration of potential energy of the frame, cable and membrane
elements have been obtained, as shown in Equations (13), (21) and (32). The integration of
kinetic energy of each element has also been obtained by using the mixed coordinate system
method, as shown in Equation (40). Substituting the above equations into Equation (37),
one can obtain the following rigid–flexible coupling dynamic equations of the frame beam
element, the cable element, and the membrane element, respectively. By assembling the
various matrices of all the elements, one can obtain the rigid–flexible coupling nonlinear
dynamic equation of the space membrane antenna.

M
..
q + (C + G)

.
q + (K0 + Kl + Kn + KT)q+QΠ + QT = F (49)

where the subscripts b, c and m represent the frame beam element, cable element and
membrane element, respectively, and the subscripts 0, l, n, Π and T represent the compo-
nents related to pretension, linearity, nonlinearity, strain energy and rigid–flexible coupling
effect, respectively. M denotes the mass matrix, C denotes the damping matrix, F denotes
the external load vector, K denotes the stiffness matrix, and Q denotes the equivalent
load vector.

In this section, the influence of geometric nonlinearity and rigid–flexible coupling
effect on the dynamic characteristics of membrane antennas is described theoretically.
Instead of a merely numerical output, the expression of the theoretical model is more
helpful to understand the nonlinear and rigid–flexible coupling dynamic behavior of space
membrane antenna, so as to guide the dynamic design optimization and dynamic response
control of the structure.

3. Solution of Rigid–Flexible Coupling Nonlinear Dynamic Response

In this paper, the Wilson-θ method is used to solve the nonlinear dynamic equations.
The model of the space membrane antenna is shown in Figure 1, and the materials and
geometric parameters of the membrane antenna are shown in Table 1. Based on the obtained
dynamic model, the natural frequencies of some modes of the membrane antenna, which
are only related to the mass and stiffness of the antenna system, are shown in Table 2,
and the shapes of the first four modes are shown in Figure 3. It should be noted that the
natural frequencies are used to illustrate the basic dynamic characteristics of the membrane
antenna in this section, and to make comparison with vibration frequencies to explain how
the rigid–flexible coupling effect influences the response. Since the membrane antenna is a
biaxially symmetrical structure, the mode shapes are symmetric or central symmetric. For
the membrane antenna in this section, the first and third modes are symmetric, while the
second and fourth modes are central-symmetric. Because symmetry of modes has little
correlations to the research on the rigid–flexible coupling effect, emphasis will not be put
on symmetry of modes in the following sections.

Assume that the antenna structure has proportional damping, C = αM + βK, where α
and β are damping coefficients. It is considered that the membrane antenna rotates at a con-
stant angular velocity ω0 at first, then decelerates from a certain moment, and finally comes
to a standstill after a certain period of time T. Without losing generality, an arbitrary point
A with coordinates (0.7036, 0.4267) on the membrane is selected as the measuring point, as
shown in Figure 1b. Firstly, we assume that the initial angular velocity ω0 = π/5 rad·s−1,
T = 1 s and α = β=0.01. The membrane antenna shapes at different moments are listed in
Figure 4, where the vibration displacements have been magnified 1000 times to facilitate
observation. The time response of the out-of-plane displacement of point A in this process
is shown in Figure 5a. It can be found that during the first second, when the membrane
antenna is decelerating, because of the inertia, the vibration equilibrium point of point A is
not located in the plane before the membrane is deformed. When the rigid body motion
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stops, the out-of-plane displacement is approximately symmetrical with respect to the
original plane of the membrane. Due to the damping effect, the vibration of the structure
decays rapidly after two seconds. The frequency characteristics changing with time can be
obtain by 3D wavelet transformation, as seen in detail in Figure 6. The frequency reaches
the peak when deceleration starts because the velocity and acceleration of rigid motion
contribute to the stiffness of antenna system as Equation (49) shows. The energy rises
pretty high at initial and then reduces after about one second, which corresponds with
the displacement response. The frequency decreases as vibration attenuates due to the
nonlinearity. The energy gradually decreases as amplitude falls off, and the stable vibration
frequency fluctuates around 2 Hz, eventually.
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Cross-sectional area/m2 5.24 × 10−4

Moment of inertia on z axis/m4 2.69 × 10−7
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Cable
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Poisson ratio 0.36
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Thickness/m 10−4

Young’s modulus/GPa 3.5
Poisson ratio 0.34

Density/(kg·m−3) 1530



Aerospace 2022, 9, 794 11 of 19

Table 2. Modal frequencies of the membrane antenna.

