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Abstract: This paper presents an optimisation framework based on an open-source CAD system and
CFD solver. In this work, the high-fidelity flow solutions and surface sensitivities are obtained using
the primal and discrete adjoint formulations of SU2. This paper shows the direct use of CAD models
for optimisation by developing a CAD system application programming interface and creating a
link between the CAD-MESH-CFD analysis. A methodology to obtain geometric sensitivities is
introduced, enabling the calculation of accurate gradients with respect to CAD variables and the
deformation of the analysis mesh during the optimisation process. This methodology guarantees
that the new surface mesh lies exactly on the CAD geometry. The optimisation framework is applied
to a rectangular wing and a three section high-lift aerofoil configuration derived from the NASA
CRM-HL configuration. Both geometries are created using FreeCAD. The performance objectives are
to decrease the drag while constraining the lift to be above a desired value. The twist distribution
of the wing was parameterised within the CAD system, allowing the minimisation of the induced
drag by obtaining a nearly elliptical lift distribution. For the high-lift configuration, the position
and rotation of the flap and slat were parameterised with respect to the original section; the final
optimised positions yield a drag reduction of approximately 16.5%. These results show that the CAD
parameterisation can be reliably used to obtain efficient optimums while operating directly on the
CAD geometries.

Keywords: shape optimisation; CAD; parameterisation; aerodynamics; discrete adjoint

1. Introduction

To enable the use of CAD systems within gradient-based design optimisation frame-
works, it is essential to develop a link between the parameterisation defined within CAD
systems and the high-fidelity Computational Fluid Dynamics (CFD) analysis, which can
provide the gradients of objective functions with respect to CAD design parameters. Ad-
joint methods [1–8] have been extensively developed over the last two decades and can
provide the gradient of objective functions with respect to the movement of surface mesh
node points on the geometry. Adjoint methods have been mainly classified into two cat-
egories: (a) continuous adjoint and (b) discrete adjoint. This categorisation is based on
the mathematical formulations used to obtain the adjoint equations from the flow field
equations. The adjoint method allows the computations of adjoint surface sensitivities
which relate how the objective function changes for an infinitesimally small movement of
each surface mesh node.

The parameters used to create a feature-based CAD model within a mechanical CAD
system (e.g., CATIA V5, FreeCAD, etc.) can be accessed by using a suitable CAD system
application programming interface (API). Modifying these parameters by small amounts
typically causes movements of the boundary proportional to, and of the same order as,
the size of the parameter perturbation. If the desire is to use the parametric CAD model
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within the optimisation framework, this requires the computation of geometric sensitivities,
or design velocities, which quantify the boundary movement with respect to a change in
the individual parameter values [9]. The geometric sensitivities computed for different
parameters combined with adjoint surface sensitivities can be used to compute the gradients
required to drive a gradient-based optimisation algorithm.

In the past, authors have developed CAD-based optimisation processes using non-
uniform rational B-splines (NURBS) patches using the NURBS control-point locations (the
x, y and z coordinates) as the design variables. The advantage of this approach is that
the NURBS represent a richer design space; however, the downside is that sometimes the
NURBS control net may be too coarse in certain regions and would require a process to
enrich the design space by adding more control points before it can be used for optimisa-
tion. This was addressed in Ref. [10] where an adaptive parameterisation approach was
presented where the NURBS control net was refined by using a knot insertion and was sub-
sequently used for the purpose of optimisation. The downside of these approaches is that,
as they do not work directly on the parametric CAD model created in a feature-based CAD
system, the design intent and the parametric associativity captured in the choice of features
used to build the model is lost. Another efficient way to compute geometric sensitivities is
by directly differentiating the mathematical expressions coded within the CAD systems by
using automatic differentiation (AD). The idea behind this approach is to analytically differ-
entiate all the mathematical operations performed by a computer program and accumulate
the derivative values using the chain rule. Some authors have tried to differentiate different
in-house CAD tools [11,12] and also the open-source CAD system Open-CASCADE [13].
These approaches to calculate geometric sensitivities have significant advantages as they
do not require a geometry or mesh to be recomputed; however, the downside is that they
require access to the underlying source code of the CAD system, which is highly unlikely
to be available for the commercial CAD systems.

