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Abstract: A method based on fluid–structure coupling is used in this study to calculate the response
of a rocket fairing as it is falling. Some cases of vibration divergence of the fairing were found,
and the influence of some specific factors was analyzed. The aerodynamic forces are calculated
by using computational fluid dynamics (CFD) software and the structural responses by the modal-
superposition method. The data are then subjected to modal interpolation in the CFD solver for the
next cycle of calculation. The dynamic pressure, Mach number, and angle of attack are fixed in this
process. Given that the fairing has a fixed attitude during falling, its rotation is ignored in calculations
for the simulation. The results are then used to propose a framework for the fluid–structure coupling-
based analysis of a non-streamlined structure. The mechanism of the fairing is discussed based
on this method, and the effects of the settings of the solver, Mach number, dynamic pressure, and
structural stiffness on it are investigated. Dangerous and safe regions are identified as the fairing falls
back to the ground. Three methods are then provided based on the above analysis to prevent damage
to the fairing as it falls to ground, such as increasing structure rigidity, attitude control, and opening
the parachute at high altitude. A comprehensive method was used to suppress the vibration of the
fairing during the descent, which was proven to be effective.

Keywords: fluid–structure coupling; non-streamline; fairing; modal-superposition method; recycling

1. Introduction

The fairing of a rocket is expensive, and accounts for a large part of the cost of
launching. When the fairing is separated from the rocket at a high altitude, it falls back to
the ground along with the remaining wreckage. This poses a safety hazard, and the fact that
the fairing cannot be reused significantly increases the cost of the rocket. Figure 1 shows
typical fairings. Recycling and reusing the fairing is a popular subject of investigation
in commercial aerospace research and a new scheme for recovering the fairing has been
proposed here. Following launch, the fairing detaches from the rocket as the air thins high
in the atmosphere. A parachute is used to ease its fall as the fairing speed slows to subsonic
speed and it is recovered when it reaches the ground. As the flexible shell of the fairing
falls at a high speed, it is subjected to complex fluid–solid coupling under the action of
airflow before the parachute opens, and thus may suffer damage. It is important to study
this complex problem of fluid–solid coupling. Analyses of the fluid–structure interaction
(FSI) that induce the failure of the non-streamlined structure during its descent are carried
out to prevent accidents and provide a reference for the design of the fairing.
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Figure 1. Schematic of a typical fairing. (a) Configuration I and (b) Configuration II. 

Methods to calculate aeroelasticity in the context of aerospace research can be di-
vided into three categories: theoretical algorithms for the frequency domain of aeroelas-
ticity [1], methods to calculate aeroelasticity based on a reduced-order model (ROM) [2], 
and coupled numerical calculations using computational fluid dynamics (CFD) and com-
putational structural dynamics (CSD) [3]. The doublet-lattice method is an example of 
methods of calculation in the frequency domain [4], and reduced-order aerodynamic 
models include the Volterra series and the radial basis neural network [5–7]. With ad-
vances in CFD and CSD, numerical calculations based on the theory of FSI provide novel 
means for dealing with problems of unsteady aeroelasticity. 

Researchers in aviation have developed mature methods to analyze the streamlines 
of wings and aircraft. Torregrosa used the ROM method to study non-linear aeroelastic 
phenomena and applied the results to beams [8]. Xie established a non-linear, geometric 
FSI model based on the “quasi-modal” method of a non-constant vortical lattice combined 
with structural dynamics, and used it to examine the problem of the gust response of 
large-scale wings with a flexible chord ratio [9]. Kenneth used numerical calculations 
based on CFD/CSD coupling to simulate the movement of a two-dimensional wing with 
gaps and analyzed its flutter characteristics. This work formed the foundation for the sub-
sequent investigation of problems of aeroelasticity [10]. Hallissy and Cesnik developed a 
highly precise tool for the aeroelastic simulations of flexible wings through weak 
CFD/CSD coupling [11]. To study the linear and non-linear static aeroelasticity of flexible 
wings, Mian developed a numerical method that weakly couples an open-source struc-
tural dynamics software with the Reynolds-averaged Navier–Stokes (RANS) equations. 
The results of calculations of the model of an aeroelastic wing by using this method were 
in good agreement with experimental data [12]. Ilie developed a time-domain numerical 
model based on bidirectional CFD/CSD coupling to simulate aeroelastic responses of hel-
icopter blades [13]. Aprovitola focused on the static pitching stability of the aircraft to 
examine the effects of variations in the Mach number on the shift in its aerodynamic center 
by using both a commercial (ANSYS-Fluent) tool and an open-source (SU2) code [14]. 
Franzmann used an experimental method to measure the coefficient of the damping mo-
ment of the pitch of a rocket at a certain angle of attack and obtained results that were 
consistent with those of CFD simulations [15]. Zhong studied a control system that can 
reliably separate the fairing under a high dynamic pressure and suppress interference in 
this process [16]. Seiji used a hybrid LES/RANS-based method to simulate the transonic 
flow-field around a rocket fairing [17]. 