Mode Frequency/Hz Mode Frequency/Hz

1 1.0005 6 2.1286
2 1.2498 7 2.4265
3 1.6040 8 2.4586
4 1.9923 9 2.7534
5 2.0101 10 2.9362
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Then, in order to investigate the influence of the damping coefficients, set α = β = 0.001.
The time response of point A is shown in Figure 5b. It can be found that the attenuation
of structural vibration is much slower. Then, we set ω0 = π/2 rad/s; the time response of
point A is given in Figure 5c. It can be observed that the membrane vibration amplitude
increases significantly as the initial kinetic energy increases. Moreover, the vibration of the
structure has no obvious attenuation during the first ten seconds.
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A series of displacement response vectors Xi can be obtained with a full-order finite
element analysis employed. The proper orthogonal modes (POMs), which are the most
significant contribution to the nonlinear dynamic response, are identified through proper
orthogonal decomposition (POD). A set of normal modes resembling desired POMs are
selected according to the modal assurance criterion. Therefore, the modal analysis of the
dominant shape obtained by numerical simulation is then carried out [26].

The response vectors Xis are stored at discrete output times in the so-called snapshot
matrix X. A correlation matrix R could be obtained from snapshots matrix as

R = XTX/n (50)

where n is the number of output time samples and N is the number of degree of freedoms.
The eigen analysis is then performed on correlation matrix

[R− λI]p = 0 (51)

where λ and p are eigenvalue and eigenvector, respectively. As in normal mode analysis,
eigenvectors can illustrate the mode shape in a response, which is called a proper orthogo-
nal mode (POM), while eigenvalues indicate the significance of their corresponding shape,
which is called proper orthogonal value (POV). The larger the POV is, the more contribu-
tions the corresponding POM has made. The participation of POM can be determined by
participation factor χi, which is

χi = λi/
N

∑
i=1

λi (i = 1, · · · , N) (52)

The sum of all participation factors should be 1. When selecting POMs with a number
of M (M < N), the cumulative participation factors of selected POMs can be expressed as

ν =
M

∑
i=1

χi(0 < ν < 1) (53)

The POMs could resemble normal modes a lot for simple structures, while they could
be quite different for complex structures with high DOFs such as membrane antenna. The
modal assurance criterion (MAC) is therefore applied to measure the similarity of a pair of
POM and normal mode [27]. The MAC value of a pair of vectors could be written as

MAC(pk,ϕl) =

∣∣pT
k ϕl
∣∣2(

pT
k pk
)(

ϕT
l ϕl
) (k = 1, · · · , M; l = 1, · · · , N) (54)

where pk is one of select POMs and ϕl is one of normal modes. Normal modes are
sorted by their MAC values, and M could be adjusted according to the cumulative
participation factor.

The combined shape of POMs with a participation factor of 99% of the membrane
antenna is shown in Figure 7, which is a so-called dominant shape. Table 3 offers five
normal modes with the highest MAC values and their cumulative participation factor.

Table 3. The first five normal modes.

Normal Mode 4 5 23 7 51

MAC (%) 76.28 3.75 2.74 1.69 1.12

Cumulative MAC (%) 85.58
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It can be seen from Table 3 that the dominant mode of the membrane antenna is similar
to its fourth-order mode with a similarity as high as 76.28%. Therefore, it can be considered
that its mode shape is dominated by the fourth-order mode shape. However, compared
with Table 2, one can find that the response frequency of the membrane antenna in Figure 5
is larger than its fourth-order frequency. This indicates that under the disturbance of rigid
body motion, the dynamic response frequency of the membrane antenna is not consistent
with its modal frequency of the corresponding order mode shape. The dominant mode
shape is related to its rigid body motion, while its dynamic response frequency is affected
by both the structure itself as well as the rigid body motion. In Section 4, we will discuss
the influence of the rigid body motion on the dynamic response characteristics of the
membrane antenna through multiple sets of numerical examples.

