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Abstract: Space vehicles’ real-time trajectory optimization is the key to future automatic guidance.
Still, the current sequential convex programming (SCP) method suffers from a low convergence rate
and poor real-time performance when dealing with complex obstacle avoidance constraints (OACs).
Given the above challenges, this work combines homotopy and neural network techniques with SCP
to propose an innovative algorithm. Firstly, a neural network was used to fit the minimum signed
distance field at obstacles’ different “growth” states to represent the OACs. Then, the network was
embedded with the SCP framework, thus smoothly transforming the OACs from simple to complex.
Numerical simulations showed that the proposed algorithm can efficiently deal with trajectory
optimization under complex OACs such as a “maze”, and the algorithm has a high convergence rate
and flexible extensibility.

Keywords: real-time trajectory planning; sequential convex programming; homotopy technique;
deep neural network

1. Introduction

With the increasing complexity of aerospace missions, the autonomous online opera-
tion of the vehicle has become an essential part of advanced missions. Automatic guidance
methods aim to generate guidance commands in real-time to meet various constraints [1].
Automatic guidance methods represented by real-time trajectory optimization (RTO) have
attracted many scholars. For example, in the rocket recovery guidance problem, the RTO
method can effectively increase the feasible region of the initial states and realize a safe
landing [2]. In addition, due to the unknown environment of a wild quadrotor swarm
scenario, it is vital to obtain the control variables in real-time to avoid collisions between
quadrotors and obstacles [3]. RTO has become one of the most promising options for this
type of task.

In recent years, the sequential convex programming (SCP) algorithm has progressed
significantly as one of the RTO methods [4–6]. Liu first proposed SCP in [7,8]. It converts
nonconvex constraints into affine constraints by successive linearization, thus constructing a
series of second-order cone programming (SOCP) subproblems. The local optimal solutions
satisfying the primal nonconvex constraints can be obtained by successively solving the
subproblems. Since one can solve each subproblem in polynomial time using the mature
interior point method solver, SCP becomes an efficient method. On this basis, Mao [9] and
Bonalli [10] proposed the SCP algorithms Scvx and GuSTO, enjoying certain convergence
guarantees. Unfortunately, it has been suggested that when the convergent virtual control
is non-zero, the obtained solution is infeasible for the original problem [4,11].

In practical scenarios, spacecrafts and quadrotors will encounter a variety of complex
obstacle avoidance constraints (OACs) [12]. Augugliaro [13] and Morgan [14] simplified
the no-fly zone to a sphere, and then converted the OACs into a series of affine constraints
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by linearization. However, this method is limited to obstacles of simple shapes. Virgili-
Llop [15] proposed the concept of the minimum signed distance (MSD) field to deal with
obstacles of arbitrary shapes. Zhang [16] and Misra [17] decomposed the OACs into
the sum of a convex polynomial function and a concave polynomial function via the
convex–concave procedure algorithm, thus preserving the higher-order information of
OACs. Richards [18,19] modeled the problem as mixed-integer linear programming (MILP)
and introduced binary variables to deal with OACs. However, the MILP runtime varies
exponentially with the number of binary variables. Space vehicles’ hardware often finds it
hard to support such large-scale computations [11]. Szmuk [20] introduced the continuous
state-triggered constraint (CSTC), applied to the obstacle avoidance flight in the powered
landing phase of a 6-DOF rocket. Then, Szmuk extended the CSTC method to a compound
CSTC and applied it to quadrotor trajectory planning [21]. Unfortunately, the above SCP-
based algorithms still have many shortcomings. For example, the convergent solution
cannot be guaranteed to be feasible. It is even tricky for traditional SCP to obtain feasible
solutions under complex obstacles [22]. Besides, the selection of reference trajectories
significantly impacts the optimality and feasibility of the solutions [1].

In recent years, with the development of homotopy and neural network techniques,
many new methods and ideas have emerged in the field, providing new perspectives to
overcome such shortcomings:

1. The general idea of the homotopy technique is to solve a series of simple transition
problems so that the solution of the transition problem gradually approaches the
optimal solution of the primal problem. This method reduces the problem’s diffi-
culty, thereby significantly improving the success rate of trajectory planning [4,23–27].
Taheri [23,24] and Saranathan [25] first used the homotopy method to convert a multi-
point boundary value problem into an easier-to-solve two-point boundary value
problem, thereby dealing with multiple propulsion modes and dynamic environ-
ments. Malyuta [26] combined the homotopy method with the SCP algorithm to solve
trajectory planning in a rendezvous maneuver under the constraints of discrete logic.

2. As an auxiliary tool for trajectory optimization, the neural network can effectively
improve the performance of traditional algorithms [28–33]. Yin [28] proposed a tra-
jectory planning method based on a neural network, thus improving the indirect
method’s convergence rate. Tang [29] and Banerjee [31] used the neural network to fit
the initial reference trajectory offline. The SCP algorithm iterates from the reference
trajectory predicted by the network, which can effectively reduce the number of itera-
tions. Li [30] used a neural network predictor to estimate the optimal flight time. Only
one SOCP needs to be solved online, significantly improving real-time performance.