However, research on the fairing of the rocket has mainly focused on its acoustics 
and shape [18–20], and no references were found which studied issues of the rocket fairing 
recycling for engineering applications. The traditional doublet-lattice method cannot be 
applied to develop a flexible and non-streamlined configuration of the fairing. A CFD–
CSD coupling method is required. Due to the lack of research on this object, the design 
department lacks cognition of influences of relevant paraments. It is worthwhile to study 
this problem. 

Figure 1. Schematic of a typical fairing. (a) Configuration I and (b) Configuration II.

Methods to calculate aeroelasticity in the context of aerospace research can be divided
into three categories: theoretical algorithms for the frequency domain of aeroelasticity [1],
methods to calculate aeroelasticity based on a reduced-order model (ROM) [2], and coupled
numerical calculations using computational fluid dynamics (CFD) and computational
structural dynamics (CSD) [3]. The doublet-lattice method is an example of methods of
calculation in the frequency domain [4], and reduced-order aerodynamic models include
the Volterra series and the radial basis neural network [5–7]. With advances in CFD and
CSD, numerical calculations based on the theory of FSI provide novel means for dealing
with problems of unsteady aeroelasticity.

Researchers in aviation have developed mature methods to analyze the streamlines
of wings and aircraft. Torregrosa used the ROM method to study non-linear aeroelastic
phenomena and applied the results to beams [8]. Xie established a non-linear, geometric
FSI model based on the “quasi-modal” method of a non-constant vortical lattice combined
with structural dynamics, and used it to examine the problem of the gust response of
large-scale wings with a flexible chord ratio [9]. Kenneth used numerical calculations based
on CFD/CSD coupling to simulate the movement of a two-dimensional wing with gaps
and analyzed its flutter characteristics. This work formed the foundation for the subse-
quent investigation of problems of aeroelasticity [10]. Hallissy and Cesnik developed a
highly precise tool for the aeroelastic simulations of flexible wings through weak CFD/CSD
coupling [11]. To study the linear and non-linear static aeroelasticity of flexible wings,
Mian developed a numerical method that weakly couples an open-source structural dy-
namics software with the Reynolds-averaged Navier–Stokes (RANS) equations. The results
of calculations of the model of an aeroelastic wing by using this method were in good
agreement with experimental data [12]. Ilie developed a time-domain numerical model
based on bidirectional CFD/CSD coupling to simulate aeroelastic responses of helicopter
blades [13]. Aprovitola focused on the static pitching stability of the aircraft to examine the
effects of variations in the Mach number on the shift in its aerodynamic center by using
both a commercial (ANSYS-Fluent) tool and an open-source (SU2) code [14]. Franzmann
used an experimental method to measure the coefficient of the damping moment of the
pitch of a rocket at a certain angle of attack and obtained results that were consistent with
those of CFD simulations [15]. Zhong studied a control system that can reliably separate
the fairing under a high dynamic pressure and suppress interference in this process [16].
Seiji used a hybrid LES/RANS-based method to simulate the transonic flow-field around a
rocket fairing [17].

However, research on the fairing of the rocket has mainly focused on its acoustics and
shape [18–20], and no references were found which studied issues of the rocket fairing
recycling for engineering applications. The traditional doublet-lattice method cannot
be applied to develop a flexible and non-streamlined configuration of the fairing. A
CFD–CSD coupling method is required. Due to the lack of research on this object, the
design department lacks cognition of influences of relevant paraments. It is worthwhile to
study this problem.
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In this paper, the motion of the fairing as it falls before the parachute opens is studied.
Firstly, a framework for fluid–structure coupling-based analysis is proposed, which is based
on CFD and the modal-superposition method to investigate the non-streamlined config-
uration of the rocket fairing and provide a dynamic response analysis for it reuse [21,22].
Unsteady aerodynamic forces and the structural response are calculated by a CFD soft-
ware and the modal-superposition method. Data on the displacement are passed to the
CFD solver through interpolation calculation for the next round of calculations. Then,
simulations of the typical cylindrical vortex-induced vibrations that are consistent with
past work are performed to verify the effectiveness of the proposed method. Furthermore,
the dynamic response analysis in the recycling process of fairing is analyzed [23]. Typical
working conditions are selected during the calculations to observe the stability of the
response of the fairing while maintaining a constant dynamic pressure, Mach number, and
angle of attack. The rotation of the fairing is ignored in the calculations. The influences of
Mach number and dynamic pressure are discussed, and dangerous and safe regions for the
descent of the fairing are identified. Three methods are then provided based on the above
analysis to prevent damage to the fairing.

2. Basic Theories of FSI

Due to uncertainty in the movement of the fairing as it falls and limitations on its size,
it is difficult to conduct wind tunnel tests. The motions of fluids and structures are often
complex. Aerodynamic forces deform the structure of the fairing, and the displacement
generated by its deformation changes the shape of fluids which cause structure deformation.
The interaction between the fluid and the solid renders the problem unsteady in the time
domain. Numerical methods are used to study this problem, which involve modeling the
fluids and the structure as well as accurately calculating their responses and interactions.

