
 

 
 

 

 
Aerospace 2022, 9, 751. https://doi.org/10.3390/aerospace9120751 www.mdpi.com/journal/aerospace 

Article 

Two-Scale Asymptotic Homogenization Method for Composite 

Kirchhoff Plates with in-Plane Periodicity 

Zhiwei Huang, Yufeng Xing and Yahe Gao * 

School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China 

* Correspondence: gaoyahe@buaa.edu.cn 

Abstract: This paper develops a two-scale asymptotic homogenization method for periodic compo-

site Kirchhoff plates. In this method, a three-dimensional (3D) periodic plate problem is simplified 

as a Kirchhoff plate problem, which is governed by a fourth-order uniformly elliptic partial differ-

ential equation (PDE) with periodically oscillating coefficients. Then, a two-scale solution in an as-

ymptotic expansion form is presented for the PDE, and it is found that the first-order perturbed 

displacement in the asymptotic solution is zero. Additionally, periodic boundary and normalization 

constraint conditions are proposed to determine the unique solution to unit cell problems. Moreo-

ver, standard finite element formulations for calculating the perturbed displacements are derived 

from the principle of virtual work. Physical interpretations of the influence functions are presented 

by analyzing the properties of self-balanced quasi-load vectors used for solving the influence func-

tions. Numerical comparisons show that the present method is physically acceptable and highly 

accurate.  

Keywords: composite plate; asymptotic homogenization method; unit cell problem; physical  

interpretation 

 

1. Introduction 

The development of modern technology is inseparable from composite materials. 

Composite material structures have been extensively used in various engineering fields 

in the past few decades. However, the heterogeneity of microstructures brings high com-

putational costs to the modeling and simulation of composite structures. Since composite 

structures have various scale characteristics in nature, multiscale homogenization meth-

ods are an important tool for the analysis of composite structures from the point of view 

of accuracy and efficiency. 

In recent decades, many multiscale homogenization methods have been proposed to 

deal with composite structures, such as the two-scale asymptotic homogenization method 

(AHM) [1–3], the multiscale eigenelement method (MEM) [4–6], the heterogeneous mul-

tiscale method (HMM) [7,8], the variational asymptotic method (VAM) [9,10], and for 

many other multiscale homogenization methods referred to [11,12] and the references 

cited therein. Among the above numerical homogenization methods [1–10], the AHM [1–

3] is one of the most representative ones with a rigorous mathematical foundation and 

has been widely used in the homogenization analysis of periodic composite structures for 

statics [13–18] and dynamics [19–22]. However, the AHM [1–3,13–22] was mainly con-

fined to coping with structural problems with omnidirectional periodicity, such as two-

dimensional (2D) plane or three-dimensional (3D) solid problems, where the governing 

equations are second-order elliptic partial differential equations (PDEs) with periodically 

oscillating coefficients. Whereas, studies about the transverse homogenization of compo-

site plate structures with only in-plane periodicity are still inadequate. A unique property 
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of this kind of problem is that the plates deform in the thickness direction, which is per-

pendicular to the direction in which the periodicity exists. To realize the transverse ho-

mogenization of periodic plates, we have to choose one of the plate theories, which are 

briefly reviewed below, before reviewing the works related to the homogenization. 

The Kirchhoff plate theory [23] is the simplest plate theory in which only deflection 

is the independent variable. Brunelle et al. [24] pointed out that the Kirchhoff plate theory 

is not suitable for moderately thick plates or those with a large ratio of elastic modulus to 

shear modulus, since the Kirchhoff plate theory ignores the transverse shear deformation. 

To improve the accuracy of the Kirchhoff plate theory, Reissner and Mindlin et al. [25,26] 

constructed the first-order shear plate theory by introducing two additional independent 

angles to describe the transverse shear deformations, but it cannot capture warping de-

formation, so the shear correction coefficient was introduced to update shear stiffness. 

Furthermore, several higher-order shear plate theories [27–34] were proposed by expand-

ing in-plane displacements into higher-order power functions of thickness coordinates, 

one representative of which is the third-order shear deformation theory [32]. Additionally, 

layer-wise theories [35–38] provide a powerful tool to simulate the stress distribution of 

laminates, achieving higher accuracy compared with single-layer plate theories [39,40]. 

However, the existing plate theories [23–40] were developed for homogeneous plates 

or laminated composite plates. For composite plate structures with periodic microstruc-

tures, these plate theories cannot be used directly, and they should be used together with 

the solutions of the unit cell problem to effectively fulfill the static and dynamic analyses 

of the periodic plates.  

To deal with periodic thin plate structures, some work focused on the simplification 

of 3D periodic thin plate problems to 2D homogenized Kirchhoff plate models in analyti-

cal manners. Libove et al. [41] were one of the earliest researchers to investigate the ho-

mogenized properties of sandwich plates and state that the sandwich panel can be trans-

formed into an equivalent homogeneous panel with elastic constants. Briassoulis et al. [42] 

held that corrugated thin plates composed of anisotropic materials could be equivalent to 

homogenized orthotropic thin plates, and derived the analytical expressions of the effec-

tive bending stiffnesses in accordance with force-distortion relationships. Richard et al. 

[43], Samanta et al. [44], and Kress et al. [45] achieved the analytical results of effective 

stiffnesses of sinusoidal, trapezoidal, and circular corrugated plates. Based on the princi-

ple of strain energy equivalence, Xia et al. [46] established a homogenization-based ana-

lytical model to obtain the explicit expressions of effective in-plane tensile stiffness and 

out-of-plane bending stiffness for various sandwich plates. As for periodic moderately 

thick plate structures, transverse shear effects cannot be neglected, so the Reissner–

Mindlin plate model should be considered in the process of stiffness predictions. Accord-

ing to the relation between force and deformation, Libove et al. [41] derived the effective 

bending stiffness and transverse shear stiffness of corrugated sandwich plates. Following 

the work of Libove et al. [41], Lok et al. [47,48], Fung et al. [49–51], and Leekitwattana et 

al. [52] derived the effective properties of some periodic, moderately thick plates in ac-

cordance with force-distortion relationships.  

However, the abovementioned analytical approaches [41–52] to effective constant 

predictions may encounter difficulties when addressing periodic plates with complex mi-

crostructures. Hence, numerical homogenization methods may be a necessary choice in 

such situations. For composite plates with only in-plane periodic microstructures, Nasu-

tion et al. [53] used the AHM to achieve the in-plane effective properties by relieving the 

periodicity in the thickness direction. Nevertheless, the traditional AHM [1–3,13–22] can-

not well capture out-of-plane deformations produced by transverse loads due to few or 

no repeated unit cells in the thickness direction. To achieve the out-of-plane effective stiff-

nesses of periodic thin plates, some work [54–57] simplified 3D plate problems to 2D ho-

mogenized Kirchhoff plate problems by assuming the behaviors in the thickness direction. 