In previous work by the authors [9,14–16], CAD system APIs were used to access the
parameters defined within a commercial CAD system, CATIA V5, and they were used
within a gradient-based optimisation framework. However, the analysis mesh was regener-
ated at each optimisation step, limiting the applicability of the optimisation framework.
To further improve the efficiency, this work proposes (a) a methodology for gradient evalua-
tions using design velocities, which are a measure of the boundary movement with respect
to a change in the parameter value, wherein the boundary movements are calculated in
three axes directions (x, y and z), thus enabling the computation of gradients by linking
them with adjoint sensitivities, and (b) to automatically, and rigorously, deform the analysis
mesh while the CAD model is updated by the parameter changes during the optimisation.
One of the limitations of the previous approach [9] was that the design velocities computed
were not suitable to deform the analysis mesh, particularly in the areas with a high surface
curvature and in the presence of rigid body translations and rotations.

This paper presents a method for the computation of the geometric sensitivities for
the CAD parameters defined within an open-source CAD system, FreeCAD [17]. These
geometric sensitivities complete the chain of derivatives required to evaluate the objective
function gradient and can also compute the required displacements to deform the analysis
mesh during the optimisation process. The results in this paper show that the approach is an
effective way to move the surface mesh nodes during the optimisation process, providing
a gateway to a fully automatic CAD-based optimisation framework using open-source
software, FreeCAD and SU2, for aerodynamic shape optimisation problems.

The paper is structured as follows: Section 2 provides the details of the computation of
the adjoint and geometric sensitivities and linking them to evaluate the objective function
gradient. Section 3 elaborates the optimisation framework. The results are presented in
Section 4, including the application of the methodology to optimise the performance of
a rectangular wing and a high-lift aerofoil configuration. Section 5 further discusses the
proposed methodology and the paper ends with the conclusions drawn in Section 6.



Aerospace 2022, 9, 743 3 of 17

2. Methodology
2.1. Adjoint Sensitivities

The introduction of adjoint methods has been critical to enable optimisation using high-
fidelity computational models by largely decoupling the computational cost of computing
the derivative of the objective function with respect to the design variables. For aerody-
namic shape optimisation, the solution of the adjoint equations allows the calculation of
the surface sensitivities, i.e., what is the effect of a small perturbation to the surface mesh
nodes on the objective function. In this paper, the surface sensitivities are computed using
the discrete adjoint formulation in SU2 [7], which provides adjoint sensitivities in the x, y
and z directions as φx, φy and φz. The adjoint equations are formulated using the following
methodology:

Consider a semi-discrete system of fluid conservation laws described as

dU
dt

= R(U, X). (1)

In Equation (1), U is the vector of the fluid system variables, R is the residual of
the fluid equations that are a function of the system variables and mesh nodes, X. For
steady-state problems, the solution of Equation (1), also known as the primal solution,
involves driving the non-linear residual R to zero. For aerodynamic shape optimisation,
the objective function, J, will typically depend upon the flow variables U and a set of
parameters, θ, that control the shape and therefore the mesh nodal positions:

J = J(U, X(θ)). (2)

The gradient of the objective function with respect to the design variables can be
defined by applying the following chain rule:

dJ
dθ

=
dJ
dX

dX
dXs

dXs

dθ
. (3)

The volumetric sensitivity term dJ/dX can be obtained by differentiating Equation (2)
with respect to X as

dJ
dX

=
∂J
∂X

+
∂J
∂U

dU
dX

. (4)

The solution of Equation (4) using finite differences requires the solution of Equation (1)
for each design variable. Alternatively, it can be shown that by selecting an arbitrary vector
ψ, Equation (4) can be re-written as [18]:

dJ
dX

=
∂J
∂X

+ ψT ∂R
∂X

. (5)

The critical advantage of this method is that only one additional PDE system of equa-
tions needs to be solved for each objective or constraint function to obtain the volumetric
sensitivities with respect to all design parameters. These sensitivities can then be combined
with the mesh deformation algorithm to produce the surface sensitivities Φ as

Φ =
dJ

dXs
=

dJ
dX

dX
dXs

, (6)

The sensitivity Φ is a vector quantity with components [φx, φy, φz] along the three axes
(x, y, z). The end result of using the adjoint method to compute sensitivities is a method
that does not scale with the number of design variables, hence significantly reducing the
computational cost required to evaluate gradients.
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2.2. Geometric Sensitivities