The panel method is widely used to calculate the aerodynamic force due to its con-
venience of use, but it is not suitable for problems involving large deformation and non-
linearity. Reduced-order models have received increasing attention in recent years, but
their inadequate capability of generalization and the long training time needed by them
limit their application. Unsteady aerodynamic forces were calculated by using CFD to
accurately study the movement and mechanism of failure of the fairing as it falls.

Since the structure of the fairing is relatively simple, its main modes over several orders
can reflect structural deformations in it. The modal-superposition method was used for
structural calculations with several main modes to reduce the number of requisite calculations.

The numerical solution based on CFD/CSD coupling has advantages in terms of
solving problems in aerospace research. Fluid–solid weak coupling is used to solve the
problem, and the data are exchanged through the interface between the fluid and the solid.

Since structural displacement cannot be ignored during the descent of the fairing,
bidirectional fluid–structure coupling is needed in calculations of the simulation.

2.1. Fluid Mechanics

A method based on the RANS equation is used to study the motion of the fairing in
the atmosphere. The basic control equations of the fluid include the equation of continuity
and the Navier–Stokes equation. They can be integrated into the following form [24,25]:

∂

∂t

y

V

WdV+
x

∂V

FCdS−
x

∂V

FVdS = 0 (1)

where,

W =

 ρ

ρ
→
v

ρE

 FC =

 ρVr

ρV
→
v + p

→
n

(ρH + p)Vr + Vt p

 FV =

 0
τ ·→n

k
(
∇T ·→n

)
+
(

τ ·→v
)
·→n

 (2)
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In the above expressions, W represents the vector of the conservative variables, FC and
FV are the vectors of convective and viscous fluxes, respectively, p, ρ,

→
v , T, and E denote

the pressure, the density, the velocity vector, the temperature, and the total energy per unit
mass, respectively, Vt stands for the contravariant velocity of the face of a control volume
and Vr represents the contravariant velocity relative to the motion of the grid,

→
n refers to

the outward-facing unit normal vector of dS, k is the thermal conductivity coefficient, and
τ is the viscous stress tensor.

2.2. Basic Theory of Structural Dynamics

FSI was used to study the motion of the fairing during recovery. The equation of an n
degree of freedom (DOF)-damped system’s forced vibration in the z direction is:

M
..
z + C

.
z + Kz = f (3)

where z represents the vector formed by displacement of n degrees of freedom along the
vibration direction, M, C, and K denote the mass matrix, damping matrix, and stiffness
matrix, respectively, and f represents the load.

The natural modes of the model are φ
(n×1)
1 ∼ φ

(n×1)
n , and can be written as the

following matrix:
φ
(n×1)
1 ∼ φ

(n×1)
n (4)

Multiplying the left side of Equation (3) by ΦT yields:

ΦTM
..
z + ΦTC

.
z + ΦTKz = ΦTf (5)

The displacement vector z can be represented by the generalized displacement q
corresponding to the mode of each order:

z = Φq =
n

∑
i=1

φiqi (6)

ΦTMΦ
..
q + ΦTCΦ

.
q + ΦTKΦq = ΦTf (7)

When the mode of each order is a mass-normalized mode, the damping matrix is ignored:

I
..
q + Cp

.
q + Ωq = ΦTf (8)

where I(n×n) is the identity matrix, Cp
(n×n) = diag(2ζiωi) is a diagonal matrix, and

Ω(n×n) = diag
(
ω2

i
)

is also a diagonal matrix. Mp = ΦTMΦ represents the generalized
mass matrix, and ζ is the damping ratio. When Φ consists of mass-normalized modes,
Mp is equal to I, Cp = ΦTCΦ represents the generalized damping matrix, Kp = ΦTKΦ
represents the generalized stiffness matrix, and Kp is equal to Ω.

Generalized forces are involved in the calculation process. The program firstly reads
the pressure of every aerodynamic grid at each time step, and then calculates the aero-
dynamic force of each aerodynamic grid. In the same time step, the mode shapes of the
aerodynamic center are obtained from locations of nodes of the structure model and the
mode shapes of the structure model through the Thin-Plate Spline (TPS) interpolation
algorithm. The aerodynamic force is multiplied by the mode shape, and then by its area to
obtain the generalized force for each aerodynamic mesh.

The generalized force is defined as:

F = ∑ φi piSi (9)

After the generalized aerodynamic force is obtained, it is substituted into Equation (8).
Then, the generalized displacement is solved by the Runge–Kuta method. After the
generalized displacement force is obtained, the modal-superposition method is used to
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solve the physical displacement of each node. Finally, the mesh in the CFD solver completes
the deformation.