However, these works [54–57] required the solution of complex 3D unit cell problems and 

were difficult to achieve the micro deformations under real loads.  
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Different from previous work, the main purpose of this work is to develop a homog-

enization method for composite thin plates with in-plane periodicity by combining the 

Kirchhoff plate theory with the two-scale AHM to predict the effective bending stiffness 

and achieve two-scale displacements. To the author’s knowledge, few studies have been 

conducted on the homogenization of the 2D periodic Kirchhoff plate. Kolpakov [58] ap-

plied the AHM to deal with the 2D inhomogeneous periodic plate with initial stresses. 

Recently, Faraci et al. [59] held that the two-scale AHM could be used to analyze suffi-

ciently thin periodic plates based on the Kirchhoff plate theory, and the first two-order 

asymptotic solutions were presented. However, the above references [58,59] did not in-

volve the solutions of higher perturbed terms or their physical interpretations.  

In this work, we focus on the two-scale asymptotic solutions of 2D periodic Kirchhoff 

plates. The main novel contributions to this work are listed as follows: 

(1) The asymptotic expansion solutions of the fourth-order PDE with rapidly periodic 

oscillating coefficients were presented, and the accuracy of high-order perturbed 

terms was investigated quantitatively. 

(2) Constraint conditions for the unit cell problem were given and elaborated physically. 

(3) The influence functions were interpreted physically for a better understanding of the 

two-scale AHM. 

(4) The explicit analytically homogenized stiffness for periodic plates with layered struc-

tures was presented.  

The rest of this paper is organized as follows: In Section 2, a 3D periodic plate prob-

lem is simplified as a 2D Kirchhoff plate model, and then the process of asymptotic ho-

mogenization for the 2D Kirchhoff plate model is presented; Section 3 provides the solu-

tions for unit cell problems; in Section 4, the physical interpretations of influence functions 

are presented; in Section 5, numerical experiments are conducted to verify the proposed 

method; and conclusions are drawn in Section 6. 

2. Asymptotic Homogenization of the Periodic Composite Plate 

In this section, a 3D composite plate structure with in-plane periodicity is equivalent 

to a 2D composite plate according to the Kirchhoff plate theory, as shown in Figure 1. 

Then, the two-scale asymptotic homogenization method is employed to solve the 2D pe-

riodic Kirchhoff plate problem, i.e., a fourth-order elliptic PDE with periodically oscillat-

ing coefficients. 

 

Figure 1. 3D periodic plate and its corresponding 2D Kirchhoff plate. (a) 3D periodic plate with 

multi-inclusion; (b) 2D periodic plate with multi-inclusion and its unit cell. 
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2.1. Dimensional Reduction to Composite Kirchhoff Plates with in-Plane Periodicity 

According to the assumption of Kirchhoff plate theory, the displacement field of the 

plate for bending problems can be determined as: 

1 3
1

2 3
2

3

ε
ε

ε
ε

ε ε

w
u x

x

w
u x

x

u w

 
 





  


    

(1)

where ��
� (� = 1, 2, 3) are the spatial displacements, and �� denotes the transverse dis-

placement on the reference surface.  

The elastic strain field can be evaluated from the displacement field as follows: 

T
2 2 2T

1 2 12 3 3 32 2
1 21 2

= 2
ε ε ε

ε ε ε ε w w w
ε ε γ x x x

x xx x

   
          

ε   (2)

where ��
� and ��

� denote the tensile strains along the x1 and x2 directions, respectively; 

��� represents the shear strain of the plate.  

The generalized strain vector κ� is defined as: 

T
2 2 2T

11 22 12 2 2
1 21 2

2 2
ε ε ε

ε ε ε ε w w w
κ κ κ

x xx x

   
           

κ   (3)

where κ��
�  and κ��

�  respectively represent the bending curvatures around the x2 and x1 

axes, and κ��
�  stands for the torsional curvature. From Equations (2) and (3), it shows that 

the elastic strain field depends on the generalized strains as follows: 

3
ε εxε κ   (4)

The constitutive equation has the form as 

ε ε εσ E ε  (5)

where 

T

11 22 12
ε ε ε εσ σ σ   σ   (6)

The definitions of internal moments are 

3 3dε ε ε ε

h
x x


 M σ D κ   (7)

where 

T

11 22 12
ε ε ε εM M M   M

  
(8)

2
3 3dε ε

h
x x


 D E

  
(9)

The equilibrium equations of an infinitesimal element of the plate with all the out-of-

plane forces and externally applied loads, as shown in Figure 2, take the forms as: 

13 23

1 2

0 in
ε εQ Q

q
x x

 
   

 
  (10)

11 21
13

1 2

0 in
ε ε

εM M
Q

x x

 
   

 
  (11)
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12 22
23

1 2

0 in
ε ε

εM M
Q

x x

 
   

 
  (12)

where both ���
�  and ���

�  denote the transverse shear forces along the ��, but they are 

defined in the cross sections perpendicular to the x1 and x2, respectively, as shown in Fig-

ure 2; Ω denotes the domain of a 2D plate. Combined with Equations (10)–(12), the equi-

librium equation of the Kirchhoff plate can be expressed as:  

2

in
ε
ij

i j

M
q

x x


  

 
  (13)

where i, j as well as the following k and l assume values 1 and 2. Note that the summation 

convention is assumed for repeated indices throughout this paper. With Equation (7), the 

equilibrium Equation (13) can be rewritten as:  

2 2

in
ε

ε
ijkl

i j k l

w
D q

x x x x

  
  

    
  (14)

Here, �����
�  denotes the bending stiffness tensor. For periodic Kirchhoff plates, �����

�  

oscillates periodically in the plane, implying that the solution of Equation (14) is also os-

cillating. Hence, the following is to employ the two-scale asymptotic homogenization 

method to solve the fourth-order elliptic equation for periodic Kirchhoff plates. 

 

Figure 2. Forces acting on an infinitesimal element of the plate. 

2.2. Two-Scale Asymptotic Homogenization Method for 2D Periodic Kirchhoff Plates 

Taking into account the small periodic configurations of Kirchhoff plates, this sub-

section first establishes a two-scale model with macroscopic variable x and microscopic 

variable y = �/�. Here, the small parameter � is the separation scale, and x gives the po-

sition of a point in Ω, while y denotes the position in a unit cell domain Y. 