4. Discussion on Rigid–Flexible Coupling Nonlinear Dynamic Characteristics

In this section, four different case studies are carried out to analyze the dynamic
response of point A in the time domain and frequency domain, and to discuss the influence
of rigid body motion (acceleration, initial velocity and deceleration duration) and structural
fundamental frequency on the rigid–flexible coupling dynamic response characteristics
under the disturbance of antenna attitude adjustment. Three membrane antenna models
of different fundamental frequencies are first obtained by adjusting the pretension forces
of the cables, which are named M1, M2 and M3. The influences of the initial rotational
velocity ω0, the deceleration duration T and the corresponding acceleration on the dynamic
response of three models are discussed, respectively. The frequency components of antenna
vibration are extracted by FFT. Though the frequency is varying for a nonlinear vibration,
the distribution of frequency components is kind of concentrated. The frequency component
with highest energy was, therefore, selected to represent the frequency characteristic of the
vibration. The fundamental frequencies of three models and the corresponding pretension
forces are listed in Table 4. The parameters of rigid body motion used in the case studies
are shown in Table 5.

Table 4. Fundamental frequencies and pretension forces of different models.

Model Frequencies/Hz Pretension in x Direction/N Pretension in y Direction/N

M1 0.50 0.147 0.25
M2 1.00 0.59 1
M3 2.00 3.1 3.7

Table 5. Parameters of rigid body motion.

Initial Rotational Velocity ω0/(rad·s−1) Deceleration Duration T/s

π/2 1
π/5 0.1 1 2
π/100 1
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Firstly, the dynamic responses of different models with the same rigid body motion
are analyzed. The initial rotational velocity ω0 = π/100 (rad/s), the deceleration duration
T = 0.1 s. The time histories of point A are shown in Figure 8 and the dynamic response
frequencies and amplitudes are shown in Table 6. It can be observed that under the same
rigid body motion, the dynamic response frequency of the membrane antenna is positively
correlated with the fundamental frequency of the structure, while the maximum amplitude
is negatively correlated with the fundamental frequency of the structure.
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Table 6. Dynamic responses of point A of M1~M3, ω0 = π/100 (rad/s), T = 0.1 s.

Model Fundamental Frequency/Hz Response Frequency/Hz Amplitude/mm

M1 0.5003 0.9537 0.4441
M2 1.0005 2.0027 0.2101
M3 2.0000 3.9101 0.0871

Then, the dynamic responses of model M3 with the same initial rotational velocity
ω0 but different deceleration duration T are discussed. Assume that ω0 = π/5 (rad/s),
T = 0.1 s, 1 s and 2 s, the time histories of point A are shown in Figure 9 and the dynamic
response frequencies and amplitudes are shown in Table 7. One can find that with the
increase of T, the response frequency and amplitude decrease, and the nonlinearity of the
system becomes obvious. It also shows that the inertia force creates a new balanced position
for nodes of the membrane antenna, instead of the plane before maneuvering. This is the
reason why the displacement of A keeps positive before rigid motion stops.
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Table 7. Dynamic responses of point A of M3, ω0 = π/5 (rad/s).

Deceleration Duration T/s Response Frequency/Hz Amplitude/mm

0.1 4.1504 1.412
1 3.7231 0.1549
2 3.6621 0.0773

Next, the dynamic responses of model M1 with different initial rotational velocity
ω0 but the same deceleration duration T are discussed. Assume that ω0 = π/2 (rad/s),
π/5 (rad/s) and π/100 (rad/s), the deceleration duration T = 0.1 s. The time histories of
point A of the three cases are shown in Figure 9 and the dynamic response frequencies and
amplitudes are shown in Table 8. It is obvious that the response frequency decreases with
the decrease of initial rotational velocity ω0. Additionally, the vibration amplitude evidently
declines with the decrease of ω0. From the discussion above we can draw the following
conclusion: (1) the response frequency and vibration amplitude of the membrane antenna
is strongly influenced by acceleration of the rigid body motion, i.e., for the same model, a
larger acceleration will lead to a higher response frequency and a larger vibration amplitude;
(2) the energy of vibration is dominated by the initial kinetic energy of the membrane
antenna, i.e., for the same model, a larger initial rotational velocity will contribute to a
larger vibration amplitude.

Table 8. Dynamic responses of point A of M1, T = 0.1 s.