2.3. Thin-Plate Spline Interpolation Algorithm

When the modal method is used to deal with the problem of FSI, it usually involves
using the grids of different nodes in the regions of the fluid and the solid. The modes at
nodes of the fluid mesh are calculated by the TPS interpolation algorithm. A generalized
dynamic equation is established at the central node of the grid and is solved to obtain
the generalized displacement and generalized velocity. The nodal displacement of the
boundary of FSI is obtained by modal value interpolation, and changes according to the
generalized displacement once the motion of the fluid has been solved.

The TPS interpolation algorithm can be described by the following equation:


ci1 = xi
ci2 = yi
ci3 = zi

, i ∈ [1 . . . p] ≡ Cp×3 =


x1 y1 z1
x2 y2 z2

. . .
xp yp zp

 (10)

where p is the number of control points and ci(xi, yi, zi), i = 1, 2, . . . , p represents their location.
The regularization parameter, λ, can then be obtained, and the unknown TPS weights

w and a in the linear system of equations need to be solved.

[
W P
PT O

][→
w

2

→
a

2

]
=

[→
v
→
o

]
≡ L(p+3)×(p+3)

→
x

2
(p+3) =

→
b (p+3) (11)

where W, P, and O are submatrices, and
→
w,
→
a ,
→
v , and

→
o are column vectors that are given

by the following equations:

Wij = U
(∣∣|ci1 ci2| − |cj1 cj2|

∣∣)+ Iij · α2 · λ‖i, j ∈ [1 . . . p] ∧ λ ≥ 0 (12)

U(r) =
{

r2 · log r‖r > 0
0 ‖r = 0

(13)

α =
1
p2

p

∑
i

p

∑
j

(∣∣|ci1 ci2| − |cj1 cj2|
∣∣) (14)

Pp×3 =


1 c11 c12
1 c21 c22

1
...

...
1 cp1 cp1

, O3×3 =

0 0 0
0 0 0
0 0 0

 (15)

PT
ij = Pij ‖i ∈ [1 . . . p] ∧ j ∈ [1 . . . 3] (16)

→
v p×1 =


c13
c23
...

cp3

,
→
o 3×1 =


0
0
...
0

→wp×1 =


w1
w2
...

wp

,
→
a

2
3×1 =


a1
a2
...

wp

 (17)

The value of z at any point can be interpolated by the following equation:

z̃(x, y) = a1 + a2x + a3y +
p

∑
i=1

wiU
(∣∣|ci1 ci2| − |x y|

∣∣) (18)

The generalized displacement of the fairing is analyzed to determine whether the
vibrations are divergent.
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2.4. Dynamic Mesh

Since structural deformation occurs in the process of fluid–structure coupling, many
methods are available to update the mesh. Spring smoothing is used here to adjust the
mesh to represent its deformation.

For fluid regions with triangular or quadrilateral meshes, an elastic deformation-based
method of mesh adjustment can be used to smoothly adjust the positions of nodes in the
domain of flow. This method can smoothly adjust the volume of mesh without changing
the connectivity between meshes. The connection between any pair of nodes on the grid
is idealized as springs connected to each other. A boundary node moves according to
a given displacement, and causes all springs connected to this node to generate a force
proportional to the displacement. In this way, the displacement of the nodes on the
boundary is propagated through the volume of mesh in the fluid. From the perspective of
balance, the resultant force of all springs at each node must be zero. This condition can be
expressed by the following iterative equation:

∆
→
x

m+1
i =

∑ni
j kij∆

→
x

m
j

∑ni
j kij

(19)

where ∆
→
x i is the displacement of the node, m is the number of iterations, ni is the number

of nodes adjacent to node i, and ki j is the spring constant between the given node and
adjacent nodes, where the spring constant can be defined as:

kij =
k f ac√∣∣∣→x i −

→
x j

∣∣∣ (20)

where k f ac is the spring constant factor.
Since the displacement along the boundary is known, the equation is solved for

sweeping all nodes inside the fluid domain through a Jacobi matrix. During the solution
process, the updated positions of the node can be expressed as:

→
x

n+1
i =

→
x

n
i + ∆

→
x

k,converged
i (21)

2.5. CFD–CSD Coupling

Figure 2 shows a weak coupling strategy to integrate the CFD and CSD methods.
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The CFD method outputs the pressure at each moment, and then calculates the
aerodynamic force at each aerodynamic face of the fairing. The mode shapes of the centers
of the aerodynamic faces are obtained by using the TPS interpolation algorithm based on the
locations of the structural nodes. The mode shapes are multiplied by the aerodynamic forces
to obtain the generalized forces for each aerodynamic mesh. The generalized displacement
is then obtained by using the generalized force in the fourth-order Runge–Kuta method to
solve the equation of structural dynamics. The generalized displacement is multiplied by
the mode shape to obtain the deformation of the mesh. Curves of the temporal response of
the generalized force and the generalized displacement can be obtained by repeating the
above process at each time step.