In the two-scale asymptotic homogenization method, the actual displacement w�, or 

the solution of Equation (14), has an asymptotic expansion form with two scales as:  

2 3
0 1 2 3( ) ( ) ( , ) ( , ) ( , )+εw w εw ε w ε w   x x x y x y x y   (15)

where w�(x) denotes the homogenized displacement; w�(x, y) (n = 1, 2, ···) represents the 

perturbed displacements caused by the heterogeneity of microstructures.  

Let Ψ = Ψ(x, y) be a function depending on two scales and then we have: 

  , 


 
  

 

x
x x  (16)

Note that 

 
1

, ,
ε

ε ε ε

       
         

x x
x x x

x x y
  (17)

 
2 2 2 2

2 2 2 2

2 1
, , ,

ε

ε ε ε εε

           
               

x x x
x x x x

x yx x y
 (18)
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Substituting Equation (18) into Equation (14) results in the following: 

 0 1 2 3 44 3 2

1 2 1 2
+ + + inεA A A A A w q

εε ε ε

 
   

 
x   (19)

where 

2 2

0

2 2 2 2

1

2 2 2 2 2 2

2

2 2

3

+

4
+ +

ε
ijkl

i j k l

ε ε
ijkl ijkl

i j k l i j k l

ε ε ε
ijkl ijkl ijkl

i j k l i j k l i j k l

ε
ijkl

i j

A D
y y y y

A D D
x y y y y y x y

A D D D
x x y y y y x x x y x y

A D
x x

  
  
    

      
    
          

          
      
                

 

 

2 2

2 2

4

+ ε
ijkl

k l i j k l

ε
ijkl

i j k l

D
x y x y x x

A D
x x x x













                 

   

  
    

 (20)

By substituting Equation (15) into Equation (19) and equating the power-like terms 

of ε, a series of governing equations for unit cells are obtained as follows: 

 4
0 0: 0 inO A w     (21)

 3
0 1 1 0: 2 inO A w A w      (22)

 2
0 2 1 1 2 0: 2 inO A w A w A w       (23)

 1
0 3 1 2 2 1 3 0: 2 2 inO A w A w A w A w        (24)

  0 4 1 3 2 2 3 1 4 01 : = 2 2 inO A w q A w A w A w A w      (25)

  0 4 1 3 2 2 3 1 4: = 2 2 , ( 1) inn
n n n n nO A w A w A w A w A w n           (26)

from which the unknowns w� can be determined successively. The spatial periodicity of 

material configuration indicates the same periodicity for w�(x, y) (n = 0, 1, 2, ···) in Y as 

follows: 

( , ) ( , + )n nw wx y x y Y  (27)

With the in-plane periodicity of �����
�  in y and Equation (27), one can find from 

Equation (21) that w� is independent of y, showing the rationality of taking w� as the 

homogenized term in Equation (15), that is w� = w�(�). Then Equation (22) can be sim-

plified into the same form as Equation (21), as 

0 1 0 inA w    (28)

It follows from Equation (28) that w� can only be a linear function of y. However, 

�����
�  and w� are periodic in y, so one can infer that w� must be independent of y. Note 

that in the asymptotic expansion expression (15), w�(�) represents the homogenized de-

formation, while w�(x, y) (n = 1, 2, ···) denotes the perturbation displacements. Thus, we 

have the following: 

 1 , 0w x y   (29)

By substituting Equation (29) and w�  into Equation (23), we have the governing 

equation concerning w� as:  
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222 2
02 inε ε

ijkl ijkl
i j k l i j k l

ww
D D

y y y y y y x x

    
                 

 (30)

The separation-of-variable method is employed to w� as follows: 

2
0

2 2( , ) ( )mn

m n

w
w χ

x x




 
x y y  (31)

where χ
�
�� denotes the second-order influence function with symmetry on indices m and 

n, and we denote �� = �χ�
�� χ

�
�� χ

�
��� following the symmetry.  

By substituting Equation (31) into Equation (30), the governing equation for χ
�
�� is 

obtained as follows: 

222
2 in

εmn
ijmnε

ijkl
i j k l i j

Dχ
D Y

y y y y y y

 
         

 (32)

Similarly, w� in Equation (24) can also be expressed in a separation-of-variable form 

as follows: 

3
0

3 3( , ) ( )mnp

m n p

w
w χ

x x x




  
x y y   (33)

where the third-order influence function χ
�
��� is governed by:  

2 22 2
3 2 2

2 2 2
in

εmnp mn mn
ipmnε ε ε

ijkl ipkl ijkp
i j k l i i k l i j k

Dχ χ χ
D D D Y

y y y y y y y y y y y

          
                          

  (34)

which is obtained by combining Equations (24), (29), (31), and (33) and w�. Note that 

χ
�
���  also has a symmetry on indices m and n, i.e., �� = �χ�

��� χ
�
��� χ

�
��� χ

�
��� χ

�
��� χ

�
���� 

following the symmetry. 

By integrating Equation (25) over the domain Y, one has 

 0 4 1 3 2 2 3 1 4 0

1 1
d 2 2 d

Y Y
A w Y q A w A w A w A w Y

Y Y
       (35)

where |�| is the area of a unit cell of a 2D plate. Following the periodicity of w� in Equa-

tion (27), and with Equations (29) and (31) together, Equation (35) can be simplified as 

follows: 

22
H 0 inijkl

i j k l

w
D q

x x x x

 
       

 (36)

where the homogenized stiffness �����
�  is as shown: 

2
H 21

d
kl

ε ε
ijkl ijkl ijmn

Y
m n

χ
D D D Y

Y y y

 
     
   (37)

It follows from Equation (37) that �����
�  depends on the second-order derivative of 

χ
�
�� and also the material distributions within the unit cell. The χ

�
�� can be obtained by 

solving the unit cell problems with the proposed constraint conditions in Section 3. After 

that, the homogenized solutions can be achieved with the obtained homogenized stiffness. 

Note that the well-posedness and convergence of the homogenized solution to the fourth-

order PDE can be proved by the Lax–Milgram theorem and the two-scale convergence 

method, refer to [60–63]. 
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3. Solutions for Unit Cell Problems 

In this section, constraint conditions are first proposed to determine influence func-

tions which are used to calculate the homogenized stiffness in Equation (37) and the two-

scale solution in Equation (15); then, the analytical homogenized stiffnesses are presented 

for periodic layered structures; finally, finite element formulations are provided for unit 

cell problems. 