In this paper, the geometric sensitivities are the change in the position of a point
lying on the CAD model boundary following a unit change in the individual parameter
value. Chen and Torterelli [19] used the parametric position of points on the boundary
of the baseline and perturbed CAD model to compute the geometric sensitivities. The
authors analysed a structural optimisation problem using the approach and concluded
that the accuracy of the computed results relied on the quality of the finite element mesh.
Truong et al. [20] outlined an approach for deforming the surface mesh, where the tessella-
tion of CAD surfaces was performed, and parametric definitions of mesh node points were
obtained with respect to these tessellated surfaces. The baseline and perturbed models
were compared using finite differences to obtain the geometric sensitivities. Sun et al. [21]
applied colour to each face to create a unique tag to facilitate the mapping process and
used virtual topology-based procedure to create an analysis topology representation of the
baseline and perturbed model. The virtual boundary entities in the model were parame-
terised to compute both the parametric position of a node in the original model and in the
perturbed model.

In this work, the geometric sensitivities are computed in the three Cartesian directions,
i.e., x, y and z, and are based on the models created within the open-source CAD system
FreeCAD, but the approach can be extended to other CAD systems. As a first step, a CAD
system API is created to interact with FreeCAD and assigns a unique colour to each face
in the model. Secondly, a surface mesh representation of the boundary is created using
the open-source meshing system GMSH [22], which is then used to obtain the surface face
colour in the CAD model on which the mesh nodes lie. The normalised parametric location
(u, v) of these mesh nodes (xb, yb, zb) is obtained with respect to the faces in the CAD model
within FreeCAD, such that u, v ∈ [0, 1]. After a parametric perturbation, the mapping of
the faces is completed by comparing the colour of the faces in the baseline and perturbed
model. The normalised (u, v) coordinates of the mesh nodes in the baseline model are
then scaled using the new parametric range to find the new (xp, yp, zp) coordinates of the
mesh nodes in the perturbed model. Thereafter, the design velocities are computed using
Equation (7) for each mesh node as

Vx =
xp − xb

dθ
, Vy =

yp − yb

dθ
, Vz =

zp − zb

dθ
(7)

where (xb, yb, zb) is the position of the surface mesh node on the original or unperturbed
geometry; (xp, yp, zp) defines the position of surface mesh node on the geometry obtained
by perturbing a parameter by dθ; Vx, Vy, Vz are the computed geometric sensitivities in the
x, y and z directions, respectively. It is acknowledged that this approach is only applicable
for parametric perturbations where there is no change in the boundary topology of the
model. In addition, this work assumes that the colour assignment will not change due to the
parametric change. The complete algorithm for the computation of geometric sensitivities
is described in Algorithm 1.

Figure 1 shows the geometric sensitivities computations for a box model, where the
parametric perturbation changes the geometry from the baseline to the perturbed shape
shown in Figure 1a. Figure 1b shows the design velocities computed in the direction normal
to the surface (Vn) following the approach described in Ref. [9], while Figure 1c,d present
the geometric sensitivities computed using the approach described in Algorithm 1. Both
approaches produce the same result for the two faces (top and right) that are moving in the
normal direction; however, the former approach gives a zero value for the design velocities
for all other faces (as they are moving in the tangential direction). The latter approach,
introduced in this work, gives the information about the movement in the direction of the
three axes, which is essential to apply smooth deformations on the analysis mesh during
the optimisation cycle.

∇J =
∆J
∆θ

(8)
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Figure 1. Computation of geometric sensitivities or design velocity: (a) box model showing baseline
and perturbed geometry; (b) design velocity computed in normal direction (Vn) using approach
described in Ref. [9]; geometric sensitivities in (c) x direction and (d) y direction.

Algorithm 1 Computation of Geometric Sensitivities

1: Input: Parametric FreeCAD model
2: Output: Design Velocity in x, y and z directions
3: tag each unique CAD model surface faces as a colour (using CAD system API)
4: compute the design velocities at each surface mesh node created using the baseline

CAD model
5: for mesh node i← 1 to N do
6: store information of the face in baseline model
7: compute in which face each mesh node (xi

b, yi
b, zi

b) lies and its corresponding para-
metric coordinate (ui, vi)

8: end for
9: for parameters j← 1 to n do do

10: perturb jth parameter by small value (dθ)
11: for mesh node i← 1 to N do
12: find the face with same tag (on which ith node lies in baseline model) in the

perturbed model
13: use the parametric coordinates (ui, vi) to get the xi

p, yi
p, zi

p location of mesh node in
perturbed model

14: calculate geometric sensitivities Vxi, Vyi, Vzi for each mesh node i
15: end for
16: end for

2.3. Gradient Evaluation

For the optimiser to establish a new search direction, it is necessary to evaluate the
gradient with respect to each design variable. In this particular case, it means evaluating
the change in objective function due to unit perturbation of a CAD parameter. This can be
achieved through the use of the chain rule, as shown:
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∂J
∂θ1
∂J
∂θ2

...
∂J

∂θn


=


∂x1

∂θ1
· · · ∂xm

∂θ1
...