3. Research Object
3.1. Research Object and Working Conditions

Figure 3 shows the shape of the rocket fairing and provides the definitions of the
coordinate and the angle of attack. The radius of the shell was approximately 1.5 m, the
radius of the head was approximately 1 m, the length of the shell was 5 m, and the length
of the fairing was 9 m. The head and fuselage were made of different materials. Table 1
lists the materials of each part of the fairing and their properties.
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Figure 3. Definitions of the angle of attack and coordinates.

Table 1. Material properties of each part of the fairing.

Fairing Young’s Modulus (Pa) Poisson’s Ratio Density (kg/m3)

Head 6.9× 1010 0.33 3200
Shell 1.5× 1010 0.33 2500

According to the typical state of a falling fairing, the Mach numbers Ma = 0.6 and
Ma = 0.5 were selected as the typical working conditions for detailed calculation and
analysis. The Mach number ranged from 0.2 to 0.85, and five values of the angle of attack
were considered: 0◦, 20◦, 45◦, 70◦, and 90◦. The effects of dynamic pressure, Mach number,
angle of attack, and other factors on vibrations induced by FSI were explored by calculating
for different conditions, as shown in Table 2.

Table 2. Working conditions.

Working Condition Dynamic Pressure (Pa) Mach Number Temperature (K)

1 700 0.5 218.6
2 1000 0.6 220

3.2. Grid for the Structure and Fluid

The fairing of the rocket was modeled by shells with stiffeners. Figure 4 shows a
schematic diagram of the structural grid, and the red star in it represents the displacement-
monitoring point.
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A modal analysis of the above structure was carried out. The first four modes were 
selected, which may cause failure owing to structural vibrations. The first-order mode was 
the torsional mode, and the second-order mode was the breathing mode. Figure 5 shows 
the mode shapes and the frequencies of the fourth mode. The analysis yielded vibrational 
frequencies of the fourth-order modes of 2.2, 5.8, 9.1, and 11.5 Hz. 

Figure 4. Structural grid and monitoring point (red star).

A modal analysis of the above structure was carried out. The first four modes were
selected, which may cause failure owing to structural vibrations. The first-order mode was
the torsional mode, and the second-order mode was the breathing mode. Figure 5 shows
the mode shapes and the frequencies of the fourth mode. The analysis yielded vibrational
frequencies of the fourth-order modes of 2.2, 5.8, 9.1, and 11.5 Hz.
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The coordinate system of the CFD model was consistent with that of the structural
model. The area of fluid calculation was a spherical area around the fairing with a radius
of 50 m. The spherical surface of the calculation area was set as the far-field boundary, and
surface of FSI of the fairing was set as the boundary of the wall. The computational grids
were tetrahedral mesh. The surface meshes of the fairing were triangular elements, and the
total number of meshes was 1.88 million. The mesh was refined in the area near the fairing
to better capture the flow-field details in the areas near the wall and in the wake area of the
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fairing, with drastic changes in velocity and pressure. A schematic diagram of the grid is
presented in Figure 6.
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The CFD solver was Ansys Fluent and generalized displacement was calculated by
the modal-superposition method, which has been mentioned in Section 2.2. The modal-
superposition method is a self-programmed C language program in UDF. The first four
modes were selected for the response calculation with a time step of 0.005 s and a turbulence
model of k−ωSST.

4. Verification of Methods
4.1. Grid Independence

The above model of the fairing was used with a Mach number of Ma = 0.6, dynamic
pressure of p =800 Pa, and angle of attack of α = 90

◦
. Figure 7 compares the generalized

displacement of three grid systems. Their number of grid elements and minimum volume
are listed in Table 3. The mesh number was changed by adjusting the number of nodes in
the circumferential and y directions on the fairing surface. In this process, the number of
meshes in the inner spherical region is mainly adjusted to verify the influence of different
grids. The results of the baseline grid and the fine grid were similar, and the amplitude
of vibrations of the baseline grid was larger than that of the coarse grid. The generalized
displacement was adequately captured by the baseline grid. Thus, the baseline grid system
was used in subsequent calculations.

Table 3. The number of elements in the three grid systems.

Grid Elements Minimum Volume (m3)

Fine 2,362,564 4.8× 10−8

Baseline 1,876,113 5.1× 10−8

Coarse 1,517,761 5.5× 10−8

4.2. The Coupling Method

Since the object of calculation of the fairing was special, a single cylinder with a similar
aerodynamic shape to the fairing was used for simulations of vortex-induced vibrations
with a single degree of freedom. The aim was to verify the correctness of the method
used to calculate the aerodynamic force and the deformation of the fairing under different
working conditions. The result of the simulations was compared with results from past
work to verify the correctness of the user-defined function (UDF) program [26–28]. In one
time step, UDF was used to read the force from each grid and calculate the generalized
force. Then, the UDF calculated the generalized displacement through the Runge–Kuta
method and calculated the displacement through the modal-superposition method. Finally,
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the UDF updated the deformation of each node in turn. The CSD calculation was finished
and the CFD solver started to run after this process.
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Figure 8 shows the physical model of the vortex-induced vibrations of a single cylinder,
simplified as a spring-mass-damper system. The relevant parameters were as follows:
flow speed U = 0.146 m/s, flow density ρ = 1.225 kg/s, diameter D = 0.01 m, length
L = 0.02 m, and kinematic viscosity µ = 1.48× 10−6 m2/s. The non-dimensional mass
of the cylinder was m∗ = 10. To encourage high-amplitude oscillations, the structural
damping coefficient was set to zero. The Reynolds number was Re = 100 and the reduced
velocity was Ur = 2.4 ∼ 12.