3.1. Constraint Conditions for Unit Cell Problems 

A key factor for obtaining the influence functions �� (n = 2, 3) is to determine the 

constraint conditions for unit cell problems (32) and (34). Since the perturbed term 

w�(x, y) (n = 1, 2, ···) is periodic in Y, implying that �� (n = 2, 3) has the same periodicity 

in y as follows: 

1 1

2 2

n nY Y

n nY Y

 

 

 

 

 





 

 
 (38)

where ���± and ���± respectively represent two pairs of periodic boundaries, as shown 

in Figure 3:  

 

Figure 3. Periodic boundaries of a unit cell of a 2D plate. 

Equation (38) implies the continuity conditions of the interface displacements. Like-

wise, to satisfy the continuity conditions of normal rotation angles, normal bending mo-

ments, as well as equivalent shear forces, another three periodic conditions concerning 

�� (n = 2, 3) is required as follows: 

1 1

2 2

1 1

2 2

n n

Y Y

n n

Y Y

y y

y y

 

 

 

 

 


 

 

  


 

 
 (39)

1 1

2 2

2

11 11 11 11

2

22 22 22 22

,

,

n n n ε n
kl

Y Y
k l

n n n ε n
kl

Y Y
k l

D
y y

D
y y

 

 

 

 

 
  

 


     

M M M

M M M




 (40)

1 1

2 2

2 2
12

13 13 13 13 11 12
2 1 2

2 2
12

23 23 23 23 22 12
1 2 1

2
,

2
,

n
n n n n ε εn n

kl kl
Y Y

k l k l

n
n n n n ε εn n

kl kl
Y Y

k l k l

D D
y y y y y y y

D D
y y y y y y y

 

 

 

 

       
                      


      

                     

M
V V V Q

M
V V V Q

 

 
 (41)
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It is worth noting that periodic boundary conditions (38) eliminate the rigid rotation 

modes with respect to the �� and �� axes. In order to remove the remaining rigid trans-

lation mode along the transverse direction, �� (n = 2, 3) is required to satisfy the following 

normalization constraint condition: 

1
dn

Y
Y

Y
 0  (42)

According to the Kirchhoff plate theory, C1 continuity is supposed to be satisfied at 

the interface of unit cells for the periodic plate, and thus, another two periodic conditions 

are used to ensure the continuity of tangential rotation angles as follows: 

1 1

2 2

2 2

1 1

n n

Y Y

n n

Y Y

y y

y y

 

 

 

 

 


 

 

  


 

 
 (43)

With the proposed constraint conditions (38)–(43), one can solve the unit cell prob-

lems (32) and (34) by analytical methods for simple structures or by the finite element 

method (FEM) for general structures. It is worth noting that the perturbed displacements 

w� (n = 2, 3) are defined as the products of the influence function �� and the correspond-

ing n-th derivative of w�. Here, �� reflecting the inhomogeneity of unit cells, is the solu-

tion of the unit cell problems (32) and (34), while w� is the homogenized (macroscopic) 

solution to the global problem (36) depending on the obtained homogenized stiffness 

�����
�  and the external load q. As a result, only w� meets the boundary conditions of the 

plate, whereas w� cannot in general due to the use of periodic boundary conditions.  

3.2. Analytical Homogenized Stiffnesses for Periodic Layered Plates 

This section presents the analytical solution of homogenized stiffness for periodic 

layered plates, where the material properties change only in the �� direction, refer to Fig-

ure 4b as an example. Hence, �����
�  is the function of ��, that is 

   1 2 1, inε ε
ijkl ijklD y y D y Y  (44)

 

Figure 4. 2D periodic layered plate and its unit cell. (a) 2D periodic layered plate. (b) 2D unit cell. 

Taking into account the constraint conditions (38)–(43) and the distribution of �����
�  

as Equation (44), the solution of the cell problem (32) is assumed as a function of ��, and 

has the following form: 
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 2 2 1 iny Y   (45)

By substituting Equation (45) into (32), the unit cell problem (32) becomes a fourth-

order ordinary differential equation as follows: 

222
112

11112 2 2
1 1 1

ddd
in

d d d

mn
mnD

D Y
y y y


  

   
 

 (46)

Inserting Equation (45) into Equation (37) results in: 

2
H 2

11 2
1

d1
d

d

kl
ε ε

ijkl ijkl ij
Y

χ
D D D Y

Y y

 
   

 
   (47)

Thus, the homogenized stiffness can be achieved if d���
�� d��

�⁄  is determined. With 

the periodic conditions (39) and (40), d���
�� d��

�⁄  can be obtained from Equation (46), as 

2
11 11112

112 1
1 1111 1111

d 1
in

d

mn
mn

mn

D D
D Y

y D D

 


 




 
  
 
 

 (48)

where 〈∙〉 =
�

|�|
∫ ∙ d�

 

�
. 

By substituting Equation (48) into Equation (47), one can obtain the explicit expres-

sions of �����
�  as: 

1H 1
1111 1111

1H 11122
1122 1111

1111

1H 11112
1112 1111

1111

1H 12211 1122 2211 1122
2222 1111 2222

1111 1111 1111

1H 12211 1112 2211 11
2212 1111 2212

1111 1111

D D

D
D D

D

D
D D

D

D D D D
D D D

D D D

D D D D
D D D

D D













   
 

  

  
 

 

















  

   12

1111

1H 11211 1112 1211 1112
1212 1111 1212

1111 1111 1111

D

D D D D
D D D

D D D





   
 

  





















   


 (49)

It can be seen from Equation (49) that �����
�  depends on the proportions of materials 

of layered structures in a highly nonlinear way. 

3.3. Finite Element Formulations for Solving Unit Cell Problems 

This section aims to provide the finite element formulations of the boundary value 

problems for �� and ��. The Lagrange multiplier method [64] was used to consider the 

normalization constraint condition (42), and the master-slave method [65] was employed 

to deal with the periodic boundary conditions (38), (39), and (43). 

It follows from the governing equations of �� and �� in Equations (32) and (34) that 

the right-side terms are actually self-balanced quasi-loads depending on the material con-

stants. According to the principle of virtual work and the Lagrange multiplier method, 

the unit cell problems (32) and (34) with the normalization constraint condition (42) can 

be respectively written as: 

2 2 2
2 2 2

2 2 2 2

δ δ
d d δ d δ d 0

mn
ε ε mn mn
ijkl ijmn

Y Y Y Y
i j k l i j

χ χ χ
D Y D Y λ χ Y λ χ Y

y y y y y y

  
   

          (50)
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2 2 22
3 3 3 3 32 2

3 33 3

δ δ δ δ
d 2 2 2 d

δ d δ d 0

mnp mn mn
ε ε ε ε
ijkl ipmn ipkl ijkp

Y Y
i j k l i i k l i j k

mnp mnp

Y Y

χ χ χ χ χχ χ
D Y D D D Y

y y y y y y y y y y y

λ χ Y λ χ Y

      
   

            

  

 

 

 (51)

where ��
�� and ��

��� denote the Lagrange multipliers. 