. . .
...

∂x1

∂θn
· · · ∂xm

∂θn





∂J
∂x1
∂J

∂x2
...

∂J
∂xm


(9)

where J represents the function of interest (objective or constraint); n and m are the number
of design variables and surface mesh points, respectively; xi represents the displacement
of a discrete grid point on the surface. The third term represents the surface sensitivities
obtained using the adjoint solution, i.e., the change in the function of interest with respect
to a change in the surface grid points. The Jacobian ∂x

∂θ is known as the geometric sensitivity
matrix and is used to compute the influence of each design variable (θi) on the position of
each grid point of the surface mesh. These geometric sensitivities or design velocities are
computed using the methodology outlined in Section 2.2.

Once the adjoint surface sensitivity (φ) and geometric sensitivities (V) are obtained,
the total change in objective function can be predicted as the summation over the boundary:

∆J = ∑
S
(φ ·V) (10)

Following a parametric perturbation, the objective function changes and the gradient
∇J can be computed by normalising the change computed in Equation (10) with respect to
the size of the parameter perturbation used to perturb the boundary as:

3. Optimisation Framework

In general, optimisation framework can be formulated as:

Minimise θ : J(θ)

subject to : g(θ) ≥ 0 (11)

h(θ) = 0,

where J(θ) is the objective function to be minimised (maximised), g(θ) gives the inequality
constraints and h(θ) represents equality constraints. In this work, a gradient-based optimi-
sation framework is used where the gradients of the objective/constraints are computed
and used to drive the optimisation to reach the optimum. The first step is to define a search
direction (using the computed gradients) for the optimisation to proceed. The second step
is the line-search operation which defines the step size to be taken in the search direction to
minimise (maximise) the objective function. The most commonly used gradient-based opti-
misation algorithm is the gradient descent or steepest descent method, which minimises
the objective function J(θ) by changing the parameters proportional to their individual
sensitivities with respect to the objective function (∆J). In this work, the optimisation
method is based on the sequential least square programming (SLSQP) algorithm, which is
part of a class of Sequential Quadratic Programming algorithms and is highly efficient in
the line-search process, typically resulting in faster convergence then the aforementioned
method. The flowchart of the optimisation framework created as part of this work is shown
in Figure 2.

The optimiser starts with a baseline parametric CAD model created in FreeCAD,
surface and volumetric mesh which are used for the CFD primal and adjoint analysis.
A python CAD system API is configured such that it perturbs the model parameters within
FreeCAD and links them with the surface mesh nodes to obtain the geometric sensitivities
in the x, y and z directions using Equation (7), i.e., (Vx, Vy, Vz). These geometric sensitivities
are then linked with the adjoint surface sensitivities (φx, φy, φz) obtained from the CFD
adjoint analysis to compute the performance gradient with respect to the CAD model
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parameters. These gradients are used with the gradient-based optimisation algorithm
SLSQP to reach the optimised geometry. If the optimisation criteria are not met, the CAD
system API updates the CAD model parameters using the values provided by the optimiser.
Another CAD system API is configured to use the information from the baseline surface
mesh to obtain the updated locations such that the mesh nodes are snapped to the boundary
of the updated CAD model. The updated surface mesh nodes are then used to deform the
volumetric mesh in SU2 and subsequently used for primal and adjoint analysis, while the
CAD model is used to compute the geometric sensitivities which are then used to compute
the gradients to drive the optimisation process.

Figure 2. Optimisation flowchart.

3.1. Flow and Adjoint Solver

SU2 provides an open-source suite of computational analysis tools, including a state-
of-the-art flow and adjoint solver suitable for aerodynamic design optimisation. The main
flow solver uses a node-centred finite-volume method to discretise the fluid flow equations,
with levels of fidelity ranging from inviscid to Detached Eddy Simulations. The spatial dis-
cretisation schemes available include the Jameson–Schmidt–Turkel (JST) and Roe schemes,
among others. Both flow and adjoint solutions can be marched forward in time using
a Runge–Kutta explicit scheme or a backward Euler implicit method, with or without
multi-grid acceleration [23]. The SU2 suite is able to solve the discrete and continuous
adjoint Euler/RANS equations. The discrete adjoint problem and associated gradients
are obtained by algorithmic differentiation of the primary solver, including the turbulence
model equations. The volume mesh deformation is obtained by solving a linear elasticity
problem, whose gradients are also obtained by algorithmic differentiation; further details
on the discrete adjoint method in SU2 are given in ref. [7].