m∗ = m
1
4 ρπD2

Ur = U
fnD

(22)

where m is the mass of a cylinder with unit length and fn is its natural vibrational frequency.
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Figure 9 shows variations in the maximum transverse displacement of the cylinder
with the reduced velocity. The results of the simulation were close to those reported by
Singh and Mittal [26–28]. Due to differences in mesh division and deformation methods,
the maximum amplitude ratio was slightly higher than the reference values. However, its
frequency locking range and the overall trend change were consistent. The reasons for the
difference in the results of the other two articles can be found in their articles. A comparison
of the variations in the maximum amplitude of the vortex-induced vibrations of a single
cylinder with the reduced velocity, Ur, verified the correctness of the UDF program in this
paper, which was used to read the force and adjust the mesh deformation.
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5. Numerical Results

To analyze the influence of the flight of the fairing as it detaches from the rocket and
falls to the ground, different dynamic pressures and angles of attack, in the Mach number
range of 0.2 to 0.85, were used to calculate its characteristics of FSI.

A number of cases were calculated to determine the dangerous and safe regions for
the fairing as it fell and are used here to propose several methods to assess the vibrational
damage to it.

5.1. Typical Working Conditions

The structural responses of the fairing under an unsteady aerodynamic force with
several angles of attack were calculated to assess its stability in different states as it fell to
the ground.

Figures 10–13 show the generalized displacement–time responses and fourth-order
generalized force–time responses of the first four modes under two typical working condi-
tions with different angles of attack (α = 0

◦
, 70

◦
, 90

◦
).
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Figure 12 shows that the generalized displacement of the fairing gradually converged
when α = 0, which shows that the vibrations were stable. When α = 70

◦
, the response

of the first-order generalized displacement in the time domain was close to a constant
oscillation in amplitude, indicating that the structure was in a critically stable state. When
α = 90

◦
, the amplitude of the first-order generalized displacement gradually expanded and

the vibrations of the structure diverged.
To further analyze the condition of divergence at α = 90

◦
, the displacement of the

monitoring point at the end of the fairing was selected to draw an image in the time
domain and its power spectral density was analyzed. Figure 14 shows that the deformation
diverged in the X direction, which led to the destruction of the structure. This occurred
mainly due to the influences of the first-order mode.
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Figure 14. Spectral analysis of the X displacement of the monitoring point. (a) Deformation in the X
direction. (b) PSD of deformation in the X direction.

Figure 15 shows a diagram of structural deformation in one cycle when the motion of
the fairing was unstable. Due to the divergence of first-order vibrations, the torsion of the
junction between the cone and the cylinder became increasingly prominent and eventually
led to vibration-induced damage to the fairing.
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Figure 15. Diagram of deformation of the fairing in one cycle: (a) 1/9 T, (b) 2/9 T, (c) 3/9 T, (d) 4/9 T,
(e) 5/9 T, (f) 6/9 T, (g) 7/9 T, (h) 8/9 T, and (i) T.

5.2. Influence of Mach Number

Since many variables influence the working conditions, a single variable was consid-
ered for analysis. The operational dynamic pressure and the angle of attack were fixed,
and a series of Mach numbers were selected for calculation. The influence of different
Mach numbers on the characteristics of FSI of the fairing was analyzed and the rules of
their influences were summarized. Two work conditions were considered: p = 500 Pa and
α = 70

◦
, and p = 700 Pa and α = 90

◦
.

To discuss the stability of the generalized displacement of the fairing, the definition of
its logarithmic decay rate, δ, with reference to damping was provided. Figure 16 shows the
vibrational amplitude as a function of time. A value of δ greater than zero shows that the
motion diverged. The larger the value of δ was, the more severe the vibrational divergence,
and vice versa. The definition is as follows:

δ =
ln
(

xn
x0

)
n

(23)

where xn is the generalized displacement of the nth spike and x0 is the generalized dis-
placement at the selected initial spike.

The settings of the CFD solver were p = 600 Pa and α = 90
◦
. The FSI-induced vibra-

tions of the fairing under different Mach numbers were then calculated. Figure 17 shows
that the logarithmic decay rate of the fourth-order generalized displacement continued to
increase with the Mach number. In the vicinity of Ma = 0.6 and Ma = 0.7, the first-order
vibrations diverged, and FSI-induced failure occurred. However, as the Mach number
continued to increase to around 0.8, the vibrations converged.
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Figure 17. The logarithmic decay rate of the generalized displacement varies with varying Mach
numbers (p = 600 Pa, α = 90

◦
).