Considering the symmetric property of �����
�  and the arbitrariness of the virtual dis-

placements δ�� and δ��, Equations (50) and (51) can be respectively discretized in matrix 

form as: 

T
2 2

20

     
     
   

Χ FK C

λC 0
 (52)

T
3 3

30

     
     
   

Χ FK C

λC 0
 (53)

where 

T
2 2

1

d
e

ε

Y
e

Y


K B D B   (54)

1

d
eY

e

Y


C N  (55)

2 2

1

e

e

  , 3 3

1

e

e

    (56)

11 22 12
2 2 2 2λ λ λ   λ  (57)

111 221 121 112 222 122
3 3 3 3 3 3 3λ λ λ λ λ λ   λ  (58)

T
2 2

1

d
e

ε

Y
e

Y


 F B D  (59)

 T T T
3 1 1 1 2 2 2 3 2 2 2 4 1 2 5 1 2

1

2 2 2 d
e

ε ε e ε e ε e ε e

Y
e

Y


        F B D B D B D B B D B D B     (60)

1
1

2

x

x

 
 
 
 
  

N

B
N

, 

2

2
1

2

2 2
2

2

1 2

2

x

x

x x

 
 
 

  
 
 
 

   

N

N
B

N

 (61)

1111 1122 1112 1211 1222 1212
1

1211 1222 1212 2211 2222 2212

ε ε ε ε ε ε
ε

ε ε ε ε ε ε

D D D D D D

D D D D D D

 
  
  

D  (62)

1111 1122 1112 1211 1222 1212
2 3

1211 1222 1212 2211 2222 2212

,
ε ε ε ε ε ε

ε ε

ε ε ε ε ε ε

D D D D D D

D D D D D D

   
    
      

D D   (63)
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1111 1112 1112 1122

4 2211 2212 5 2212 2222

1211 1212 1212 1222

,

ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε

D D D D

D D D D

D D D D

   
   

    
   
      

D D  (64)

where K denotes the global stiffness matrix of the microscopic unit cell model; �� is the 

domain of the element e in the unit cell model; N represents the shape function row vector; 

�� and �� stand for the second-order and third-order quasi-load matrices, respectively. 

Since the node parameters of the plate elements contain deflection and two rotation 

angles, the periodic conditions (38), (39), and (43) can be implemented by the master-slave 

method to make the node parameters (��, ��� ���⁄ , ��� ���⁄ ) for n = 2, 3 on slave bound-

aries be identical to those on the corresponding master boundaries. Then, the nodal de-

grees of freedom on the slave boundaries are eliminated by applying the multifreedom 

constraints such that 

2 2X TX  (65)

3 3X TX  (66)

where T represents the transformation matrix. By inserting Equations (65) and (66) into 

Equations (52) and (53), one has 

T T T T
2 2

2

    
    

    

XT KT T C T F

λCT 0 0


 (67)

T T T T
3 3

3

     
     

     

XT KT T C T F

λCT 0 0


 (68)

By solving Equations (67) and (68) in conjunction with Equations (65) and (66), �� 

and �� are finally achieved. With the obtained �� and Equation (37), the numerical re-

sult of the homogenized stiffness matrix of a periodic Kirchhoff plate is achieved as fol-

lows: 

 H
2 2

1

1
d

e

ε ε e

Y
e

Y
Y



 D D D B X  (69)

Then for a static problem (14) of the periodic plate, one can easily figure out the ho-

mogenized solution by using the finite element methods. For clarity, the finite element 

formulations for this problem are given as follows: 

H H
0 K W F  (70)

where 

H T H
2 2

Ω
1

dΩ
e

e

K B D B   (71)

H T

Ω
1

dΩ
e

e

q


F N  (72)

0 0

1

e

e

W W  (73)

where �� and �� denote the global stiffness matrix and global load vector of the mac-

roscopic plate model, respectively; ��
� represents the element nodal displacement vector; 

Ω� is the domain of the plate element e. 

After solving �� from Equation (70), the asymptotic solution perturbed to the third 

order in the plate element e can be determined in a matrix form as follows: 

   
T T

2 3
0 2 2 0 3 3 0

ε e e e e e
ew ε ε  NW NX B W NX BW  (74)
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where  

3 3
1

3 2
1 2

3 2
1 2

3 3 2
1 2

3 3
2

3 2
1 2

2

2

x

x x

x x

x x

x

x x

  
 
   
 
   

   
 
  
 
    

N

N

N
B

N

N

N

 (75)

It follows from Equation (74) that the accuracy of the asymptotic solutions depends 

on the accuracy of the homogenized displacements and their derivatives if the unit cell 

problems are solved accurately.  

Here, a new method is introduced for calculating higher-order derivatives of the ho-

mogenized displacements whose order is beyond the order of the shape functions.  

Without loss of generality, take an example of the four-node rectangular element 

with nodal parameters (���, ���� ���⁄ , −���� ���⁄ ) (� = 1~4), denoted as ACM12. The 

form of ��
� containing twelve nodal parameters is as follows: 

 
T

01 01 04 04
0 01 04

2 1 2 1

,, , , , ,
e e e e

e e ew w w w
w w

x x x x

    
   

    
W

   
   (76)

According to the property of the shape function N, one has 

0 0( )e e
n nw  N x W  (77)

0
0

2 2

( )e
en nw

x x

 


 

N x
W


 (78)

0
0

1 1

( )e
en nw

x x

 
  
 

N x
W


 (79)

where ( )nN x  represents 
nx x

N , and the same interpretations are also true for other 

similar expressions. Substituting Equations (77)–(79) into Equation (76) results in:  

   
   

 
   

T 1 1
0 1 0 0 0

2 1

4 4
4 0 0 0

2 1

, , , ,

, ,

e e e e

e e e

x x

x x

 
 

 

  
 

  

N x N x
W N x W W W

N x N x
N x W W W



 (80)

Then, the first-order derivative of w�
� can be computed by: 

0
0

e
e

i i

w

x x

 


 

N
W  (81)

or 

0 0
e e

i i

w

x x

 


 

W
N  (82)

where 

     

     

T 2 2
1 1 10

0 0 0
2 1

2 2
4 4 4

0 0 0
2 1

, , , ,

, ,

e
e e e

i i i i

e e e

i i i

x x x x x x

x x x x x

    
          

  
 

     

N x N x N xW
W W W

N x N x N x
W W W



 (83)
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Note that above ���
� ���⁄  is not the direct derivative of the node displacement vec-

tor, but the column vector of the nodal displacement partial derivative concerning ��. The 

same interpretations are also true for the following higher-order terms in Equations (84)–

(86). 