Initial Rotational Velocity ω0/(rad·s−1) Response Frequency/Hz Amplitude/mm

π/2 2.3842 6.3172
π/5 1.7166 3.9360
π/100 0.9537 0.4441

In Figure 10 and Table 8, the influence of initial velocity and deceleration duration
have been discussed. We assume that the antenna rotates with the same initial velocity but
different deceleration duration, or with different initial velocity but the same deceleration
duration. However, there is another case that needs to be discussed, i.e., the antenna rotates
with different initial velocity and different deceleration duration, but the same acceleration.
Assume that the membrane antenna rotates in the following two cases: (1) ω0 = π/5 (rad/s),
T = 1 s; (2) ω0 = π/50 (rad/s), T = 0.1 s. The time histories of point A are shown in Figure 11
and the dynamic response frequencies and amplitudes are shown in Table 9.
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Table 9. Dynamic responses of point A of M1 with the same acceleration.

ω0/(rad·s−1) T/s Response Frequency/Hz Amplitude/mm

π/5 1 1.2398 1.4542
π/50 0.1 1.0490 0.7831

From Table 9, one can find that although the accelerations of the two cases are the
same, the dynamic responses are still different. The amplitude and response frequency are
larger when the initial rotational velocity is π/5 (rad·s−1). Therefore, under the condition of
the same acceleration, the initial velocity has more influence on the rigid–flexible coupling
response than the deceleration duration.

It can be seen from the above case studies that the rigid body motion has a significant
influence on the dynamic response characteristics of the space membrane antenna due to
the rigid–flexible coupling effect, and the influence is related to the modal characteristics of
the structure. For three models M1, M2 and M3, with different fundamental frequencies, the
detailed influences of rigid motion on the dynamic response of the antenna are displayed
in Figures 12 and 13.
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The blue, green, and yellow dotted lines in Figure 12 denote the natural frequencies of
the dominant mode (fourth-order mode) of models M1, M2 and M3, which are 0.94 Hz,
1.99 Hz and 3.90 Hz, respectively. It can be found that the response frequency increases
with the increase of the fundamental frequency of the model. At the same time, the
rigid–flexible coupling response frequency of the structure climbs with the increase of the
rigid body motion acceleration. When the acceleration approaches zero, the influence of the
rigid–flexible coupling effect decreases significantly, and the structural response frequency
approaches the natural frequency of the dominant mode. From Figure 13, one can find
that the vibration amplitude of the structure decreases with the increase of fundamental
frequency and deceleration duration, and increases with the increasing of initial velocity.
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Comparatively speaking, the initial kinetic energy of the structure dominantly determines
the maximum vibration amplitude that could be achieved. In addition, by comparing the
three models, the response frequency of M1 is significantly affected by the initial velocity
and deceleration duration, while the influence on M3 is relatively weak. This means that
under the same rigid body motion condition, the rigid–flexible coupling effect will have a
stronger influence on the structure with lower fundamental frequency.
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5. Conclusions

In this study, a rigid–flexible coupling nonlinear dynamic finite element model of a
maneuvering space pretensioned membrane antenna is established. Based on the numerical
simulation results, the influence of rigid body motion and structural dynamic characteristics
on the dynamic response of membrane antenna is investigated. Conclusions are as follows.

(1) The acceleration of rigid body motion provides new stiffness and damping component
to membrane structures, which is called dynamic impedance. It can be learnt from
the model derivation, that rigid–flexible coupling effect is proportional to acceleration
and square of velocity of rigid motion. Overall, the frequency increment relative to
the response modal frequency will increase and the vibration amplitude will decrease
as the initial rotational velocity and acceleration grow.

(2) The frequency increment and the vibration amplitude are under a combined impact
caused by linear and nonlinear stiffness of the structure as well as rigid–flexible
coupling effect. For a membrane antenna with a fundamental frequency of 0.5 Hz,
when its rotational velocity is magnified 10 times, the frequency increment and
amplitude are about 2.7 times and 1.86 times larger than before, respectively; and
when its acceleration is increased 10 times, the frequency increment and amplitude
are around 2.57 times and 2.7 times smaller than before, respectively.

(3) The rigid–flexible coupling effect can be more notable for the membrane structure
with a smaller fundamental frequency. When the fundamental frequency is halved,
the response frequency increment induced by rigid–flexible coupling effect will be
doubled, while the amplitude will decrease whose reduction proportion is positively
correlated with the acceleration.

Author Contributions: Conceptualization, Y.L.; formal analysis, Q.S.; investigation, G.F.; method-
ology, Q.S.; project administration, L.L.; supervision, H.Y.; writing—original draft, Y.L. and Q.S.;
writing—review and editing, Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
52005125), the Young Elite Scientists Sponsorship Program by CAST (YESS20210134), the Fundamen-
tal Research Funds for the Central Universities, China (No. FRFCU5710050921) and Open Project of
Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology
Group Co., Ltd.