3.2. Mesh Deformation

In any optimisation framework, there is a requirement to update the model geometry
and respective mesh as the optimisation progresses. In the field of high-fidelity CFD
simulations, it is of utmost importance to have a good quality mesh to obtain accurate flow
predictions. In general, a substantial effort goes into producing a high-quality mesh for
the baseline model, and it is extremely challenging to automatically re-mesh a complex
geometry at each optimisation step. Thus, the mesh deformation becomes an important
step in which the new coordinates are computed for the mesh nodes whilst maintaining
the mesh connectivity.

The first step in the optimisation process is the creation of the CFD mesh from the
CAD model, which ascertains that the initial mesh conforms to the CAD model boundary.
This is checked as part of the optimisation framework by formulating a CAD system API
for FreeCAD which computes the distances of the CFD mesh nodes from the CAD model
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boundary to be within a tolerance of 10−6 mm. Thereafter, a method similar to that outlined
in Section 2.2 is used to compute the parametric location of the CFD mesh nodes with
respect to the faces in the baseline CAD model. Subsequently, the parameters in the CAD
model are modified to obtain the optimised CAD model followed by mapping the faces by
comparing the colour information in the baseline and perturbed model. The parametric
coordinates of the mesh nodes (in the baseline model) are then used to obtain the new
coordinates of the mesh nodes which conform to the perturbed model boundary. Because
this methodology directly uses the CAD model boundary information for computing the
new surface mesh points, it ensures that the deformed CFD mesh nodes lie directly on
the CAD model boundary. The surface deformation is propagated to the volumetric mesh
during the optimisation process by using the SU2_DEF module within SU2 as shown in
Figure 3. This approach can also be configured to snap the CFD mesh to the CAD model
boundary if the CFD mesh nodes are at an offset distance that exceeds a tolerance limit.

(a) (b)
Figure 3. Mesh deformation due to the movement of flap for a three-element aerofoil. (a) Initial mesh.
(b) Deformed mesh.

4. Test Cases and Results
4.1. Case 1: Twist Optimisation of Rectangular Wing

The first test case considered is the optimisation of the twist distribution along the
span of a rectangular wing (with NACA0012 sections) to minimise the induced drag in
an inviscid subsonic flow. This test case is one of the benchmark test cases defined by
the AIAA Aerodynamic Design Optimization Discussion Group, with no wing-tip cap.
The purpose of this test case is to obtain an elliptic lift distribution on the wing and a span
efficiency factor approximately equal to one.

4.1.1. Problem Definition

The problem consists of the minimisation of the drag coefficient, CD, with the coef-
ficient of lift, CL, acting as a constraint by requiring it to be equal or greater than 0.375.
The angle of attack is selected to allow the problem to start at a feasible point, i.e., making
the CL marginally larger than 0.375. The flow conditions and optimisation problem are
defined as:

• The freestream Mach number = 0.5.
• The angle of attack (AOA) = 4.3◦.
• The objective function = min(CD).
• The constraint: CL ≥ 0.375.
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4.1.2. Geometry and Mesh Description

The baseline model is created in FreeCAD by defining six equally spaced sections
along the wing span defined by the B-spline curves, each describing the NACA0012
aerofoil. The sections are parameterised to allow rotation about the leading edge of the
wing. In total, there are six parameters controlling the twist of the wing along the span, as
shown in Figure 4a. A lofted surface is created through the profile using a cubic B-spline
interpolation to create the wing surface, as shown in Figure 4b. The semi-span length and
semi-span area of the wing are defined as b/2 = 3c and S = 3c2, where c is the wing chord
(c = 1 m).

(a) (b)
Figure 4. Wing design: (a) original and twisted wing profiles; (b) CAD model.

The analysis mesh is generated using the ICEM-CFD, as shown in Figure 5. The far-
field is located at a distance of 25c away from the wing’s leading edge, tip, upper and lower
surface and is at 50c in the downstream direction, away from the trailing edge. The grid
points are clustered near the leading and trailing edges and also clustered at the wing
tip to capture the main flow features. A grid independence study was conducted using
four different meshes, as shown in Table 1. The fine density mesh was selected for the
optimisation, consisting of nearly 1.3 million cells.