Replacing ��
� in Equation (81) by 

1
0

1

r e

r
jx









W
 yields:  

     

     

T
2 21 1 1

1 1 10 0 0 0
1 1 1 1

2 1

2 21 1 1
4 4 40 0 0

1 1 1
2 1

, , , ,

, ,

r e r e r e r e

r r r r
i i ii j j j j

r e r e r e

r r r
i i ij j j

x x x x xx x x x x

x x x x xx x x

  

   

  

  

       
   
            

    
 

       

N x N x N xW W W W

N x N x N xW W W



 (84)

Here, if � = 0, we define 

0
0

r e
e

r
ix






W
W  (85)

By using Equations (82)–(85), one can calculate any high-order derivatives of w�
� by: 

1
0 0

1

r e r e

r r
i i i

w

x x x





 


  

WN
 (86)

4. Physical Interpretation of AHM 

For a better understanding of the present work, this section aims to interpret the 

AHM for plates from a physical point of view. In the AHM, the actual (or two-scale) dis-

placements are the superposition of homogenized displacement w� and the perturbed 

displacements w�(x, y), which are the products of �� and the n-th derivatives of w� . 

Therefore, the physical interpretation [17] of the AHM is essentially equivalent to that of 

the influence function ��, or more specifically, the quasi-load �� for solving ��. 

It can be seen from the unit cell problems (32) and (34) as well as their finite element 

formulations (59) and (60) that �� (n = 2, 3) completely depend on the material constants 

and also the microstructure of the unit cell. In other words, ��, independent of external 

forces, are caused by the inhomogeneity of the unit cells. Hence, �� is called quasi-load 

in the present work, and its values are zero for homogenized structures. Note that �� is 

self-balanced in a unit cell, implying the zero mean value of �� in Y. 

For clarity, a unit cell with a single inclusion, as shown in Figure 5, is used to demon-

strate the physical interpretation of the AHM. The unit cell is 1 cm in height, and its in-

plane size is �� × �� = 3 cm × 3 cm with a square inclusion at its center. Both the matrix 

and the inclusion are isotropic, with the same Poisson’s ratio of 0.3, and Young’s moduli 

�� = 10 GPa for inclusion and �� = 100 GPa for the matrix, respectively. The unit cell is 

modeled by 15 × 15 four-node cubic Hermite rectangular elements here. 

 

Figure 5. 2D unit cell with single inclusion. 
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Figures 6 and 7, respectively, present the diagrams of each column of �� and ��, 

where Q3 denotes the nodal shear forces along the thickness direction, M22 and M11 repre-

sent the nodal bending moments around the y1 and y2 axes, respectively. Some conclusions 

can be drawn from Figures 6 and 7, as follows: 

(1) The quasi-shear forces are zero for ��
�� and ��

��, and the quasi-bending moments for 

��
�� is equal to zero. Compared with ��, �� has nonzero quasi-bending moments 

and nonzero quasi-shear forces, and their distributions are more complex than those 

of ��. 

(2) �� is self-balanced in the unit cell, and has nonzero values only at the interfaces of 

the matrix and inclusion as well as the boundaries, implying that �� is caused by the 

discontinuities of materials. Additionally, the simple distributions of �� shows that 

�� is the most fundamental quasi-load reflecting the inhomogeneity of unit cells, im-

plying that w� is the primary perturbed term. Since �� at all nodes is not zero, �� 

captures more microscopic information compared with ��. In general, the AHM per-

turbed to the third order is accurate enough. 

(3) The unit of �� is N ∙ m, demonstrating that �� behaves as a moment. In fact, the first 

two columns of �� are the quasi-bending moments caused by the unit bending cur-

vatures around the y
2
 and y

1
 axes, and the third column of �� denotes the quasi-

torsional moment attributable to the unit torsional strain. Accordingly, �� represent 

three fundamental deformations caused by ��. Since w� is the product of �� and 

the second derivative of w�, see Equation (31), thus, the second derivative of w� acts 

as the modal coordinates in the superposition method. 

(4) The unit of �� is N ∙ m�. Since the six columns of �� are independent, thus, �� de-

notes six independent microscopic deformations accordingly, and the third deriva-

tive of w� acts as the modal coordinates. 

 

(a)  

 

(b)  

 

(c) 
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Figure 6. Diagrams of the three columns of �� for the unit cell with single inclusion. (a)  �� = 11; 

(b) �� = 22; (c) �� = 12. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 7. Diagrams of the six columns of �� for the unit cell with single inclusion. (�) ��� = 111; 

(�) ��� = 221; (�) ��� = 121; (�) ��� = 112; (�) ��� = 222; (�) ��� = 122. 

5. Numerical Examples 

This section uses several dynamic and static problems of periodic composite plates 

with different boundary conditions to illustrate the validity and accuracy of the present 

method.  
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5.1. Free Vibrations 

Two free vibration problems are employed to show the accuracy of the present ho-

mogenized elastic constants and the applicability of the Kirchhoff plate theory in the anal-

ysis of periodic composite thin plates. For comparison, the 3D FEM results are taken as 

reference solutions, which are obtained with ABAQUS, and the twenty-node quadratic 

hexahedral element (C3D20R) is employed. The ACM12 element is used for 2D plates and 

also unit cell problems. 

Example 1: Free Vibration of a CCCC Single-Layer Periodic Plate 

Consider a fully clamped single-layer plate with a size of �� × �� × ℎ = 30 cm ×

30 cm × 1 cm, as shown in Figure 8. The plate with in-plane periodicity consists of two 

isotropic materials, where Young’s moduli and Poisson’s ratio of the matrix and soft in-

clusion are the same as those in Section 4, and the mass densities are �� = 1142 kg/m� 

and �� = 2774 kg/m�, respectively. 

According to Equation (9), one can obtain the stiffness matrix of the inclusion and the 

matrix as follows. 

2
I

9.1575 2.7473 0

2.7473 9.1575 0 10 N m

0 0 3.2051

ε

 
    
  

D  (87)

3
M

9.1575 2.7473 0

2.7473 9.1575 0 10 N m

0 0 3.2051

ε

 
    
  

D  (88)

In this case, the 2D unit cell model is divided into 30 × 30 ACM12 elements. Figures 

9 and 10 present the deformations of the �� and �� of the periodic plate, respectively. It 

can be seen that �� captures more microscopic properties compared to ��, refer to the 

interpretations in Section 4. 