The operational condition of p = 800 Pa and α = 45
◦

was similarly considered.
Figure 18 shows that the first-order generalized displacement diverged in the Mach number
range of 0.3 to 0.5. The first-order vibrations converged as the Mach number continued to
increase. A comparison of the two results of the calculations shows that it is necessary to
pay attention to different intervals of the Mach number in case of flutter divergence in case
of first-order vibrations under different flight conditions. Since the non-linear factors are
obvious in the whole calculation process, the mechanism is very complicated. According
to the analysis, the primary reason for this phenomenon may be that the position and
intensity of the shock wave generated on the aircraft surface are different at different angles
of attack.
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5.3. Influence of Dynamic Pressure

The influence of different flight pressures on the FSI-induced vibration divergences
of the fairing was analyzed. Two working conditions, with Ma = 0.4 and α = 45

◦
, and

Ma = 0.6 and α = 90
◦
, were selected for the calculation. Figures 19 and 20 show that the

problem of divergence of the first-order modal vibrations was encountered. As the dynamic
pressure increased, the logarithmic decay rate corresponding to the first-order generalized
displacement continued to increase, which means that the degree of divergence was more
severe. The fairing was damaged due to the divergence of the first-order vibrations, which
is the first-order torsional mode-induced damage of concern in this study.
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5.4. Summary of the Results of Calculations

The fall of the fairing was calculated in different states, and the results were summa-
rized. Figure 21 shows the hazard and safety zones at different angles of attack (green
points represent safe states, the orange points represent the critical stable states, and the
red points represent the states of structural failure).
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When α = 0, the dangerous zone was concentrated in the range of Ma = 0.4. As the
angle of attack increased, this zone changed to the range of Ma = 0.6. As the angle was
further increased, the zone of hazard continued to expand.

6. Improvement Methods
6.1. Increasing Structural Rigidity

An analysis of the structural displacement of the fairing shows that damage to it
had been caused mainly by the first-order torsion mode. Thus, its structural stiffness was
enhanced and considered to suppress the damage caused by vibrations. Given that a
variety of variables affect structural stiffness and that it is inconvenient to try to control all
of them, a relatively simple method of changing the thickness of the shell was chosen to
change its structural stiffness.

The working condition of Ma = 0.6, p = 600 Pa, and α = 90
◦

was selected for
calculation and comparison. The settings of the CFD solver were the same as before.

To increase the structural rigidity, the fairing shell was thickened to 1.2, 1.5, and
1.8 times its original thickness. The mass and thickness of the shell exhibited a quadratic
relationship, and its stiffness and thickness had an approximately cubic relation. The mode
shapes did not change in the meantime. Taking 1.5 times the thickness as an example
for illustration, the modal frequency was increased to 1.5 times that of the original, and
the vibration frequencies of the fourth-order modal were 3.3, 8.7, 13.7, and 17.3 Hz, re-
spectively. Therefore, the unit mass matrix was multiplied by the double of 1.5 and the
stiffness matrix by the cube of 1.5. Other calculation parameters remained unchanged. The
generalized displacement of the first-order mode was then observed to determine whether
the vibrations diverged.

Figures 22 and 23 show the time-dependent curves of the generalized displacement
corresponding to the fourth-order mode at different thicknesses.

 

Figure 22. Curves of the generalized displacement time–response with shells of different thicknesses.
(a) First-order mode, (b) second-order mode, (c) third-order mode, and (d) fourth-order mode.
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Figure 23. Variations in the logarithmic decay rate of the generalized displacement with the thickness
of the shell (the relative thickness is equal to the thickness divided by the initial thickness).

As the thickness of the fairing increased, the first-order vibrations gradually transi-
tioned from divergence to convergence. This verifies that enhancing the structural stiffness
can somewhat suppress vibrational divergences, where this can be used to suppress flutter.

6.2. Attitude Control

Figure 21 shows the dangerous zone of fairing, and then it is necessary to find a
feasible path to safely recycle the fairing. However, the dangerous zone was not the same
under different angles of attack, and it was impossible to safely land the fairing while
maintaining a certain angle of attack. A strategy of controlling the angle of attack within
different angles at different Mach numbers was proposed to avoid dangerous zones that
can cause vibrational damage to the fairing as it falls.

SpaceX adjusts the attitude and speed of the fairings of its rockets through nitrogen
propulsion and parachutes built into the fairing [29]. In this same way, the movement of
the separated fairing is controlled so that it does not disintegrate. Its landing position is
accurately determined at the same time.