Aerospace 2022, 9, 794 19 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, Z.L.; Liu, C.J.; He, X.T.; Chen, S.L. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection.

Math. Probl. Eng. 2009, 2009, 634362. [CrossRef]
2. Zheng, Z.L.; Liu, C.Y.; Li, D.; Zhang, T. Dynamic response of orthotropic membrane structure under impact load based on

multiple scale perturbation method. Lat. Am. J. Solids Struct. 2017, 14, 1490–1505. [CrossRef]
3. Zheng, Z.L.; Song, W.J.; Liu, C.J.; He, X.T.; Sun, J.Y.; Xu, Y.P. Study on dynamic response of rectangular orthotropic membranes

under impact loading. J. Adhes. Sci. Technol. 2012, 26, 1467–1479. [CrossRef]
4. Liu, C.J.; Zheng, Z.L.; Yang, X.Y.; Zhao, H. Nonlinear damped vibration of pre-stressed orthotropic membrane structure under

impact loading. Int. J. Struct. Stab. Dyn. 2014, 14, 1350055. [CrossRef]
5. Liu, C.J.; Zheng, Z.L.; Yang, X.Y.; Guo, J.J. Geometric Nonlinear Vibration Analysis for Pretensioned Rectangular Orthotropic

Membrane. Int. Appl. Mech. 2018, 54, 104–119. [CrossRef]
6. Sunny, M.; Kapania, R.; Sultan, C. Solution of the Nonlinear Transverse Vibration Problem of a Prestressed Membrane Using the

Adomian Decomposition Method. In Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference, Denver, Colorado, 4–7 April 2011; American Institute of Aeronautics and Astronautics: Reston, VA,
USA, 2011; pp. 1–17.

7. Fang, H.; Yang, B.; Ding, H.; Hah, J.; Quijano, U.; Huang, J. Dynamic analysis of large in-space deployable membrane antennas.
In Proceedings of the 13th International Congress on Sound and Vibration, Vienna, Austria, 2 July 2006; Volume 6, pp. 5133–5140.

8. Liu, X.; Cai, G.P.; Peng, F.J.; Zhang, H.; Lv, L.L. Nonlinear vibration analysis of a membrane based on large deflection theory.
JVC/J. Vib. Control 2018, 24, 2418–2429. [CrossRef]

9. Liu, X.; Cai, G.; Peng, F.; Zhang, H. Active control of large-amplitude vibration of a membrane structure. Nonlinear Dyn. 2018, 93,
629–642. [CrossRef]

10. Liu, X.; Cai, G.; Peng, F.; Zhang, H. Nonlinear vibration control of a membrane antenna structure. Proc. Inst. Mech. Eng. Part G J.
Aerosp. Eng. 2019, 233, 3273–3285. [CrossRef]

11. Zhang, J.; Rui, X.; Li, B.; Chen, G. Study on the Stress-Stiffening Effect and Modal Synthesis Methods for the Dynamics of a Spatial
Curved Beam. J. Appl. Mech. Trans. ASME 2016, 83, 081004. [CrossRef]

12. Deng, F.; He, X.; Li, L.; Zhang, J. Dynamics modeling for a rigid-flexible coupling system with nonlinear deformation field.
Multibody Syst. Dyn. 2007, 18, 559–578. [CrossRef]

13. Yoo, H.H.; Chung, J. Dynamics of rectangular plates undergoing prescribed overall motion. J. Sound Vib. 2001, 239, 123–137.
[CrossRef]

14. Fan, J.; Zhang, D.; Shen, H. Discretization Methods of a Rotating Flexible Rectangular Thin Plate. J. Shanghai Jiaotong Univ. 2020,
25, 118–126. [CrossRef]

15. Yuan, Q.; Liu, Y.; Qi, N. Active vibration suppression for maneuvering spacecraft with high flexible appendages. Acta Astronaut.
2017, 139, 512–520. [CrossRef]

16. Liu, L.; Cao, D.; Wei, J.; Tan, X.; Yu, T. Rigid-Flexible Coupling Dynamic Modeling and Vibration Control for a Three-Axis
Stabilized Spacecraft. J. Vib. Acoust. 2017, 139, 041006. [CrossRef]

17. Li, Q.; Ma, X.; Wang, T. Reduced Model for Flexible Solar Sail Dynamics. J. Spacecr. Rockets 2011, 48, 446–453. [CrossRef]
18. Zhang, J.; Wang, T. Coupled attitude-orbit control of flexible solar sail for displaced solar orbit. J. Spacecr. Rockets 2013, 50, 675–685.