 

Figure 8. Single-layer periodic plate and its unit cell. (a) 2D periodic plate with single inclusion; (b) 

2D unit cell; (c) 3D representative unit cell. 
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(a) (b) (c) 

Figure 9. Second-order influence function �� of the CCCC single-layer periodic plate. (a)  �� =

11; (b) �� = 22; (c) �� = 12. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 10. Third-order influence function �� of the CCCC single-layer periodic plate. (�) ��� =

111; (�) ��� = 221; (�) ��� = 121; (�) ��� = 112; (�) ��� = 222; (�) ��� = 122. 

The homogenized stiffness matrix �� can be obtained by Equation (69) as:  

H 3

7.4706 1.8731 0

1.8731 7.4706 0 10 N m

0 0 2.8352

 
    
  

D

 

(89)

The homogenized density �� is determined by the volume average of both materials 

over the 3D unit cell domain V as: 

H 3 31
d 2.5927 10 kg mε

V
ρ ρ V

V
  

 
(90)

Tables 1 and 2 show the first five-order natural frequencies and mode shapes, respec-

tively, where relative error = (other method—3D FEM)/3D FEM × 100%. Hereinafter, 

‘HOM’ represents the homogenized results obtained by the AHM, ‘3D FEM’ stands for 

the reference results via ABAQUS, and ‘2D FEM’ denotes the FEM’s results based on the 

Kirchhoff plate theory. The 3D periodic plate is modeled by 24,300 C3D20R elements, 

while the 2D periodic and homogenized plate models are discretized by 22,500 and 400 

ACM12 elements, respectively. It can be seen that the homogenized eigen solutions based 

on the Kirchhoff plate theory agree well with the 2D and 3D FEM’s results. 

211
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Table 1. First five-order natural frequencies of the CCCC single-layer periodic plate. 

Order Frequency/Hz (Relative Error) 

 3D FEM 2D FEM HOM 

1 1.0610 × 10�  1.0861 × 10� (2.36%)  1.0787 × 10� (1.67%) 

2 2.1466 × 10�  2.2181 × 10� (3.33%)  2.1981 × 10� (2.40%) 

3 2.1466 × 10�  2.2181 × 10� (3.33%)  2.1981 × 10� (2.40%) 

4 3.1377 × 10�  3.2773 × 10� (4.45%)  3.2296 × 10� (2.93%) 

5 3.8046 × 10�  3.9821 × 10� (4.67%)  3.9392 × 10� (3.54%) 

Table 2. First five-order mode shapes of the CCCC single-layer periodic plate. 

Order 3D FEM HOM 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

Example 2: Free vibration of an SSSS four-layer periodic plate 
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Consider a four-layer periodic plate with a size �� × �� × ℎ = 30 cm × 30 cm × 1 cm. 

The plate consists of 10 × 10 unit cells with a size �� × �� = 3 cm × 3 cm, as shown in 

Figure 1. Material properties are listed as follows: 

Inclusion: Young’s modulus �� = 10 GPa; Poisson’s ratio �� = 0.3; Density �� = 1958 kg/

m�. 

Matrix: Young’s modulus �� = 100 GPa ; Poisson’s ratio �� = 0.3 ; Density �� =

2366 kg/m�. 

In accordance with Equation (9), one can obtain the stiffness matrix of materials 1 and 

2 as follows: 

3
I

1.9460 0.5838 0

0.5838 1.9460 0 10 N m

0 0 0.6811

ε

 
    
  

D  (91)

3
M

8.1273 2.4832 0

2.4832 8.1273 0 10 N m

0 0 2.8446

ε

 
    
  

D  (92)

In this case, the 2D unit cell is discretized into 30 × 30 ACM12 elements for achiev-

ing ��, ��, and ��, of which: 

H 3

4.5384 1.0667 0

1.0667 4.5384 0 10 N m

0 0 1.8528

 
    
  

D  (93)

and �� is calculated as: 

H 31
d 2162 kg mε

V
ρ ρ V

V
   (94)

To further validate the effective properties obtained by the AHM, the free vibration 

problem of the fully simply supported (SSSS) plate is investigated. Tables 3 and 4 provide 

the first five-order natural frequencies and the corresponding mode shapes, respectively, 

where the 3D model consists of 352,800 C3D20R elements, and the 2D periodic and ho-

mogenized plates are discretized by 22,500 and 400 ACM12 elements, respectively.  

It can be observed from Table 3 that the frequencies of the 2D models (2D FEM and 

HOM) match well with those of the 3D models. Additionally, the first five-order mode 

shapes of the 2D and 3D models shown in Table 4 agree well, implying that the Kirchhoff 

plate theory is physically suitable for describing the transverse deformation of periodic 

composite thin plates. Hence, in the following static problems, the 2D FEM displacements 

obtained with ACM12 elements are regarded as the reference to validate the accuracy of 

the AHM. 

Table 3. First five-order natural frequencies of the SSSS four-layer periodic plate. 

Order Frequency/Hz (Relative Error) 

 3D FEM 2D FEM HOM 

1 4.9631 × 10� 5.0970 × 10� (2.70%)  5.1159 × 10� (3.08%) 

2 1.2399 × 10� 1.2682 × 10� (2.28%)  1.2722 × 10� (2.61%) 

3 1.2399 × 10� 1.2682 × 10� (2.28%)  1.2722 × 10� (2.61%) 

4 1.9512 × 10� 2.0382 × 10� (4.46%)  2.0389 × 10� (4.49%) 

5 2.4534 × 10� 2.5262 × 10� (2.97%)  2.5349 × 10� (3.32%) 

Table 4. First five order mode shapes of the SSSS four-layer periodic plate. 

Order 3D FEM HOM 
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2 

 
 

3 
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5 

  

5.2. Static Problems 

Two static problems are investigated to further show the accuracy of the homoge-

nized elastic constants and the importance of higher-order perturbed terms in the two-

scale asymptotic solutions. In all comparisons, ‘FEM’ represents the referenced results 

achieved by 2D FEM based on the Kirchhoff plate theory, and ‘AHM2’ and ‘AHM3’ de-

note the AHM’s results perturbed up to the second and third orders, respectively. For 

easier comparison, nodes by nodes, w� and its derivatives are calculated with the same 

fine grids as those for obtaining referenced solutions or FEM’s solutions with fine meshes, 

but w� and the derivatives with the same accuracy can be obtained with coarse grids. 