(a) (b)

Figure 5. Mesh for the rectangular wing geometry. (a) Far field view. (b) Wing surface mesh.

Table 1. Grid independence study for the wing.

Mesh Level Elements CD CL

very coarse 29,369 0.028987 0.35504

coarse 124,526 0.011381 0.373843

medium 526,747 0.008691 0.382739

fine 1,297,134 0.008500 0.383678

very fine 7,212,505 0.008354 0.38500

4.1.3. Validation of Gradients

Because this is a constrained optimisation problem, it requires the computation of the
adjoint sensitivities using the drag and lift as the objective functions. The convergence of
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the residuals of the primal and adjoint conservation of the mass equations for the baseline
geometry are shown in Figure 6.

0 0.5 1 1.5 2 2.5 3

iterations 104

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

lo
g
(R

e
s
)

Primal

adjoint drag density

adjoint lift density

Figure 6. Convergence of the primal and adjoint CFD for the baseline rectangular wing geometry.

The performance gradients obtained by linking the CAD parameterisation with ad-
joint surface sensitivities are validated using the values obtained by the following finite-
difference approximation:

∆ f
∆θ

=
f (θ + ε)− f (θ)

ε
, (12)

where ε is a small perturbation, f is the performance function and θ is the design variable.
The CFD flow solutions are obtained using the geometries with small perturbations (0.1◦

twist), and then the finite-difference gradients are computed using Equation (12). For the
perturbed model, the mesh deformation strategy outlined in the previous section has
been used to obtain the mesh for the CFD simulation. These gradients are then compared
with those obtained using the methodology proposed in Section 2.3, using the geometric
sensitivities and adjoint surface sensitivities (see Table 2). The gradients for the drag and
lift computed using the proposed meshes are within 1.5% of the values obtained using the
finite differences, giving the necessary confidence in the developed framework.

Table 2. Validation of performance gradients computed using adjoint + CAD and finite difference.

Station
Adjoint + CAD (A) Finite Difference (B) A-B (%)

∇CD ∇CL ∇CD ∇CL ∇CD ∇CL

S0 0.000282243 0.00771650 0.00028398 0.00770876 0.62 0.10

S1 0.000975287 0.02596906 0.00098722 0.02597942 1.22 0.04

S2 0.000709438 0.01744390 0.00071825 0.01746158 1.24 0.10

S3 0.000726939 0.01817444 0.00073523 0.01818534 1.14 0.06

S4 0.000879464 0.01750809 0.00088931 0.01753582 1.12 0.16

S5 0.000227776 0.00391706 0.0002303 0.00394805 1.11 0.79
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4.1.4. Optimisation Results

To assist with the analysis of the optimisation framework, the span efficiency (e) factor
for the wing designs is computed as

e =
CL

2

πARCD
, (13)

where AR = b2/(2S) = 6 is the aspect ratio. The evolution of CD and the span efficiency
factor throughout the optimisation are plotted in Figure 7a,b, respectively. Figure 8a shows
the lift distribution across the wing span for the initial and optimised geometries compared
to the theoretical elliptical lift distribution. It can be seen that the optimiser is able to
achieve the lift constraint whilst recovering a near elliptical span-load distribution up until
the wing tip. The obtained twist distribution is shown in Figure 8b, where the twist angles
are measured with respect to the angle of attack. As expected, the inboard wing produces a
positive twist to increase the lift while the outboard sections produce a negative twist to
unload the wing.

0 5 10 15 20

optimisation runs
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8.5

8.6
10-3
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0.376
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0.384

0.386

(a)

0 5 10 15 20

optimisation runs

0.916

0.918

0.92

0.922
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0.926

0.928

0.93

0.932

(b)
Figure 7. Twist optimisation of rectangular wing. (a) Coefficient of drag and lift. (b) Span
efficiency factor.
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Figure 8. Lift and twist distributions for the baseline and optimised wing geometries. (a) Lift distri-
bution. (b) Twist distribution.

Figure 9 shows the deviation the of surface mesh points from the CAD model during
the optimisation process. As it can be seen, the baseline block-structured mesh created in
the ICEM-CFD has a maximum and average deviation of the order of 10−6 mm, which has
been subsequently reduced to a value of the order of 10−12 mm, guaranteeing that the new
surface mesh points lie very close to the CAD geometry.
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Figure 9. Deviation of surface mesh from CAD during optimisation.