[CrossRef]
19. Liu, J.; Cui, N. Rigid–flexible coupled dynamics analysis for solar sails. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233,

324–340. [CrossRef]
20. Song, M.; Renson, L.; Noël, J.P.; Moaveni, B.; Kerschen, G. Bayesian model updating of nonlinear systems using nonlinear normal

modes. Struct. Control Health 2018, 25, e2258. [CrossRef]
21. Trujillo-Franco, L.G.; Silva-Navarro, G.; Beltran-Carbajal, F. Algebraic Parameter Identification of Nonlinear Vibrating Systems

and Non Linearity Quantification Using the Hilbert Transformation. Math Probl. Eng. 2021, 2021, 5595453. [CrossRef]
22. Habib, G.; Cirillo, G.I.; Kerschen, G. Isolated resonances and nonlinear damping. Nonlinear Dyn. 2018, 93, 979–994. [CrossRef]
23. Li, Y.L.; Lu, M.Y.; Tan, H.F.; Tan, Y.Q. A study on wrinkling characteristics and dynamic mechanical behavior of membrane. Acta

Mech. Sin. Xuebao 2012, 28, 201–210. [CrossRef]
24. Shi, H.; Wang, C.; Liu, L.; Gao, Z.; Xie, Y. An active control strategy to suppress nonlinear vibrations of large space membranes.

Acta Astronaut. 2019, 155, 80–89. [CrossRef]
25. Kane, T.R.; Ryan, R.R.; Banerjee, A.K. Dynamics of a cantilever beam attached to a moving base. J. Guid. Control. Dyn. 1987, 10,

139–151. [CrossRef]
26. Rizzi, S.A.; Przekop, A. System identification-guided basis selection for reduced-order nonlinear response analysis. J. Sound Vib.

2008, 315, 467–485. [CrossRef]
27. Allemang, R.J.; Brown, D.L. A Correlation Coefficient for Modal Vector Analysis. Proc. Int. Conf. 1982, 110–116. [CrossRef]

http://doi.org/10.1155/2009/634362
http://doi.org/10.1590/1679-78253835
http://doi.org/10.1163/156856111X618335
http://doi.org/10.1142/S0219455413500557
http://doi.org/10.1007/s10778-018-0864-4
http://doi.org/10.1177/1077546316687924
http://doi.org/10.1007/s11071-018-4214-1
http://doi.org/10.1177/0954410018794321
http://doi.org/10.1115/1.4033515
http://doi.org/10.1007/s11044-007-9052-8
http://doi.org/10.1006/jsvi.2000.3111
http://doi.org/10.1007/s12204-019-2129-8
http://doi.org/10.1016/j.actaastro.2017.07.036
http://doi.org/10.1115/1.4036213
http://doi.org/10.2514/1.48789
http://doi.org/10.2514/1.A32369
http://doi.org/10.1177/0954410017730091
http://doi.org/10.1002/stc.2258
http://doi.org/10.1155/2021/5595453
http://doi.org/10.1007/s11071-018-4240-z
http://doi.org/10.1007/s10409-011-0512-2
http://doi.org/10.1016/j.actaastro.2018.11.042
http://doi.org/10.2514/3.20195
http://doi.org/10.1016/j.jsv.2007.12.031
http://doi.org/10.14822/kjsass.50.582_145

	Introduction 
	Nonlinear Dynamic Modeling of a Tensioned Membrane Antenna 
	Finite Element Model of the Membrane Antenna 
	Geometric Nonlinearity of the Membrane Antenna 
	Nonlinear Description of the Frame Element 
	Nonlinear Description of the Cable Element 
	Nonlinear Description of the Membrane Element 

	Rigid–Flexible Coupling Dynamic Model of the Membrane Antenna 

	Solution of Rigid–Flexible Coupling Nonlinear Dynamic Response 
	Discussion on Rigid–Flexible Coupling Nonlinear Dynamic Characteristics 
	Conclusions 
	References