Additionally, in order to evaluate the accuracy of the AHM’s results for different orders, 

a dimensionless residual sum of squares (DRSS) is defined as: 

 

 

2

Ω

Ω

AHM Ref dΩ
DRSS

max Ref





 (95)

Example 3: Static problem of a CFCF periodic layered plate 



Aerospace 2022, 9, 751 22 of 28 
 

 

This example considers the static problem of the periodic layered plate as shown in 

Figure 4, whose material properties remain constant in the x2 direction. This layered plate 

has two clamped opposite sides (�� = 0 cm and �� = 30 cm) and the other two sides are 

free, denoted by CFCF here. In addition, this plate shares the same size and material pa-

rameters as those in Example 1. 

The 2D unit cell of 3 cm × 3 cm is also divided into 30 × 30 ACM12 elements. Fig-

ures 11 and 12 present �� and �� of the periodic layered plate, where ��
��, ��

���, ��
���, 

and ��
��� are zero. It follows from Figures 11 and 12 that �� and �� are independent of 

��, which is consistent with Equation (45). 

  

(a)  (b)  

Figure 11. Second-order influence function �� of the CFCF periodic layered plate. (a) �� = 11; 

(b) �� = 22. 

(a) (b) (c) 

Figure 12. Third-order influence function �� of the CFCF periodic layered plate. (a)  ��� = 111; 

(b)  ��� = 221; (c)  ��� = 122. 

After achieving ��, �� is obtained with Equation (37), as: 

H 3

2.2894 0.6868 0

0.6868 6.0394 0 10 N m

0 0 2.2436

 
    
  

D  (96)

Note that �� in Equation (96) is completely the same as the analytical result ob-

tained with Equation (49). Here, the CFCF layered plate is subjected to a uniform trans-

versely distributed load � = 10� N/m�. Figure 13 compares the deflection w and its deriv-

ative �� ���⁄  of Line A, and �� ���⁄  is not considered because of the symmetry of the 

load distribution and structural configuration. Hereinafter, the error in comparisons is 

defined as follows: 

 
 

AHM Ref
Error

max RefLine


  (97)

 

211
 (

m
2
)
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Figure 13. Deformations of the CFCF periodic layered plate along Line A. (a) w; (b) Error of w; (c) 

�� ���⁄ ; (d) Error of �� ���⁄ . 

It can be seen from Figure 13 that w and �� ���⁄  of the AHM match well with the 

referenced results. Additionally, it can also be observed from Figure 13 that the results of 

both AHM2 and AHM3 do not satisfy the displacement boundary conditions, since the 

influence functions are solved with periodic boundary conditions rather than the plate 

boundary conditions. In order to evaluate the global accuracy of the AHM’s results, Table 

5 compares the DRSS of w and �� ���⁄ . It can be concluded from Table 5 that there are 

no significant differences between w achieved by the HOM, AHM2, and AHM3, but ap-

parently, the higher the perturbation order, the higher the accuracy of �� ���⁄ . This is 

because higher-order perturbation terms can capture more information about microstruc-

tures, thus, AHM2 and AHM3 can achieve more accurate results than HOM. 

Table 5. DRSS for the CFCF periodic layered plate. 

Perturbed Terms � �� ���⁄  

HOM 2.6404 10.0475 

AHM2 2.5986 2.7112 

AHM3 2.6003 1.4978 

Example 4: Static problem of an SFSF four-layer periodic plate 

This example shows the static behavior of the SFSF four-layer periodic plate with two 

opposite edges (�� = 0 and �� = ��) simply supported and the other two edges free, see 

Figure 1, of which the free vibration has been discussed in Example 2. Here, the plate is 

subjected to a distributed load � = 10�sin (3π�� ��⁄ ) sin(4π�� ��⁄ ) N/m�. 
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Figures 14 and 15 compare the displacements along Line A and Line B, respectively. 

Table 6 shows the DRSS results for w, �� ���⁄  and �� ���⁄  up to different orders. The 

same conclusions as those in Example 3 can be achieved. It follows from Figures 14 and 

15 and Table 6 that the results of AHM2 and AHM3 match better than the homogenized 

solutions, especially for the rotation angles (�� ���⁄  and �� ���⁄ ). In addition, it is worth 

noting that as the power of the external distributed load function increases, the defor-

mations of the plate become more complex, and thus, the second-order or even higher-

order perturbed displacements are more necessary for ensuring accuracy. 
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(e) (f)  

Figure 14. Deformations of the SFSF plate along Line A. (a) w; (b) Error of w; (c) �� ���⁄ ; (d) Error 

of �� ���⁄ ; (e) �� ���⁄ ; (f) Error of �� ���⁄ . 
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Figure 15. Deformations of the SFSF plate along Line B. (a) w; (b) Error of w; (c) �� ���⁄ ; (d) Error 

of �� ���⁄ ; (e) �� ���⁄ ; (f) Error of �� ���⁄ . 

Table 6. DRSS for the SFSF four-layer periodic plate. 

Perturbed Terms � �� ���⁄  �� ���⁄  

HOM 0.6897 4.1701 2.5050 

AHM2 0.5457 2.0187 1.8187 

AHM3 0.5603 1.8169 1.6351 

6. Conclusions 

This paper proposes a two-scale method by combining the Kirchhoff plate theory 

with the two-scale asymptotic homogenization method to deal with the static and dy-

namic problems of 3D periodic thin plates. In this work, the solutions of the fourth-order 

elliptic PDE with periodically oscillating coefficients were given in an asymptotic expan-

sion form, where perturbed terms were the multiplications of influence functions and the 

derivatives of homogenized displacements. To determine the influence functions from the 
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unit cell problems, periodic boundary and normalization constraint conditions were given 

and elaborated physically.  

It was found that the first-order perturbed term of the asymptotic expansion solution 

of the fourth-order PDE with periodically oscillating coefficients should be zero. The rea-

son for this phenomenon is that the first-order perturbed terms cannot reflect the micro-

deformations. In addition, with the physical interpretation of the AHM, it was shown that 

the second-order influence functions are the fundamental terms for capturing the micro-

scopic information, since the second-order quasi-loads for solving the second-order influ-

ence functions are simple line loads, with nonzero values only along the interfaces of ma-

trices and inclusions as well as boundaries. 

Finally, the free vibrations and static problems of several periodic composite plates 

with different boundary conditions were investigated to validate the effectiveness of the 

proposed method, showing that the present AHM’s solutions are meaningful and physi-

cally acceptable. Additionally, it has been shown that homogenized displacements play a 

significant part in the prediction of microscale solutions and that second-order or even 

higher-order perturbed displacements are necessary for achieving accurate rotation an-

gles for periodic plates. This work lays the foundation for the study of moderately thick 

periodic plates. 
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