Figure 24 shows several control schemes for the angle of attack during the process
of falling of the fairing. The green and yellow lines represent the states of change of the
fairing during descent. The orange dots represent its critical states and the red dots the
dangerous states. However, this method encounters technical complications, such as the
need for an extra control device and the complex transformation of the fairing.

6.3. Opening the Parachute at High Altitude

Normally, the parachute will open at a certain altitude. However, the fairing disin-
tegrates before the parachute opens due to damage caused to it by the vibrations. The
fairing cannot be recycled. Figure 24 shows that the damage in our simulations was mainly
concentrated in the Mach number range of 0.4 to 0.7. The parachute of the fairing can be
opened before its speed drops to Ma = 0.7, such that it can avoid the entire dangerous
zone, and thus, disintegration.

This measure does not require complex modifications and redesign. However, the
structural properties of the fairing change after the parachute opens, and this may lead to
new problems related to its damage or destruction. It then becomes necessary to identify
the novel states of the fairing and zones of hazard for it.
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6.4. Combination of the Three Methods

Each of the above three solutions has advantages and disadvantages, which are listed
in Table 4.

Table 4. Advantages and disadvantages of the three methods.

Method Advantages Disadvantages

Increasing structural rigidity Easy to alter Increased launch cost
Increased weight

Attitude control Light in added weight Complicated to alter

Opening the parachute at high altitude Relatively light in added weight Increased certain launch cost
Relatively complicated to alter

The effectiveness of a single method is limited. In practice, we can use a combination
of different methods. To prove the validity of the method, increasing structural rigidity and
attitude control were chosen to ensure the stability of the fairing during the falling process.
Path one (green) in Figure 24 and 1.5 times the original thickness were considered.

Figure 25 shows the detailed situation of path one during the falling process, such as
Mach number, dynamic pressure, and angle of attack. Figure 26 shows that the vibration of
the first-order generalized displacement converged in the whole path. This verifies that
this comprehensive method can suppress vibrational divergences and could be used to
ensure the safety of the fairing in the falling process.
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7. Conclusions

This study used the coupled CFD–CSD method to simulate the fall of the fairing of
a rocket. The effects of the angle of attack, Mach number, and dynamic pressure during
its descent were investigated. Safe and dangerous zone for it were identified during its
descent, and three improvements were proposed to avoid its destruction. The conclusions
of this study can be summarized as follows.
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1. A framework of non-streamlined configurations with fluid–structure interactions was
established. Several examples were used to verify that the proposed method can
be used to calculate the FSI of the fairing and confirmed that the theoretical results
corresponded to the actual situation. The work here provides ideas for future research
on FSI involving objects with similar non-streamlined configurations.

2. Through the analysis and calculation of multiple working conditions, the dangerous
zone and safe zone as the fairing fell were obtained, which were consistent with the
actual falling situation. When α ≤ 45

◦
, the hazardous zone occurred at Ma = 0.4;

when α ≥ 45
◦
, it was concentrated in the Mach number range of 0.6 to 0.8. At the

same time, the influences according to dynamic pressure and Mach number were also
analyzed.

3. According to the analysis, there is a risk of structural damage to the fairing as it falls.
To suppress the vibration, a variety of possible methods were presented, such as
enhancing the structural rigidity, flight attitude control, and opening the parachute at
a high altitude. To verify the effectiveness of the method, a comprehensive method
was used to calculate the vibration of the fairing during the descent. The fairing can
land safely and avoid disintegration during the descent.

Author Contributions: Conceptualization, Z.W.; methodology, Z.W. and Z.Y.; software, Z.Y.; valida-
tion, Z.W. and Z.Y.; formal analysis, Z.Y.; writing—original draft preparation, Z.Y.; writing—review
and editing, Z.W. and J.Z.; supervision, C.Y.; project administration, C.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

FC Vector of convective flux FV Vector of convective flux
p Pressure ρ Density
→
v Velocity vector T Temperature
E Total energy per unit mass k Thermal conductivity coefficient
τ Viscous stress tensor M Mass matrix
C Damping matrix K Stiffness matrix
φ Natural mode of the model z Displacement vector
f Load I(n×n) Identity matrix
Ω Diagonal matrix ω Frequency of the mode
∆
→
x i Displacement of the node m Number of iterations

Ma Mach number α Angle of attack
p Dynamic pressure U Flow speed
D Diameter L Length
µ Kinematic viscosity m∗ Non-dimensional mass
Re Reynolds number Ur Reduced velocity
q Generalized displacement F Generalized force
Vt Contravariant velocity of the face of a control volume
Vr Contravariant velocity relative to the motion of the grid
→
n Outward-facing unit normal vector of dS
ni Number of nodes adjacent to node i
ki j Spring constant between the given node and adjacent nodes
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Abbreviations

CFD Computational fluid dynamics
FSI Fluid–structure interaction
CSD Computational structural dynamics
ROM Reduced-order model
RANS Reynolds-averaged Navier–stokes
DOF Degree of freedom
TPS Thin Plate Spline
UDF User-defined function
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