4.2. Case 2: Optimisation of Three-Section Aerofoil Surface

The second test case is the optimisation of the position and orientation of the slat
and flap of a three-element aerofoil with the fixed section of the main wing. This aerofoil
configuration is derived from a section of the NASA CRM-HL configuration [24]. It is a
“kink cut” from the 3D configuration (perpendicular to the leading edge up to the 25%
chord, then chordwise going aft), with the chordwise part located at y = 16.26 m of the
full-scale NASA CRM-HL configuration. This geometry was used in a “Mesh Effects for
CFD Solutions” special session at AIAA Aviation 2020, sponsored by the Geometry and
Mesh Generation Workshops (GMGW) committee [25].

4.2.1. Problem Definition

The problem is formulated as a minimisation objective with CD acting as the objective
function and CL constrained to remain equal or larger than 99% of the baseline configuration.
The flow conditions and optimisation problem are defined as:

• The freestream Mach number = 0.2.
• The angle of attack (AOA) = 8◦.
• The Reynolds number = 5× 106.
• The objective function = min(CD).
• The constraint: CL ≥ 2.54.
• The turbulence model: Spalart–Allmaras.

4.2.2. Mesh Description and Geometry Parameterisation

The mesh used to start the optimisation process was obtained from the AIAA CFD
High-Lift Prediction Workshop (https://turbmodels.larc.nasa.gov/multielementverif_
grids.html (accessed on 17 October 2022)) and is shown in Figure 10. The mesh consisted of
mainly quadrilateral elements, conforming to the aerofoil surfaces, containing a total of
1528 nodes along the wing surface, 500 nodes along the surface of the flap and 250 nodes
on the slat surface. For the baseline configuration, the values of CD and CL are obtained as
0.044842 and 2.55789, respectively.

The CAD model of the aerofoil configuration is created within FreeCAD using the
information from the CFD mesh. A python CAD system API is configured to read the
surface mesh nodes of the main wing, slat and flap sections and form the two-dimensional
three-section aerofoil. The position and orientation of the flap and slat section are configured
to change in the x and y directions with respect to the user-defined parameters, as shown
in Figure 11. This results in three design variables for each slat and flap (∆x, ∆y and ∆α),
respectively. The rotation centres are located at the midpoints of the individual chords
of each element. This type of parameterisation allows to optimise the positioning of the
high-lift devices to maximise the performance, without altering the shape of the aerofoil,
which is often designed based on the cruise condition of the aircraft.

https://turbmodels.larc.nasa.gov/multielementverif_grids.html
https://turbmodels.larc.nasa.gov/multielementverif_grids.html
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(a) (b)

Figure 10. Mesh for the high-lift aerofoil configuration, along with slat and flap. (a) Far-field view.
(b) Close-up view.

Figure 11. Parameterisation of a three-section aerofoil high-lift configuration.

The local chord (measured with the flap and slat stowed) is c = 1 m, and the CAD
model created in FreeCAD is shown in Figure 12. The design parameters are bounded and
are allowed to move within a range as shown below:

−0.015c ≤ ∆xslat ≤ 0.015c
−0.015c ≤ ∆yslat ≤ 0.015c
−0.015c ≤ ∆x f lap ≤ 0.015c
−0.015c ≤ ∆y f lap ≤ 0.015c

−5 ≤ ∆αslat ≤ 5
−5 ≤ ∆α f lap ≤ 5

(14)

Figure 12. Three-dimensional view of the high-lift configuration aerofoil (extruded in z direction).

4.2.3. Optimisation Results

The problem is set up as a constrained optimisation problem, and this requires the
computation of both the objective function (CD) as well as the constraint function (CL);
hence, it was necessary to run one primal and two adjoint CFD simulations (with CD and
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CL as the objectives). A typical convergence of the residuals of the adjoint density for the
baseline geometry is shown in Figure 13.
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adjoint lift

Figure 13. Convergence of the adjoint for the baseline aerofoil geometry.

The optimisation runs for 30 iterations, and the optimum location and orientation of
slat and flap found are shown in Table 3. The CD and CL evolution during the optimisation
process is plotted in Figure 14a, where the CD and CL values are plotted for each optimisa-
tion step. The optimised geometry resulted in a reduced drag value of CD = 0.037465 and a
lift of CL = 2.54016, i.e., an approximately 16.5% decrease in CD with respect to the baseline
configuration. A comparison of the baseline and optimised locations of the slat and flap
with respect to the main wing of the aerofoil is shown in Figure 14b. The Mach number
contours and surface Cp values for the initial and optimised high-lift aerofoil geometries
are shown in Figures 15 and 16, respectively. Figure 15 shows the new location of the
slat shifting the slat wake away from the surface of the main element and mitigating the
interaction with the main element boundary layer; the new position of the flap, together
with the aforementioned changes, allows a more efficient pressure recovery of the flow
over the flap, as indicated by Figure 16.

Table 3. Optimised values of the design parameters.

∆x ∆y ∆α [deg]

slat −0.00743c 0.00366c 5

flap 0.01144c 0.00705c −4.011
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Figure 14. Optimisation of position and orientation of the slat and flap. (a) Coefficient of drag and lift.
(b) Baseline and optimised designs.

(a) (b)
Figure 15. Mach no. contours for the baseline and optimised aerofoils. (a) Baseline geometry.
(b) Optimised geometry.
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Figure 16. Surface Cp distribution for the baseline and optimised aerofoils.

5. Discussion

This paper describes a geometric method that is used to: (i) combine the geometric
sensitivity with the adjoint sensitivity and (ii) deform the surface and volumetric mesh for
use within the optimisation framework. For the computation of the geometric sensitivities
in this work, a CAD system API was written to directly interact with the CAD model
in FreeCAD to assign and read the colour attribute of each face before and after the
parametric perturbation, rather than extracting this information from the STEP file as
has been performed in Ref. [21]. This helps to avoid an additional step of exporting and
reading the STEP file to obtain the topology information of the CAD model. While colour
was used here, any method for assigning an individual identifier to a face in a model
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can be used. The adjoint surface sensitivities extracted from the discrete adjoint solver
gives the information about the performance changes with respect to the movement of the
surface mesh nodes in the three axes directions (x, y and z). The geometric sensitivities are
also computed in the these axes directions using the methodology outlined in Section 2.2,
enabling the computation of the performance gradients with respect to the CAD parameters
as described in Section 2.3.

This work is an advancement over the previous approaches used for computing
geometric sensitivities [9,14], where the baseline and perturbed model were discretised
using facets and the accuracy of the computations was dependent on the facet sizing. In this
work, the geometric sensitivities are directly computed within the CAD system without
any approximations using facets. This helps to improve the accuracy of the sensitivity
computations, particularly in areas with a high curvature. This has been analysed in
Section 4.1, where the twist distribution of the rectangular wing was optimised to minimise
the drag on the wing. In addition, this approach also enables the computations of accurate
geometric sensitivities in the scenario of rigid body motions (translation and rotation),
which the previous approach [9,14] was not able to cater for, as the geometric sensitivities
were computed by using projections in the direction normal to the surface of the baseline
model. This has been analysed in Section 4.2, where the translation and rotation of the
slat and flap section of the wing were used as the optimisation parameters to enhance
the performance. The surface mesh deformation methodology demonstrated in this work
computes the required displacements in the x, y and z directions by directly querying the
CAD model within the CAD system, thus guaranteeing the deformed mesh to lie directly on
the CAD geometry. This has been demonstrated for the 3D wing geometry case in Figure 9,
where the maximum deviation of the surface mesh points is in the range of 10−12 mm.

For the examples in this paper, the computations of the geometric sensitivities and
surface mesh deformations were carried out on a laptop workstation with 16 GB of RAM.
For the test cases shown in this paper, the time for computing the geometric sensitivities at
each mesh node and the required mesh deformation was in the range of 20–30 s, which is
negligible with respect to the cost of determining how to move the mesh manually, or the
cost of the primal and adjoint analysis.

6. Conclusions

In this paper, an efficient methodology is presented for computing the geometric
sensitivities with respect to CAD parameters which is also used for the movement of
surface mesh during the optimisation process, with the guarantee that the new surface
points lie on the CAD geometry. In addition, the design features of an open-source CAD
system, FreeCAD, are explored along with the adjoint capabilities of an open-source CFD
solver, SU2. This methodology is generic and can be extended to work with other CAD
systems and CFD solvers. The applicability of the developed framework is tested in the
optimisation of the twist distribution of a rectangular wing and the position of the slat and
flaps for a high-lift aerofoil configuration. It is shown that the methodology is robust for a
range of different types of CAD-based geometry parameterisations and delivers significant
performance improvements.
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