Unlike the above methods, we combined the homotopy and neural network techniques
synchronously and proposed an RTO algorithm, called the homotopy network sequential
convex programming algorithm (HNSCP), that can deal with general complex OACs.
First, a universal obstacle “growth” method, namely the obstacle interface regression (OIR)
approach, was proposed. Then, a homotopy neural network (HNN) was subsequently
proposed. The inputs of the HNN are the spatial position coordinates and the homotopy
parameter, and the output is the MSD. After that, Bayesian regularization was used to
train the HNN. Finally, the OACs represented by the HNN were embedded into the SCP
algorithm by successive linearization.

It is worth noting that, in past work, the STOMP [34] and CHOMP [35] algorithms
adopted the strategy of computing the signed distance field offline and then applying it
online without introducing a neural network. This strategy can theoretically be extended
and applied to this study, but there are some difficulties in practice.

The STOMP and CHOMP algorithms only compute the MSD field of a single map.
However, after introducing the homotopy technique, it needs to compute the MSD fields
under a series of homotopy parameters, which will greatly increase the storage burden.
In Example 2, the homotopy parameter increment selected was 0.02. This indicates that
the MSD field information of 51 maps will need to be stored successively, and the storage
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burden will increase dramatically. Therefore, it is advantageous to introduce the neural
network to fit the MSD field.

We still take Example 2 to illustrate. Assuming that the strategy of STOMP and
CHOMP is adopted to build a sign distance field with an accuracy of 2.5 m (rather rough)
offline, then the method needs to store 8× 106 parameters. On the contrary, the proposed
method only needs to store 3400 parameters. The amount of data stored is reduced to
0.0425%. Although the current algorithm only considers the three-dimensional position
space constraints, the algorithm can be extended to the six-dimensional state space con-
straints without much effort to address more general constraints. The traditional storage
strategy will lead to a sharp increase in the storage burden, and the advantage of the HNN
will be more significant.

Our work has two major innovations:

1. A universal obstacle regression method, namely OIR, is proposed. To the best of our
knowledge, this is the first attempt to apply OIR to the trajectory planning field.

2. The concept of the HNN is proposed for the first time. Compared with [28–33],
training the HNN does not require solving optimal control problems. Only the MSD
field is needed so that adequate samples can be generated efficiently and stably.

Our algorithm also has the following three major advantages:

1. After introducing OIR and the HNN, the algorithm supported the modeling of arbi-
trary complex OACs, thus greatly expanding the application scenarios of SCP.

2. The homotopy parameter can be flexibly updated by changing the input parameters
of the HNN, thereby realizing the smooth transition from simple obstacles to complex
ones. The convergence and optimality of the SCP algorithm were greatly improved.
Numerical simulations showed that the HNSCP algorithm converges well, even with
the most straightforward linear interpolated initial reference trajectory.

3. After introducing the HNN, MSD fields with different homotopy parameters could be
fitted with only a small amount of data. The data storage was significantly reduced,
which is vital for online applications.

The structure of this paper is as follows. Section 2 presents a mathematical description
of the optimal control problem. Section 3 proposes the HNSCP algorithm, which can
be divided into two procedures: online and offline. Section 4 describes the details of
the online procedure, including convexification and the successive iteration algorithm.
Section 5 introduces the details of the offline procedure, including the OIR and HNN
training. In Section 6, a simulation of two specific examples is conducted. The first
example compared the proposed algorithm with state-of-the-art algorithms, verifying
that the proposed algorithm had a better performance. The second example increased the
complexity of the obstacle. A complex “maze” was designed to demonstrate the algorithm’s
adaptability in complex environments. Section 7 presents the main conclusions.

2. Problem Statement

This work focuses on dealing with complex constraints, and therefore does not estab-
lish an accurate dynamic model of the vehicle and does not limit the type of the vehicle.
Readers may consider the “vehicle” as a rocket, quadrotor, or planetary lander in the fol-
lowing passage. First, a reference coordinate system was established, as shown in Figure 1.
The origin of this coordinate system is stationary relative to the ground. The y-axis points
to the zenith, and the x-axis and z-axis are parallel to the ground and form a right-handed
rectangular coordinate system, where the x-axis is in the drawing plane. The z-axis is
perpendicular to the drawing plane.
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Secondly, the dynamic equations are listed. The vehicle was regarded as a mass
point and only the thrust and gravity were considered. The 3-DOF dynamic equations are
as follows: { .

p = v
.
v = u + g

(1)

where p : R++ → R3 represents the position vector of the vehicle, v : R++ → R3 represents
the velocity vector, and u : R++ → R3 represents the thrust acceleration vector, which was
also the control vector. g ∈ R3 is the gravity acceleration vector and satisfies g = [0,−g, 0]T ,
where g = 9.8065 m/s2. Although this work only considered the thrust and gravity, the
proposed method can be extended and is applicable to more accurate dynamic models or
6-DOF models. This is beyond the scope of the study and will be left to future publications.

Then, two kinds of process constraints were imposed.
(1) Due to the limitations of the vehicle’s own propulsion system, it was necessary to

impose limits on the magnitude of the thrust acceleration:

umin ≤ ‖u‖ ≤ umax (2)

where ‖u‖ is the Euclidean norm of vector u, which represents the thrust acceleration
magnitude. In the following text, ‖u‖ will be abbreviated as u. umin and umax are the lower
and upper bounds of the thrust acceleration, respectively, as shown in Figure 1.

(2) OACs were considered. For the convenience of description, we divided the research
region into two parts. The impenetrable obstacle was denoted by Ωo, as shown in the blue
part of Figure 1. The traversable cavity was represented by Ωv, as shown in the white part
of Figure 1. The boundary between the obstacle and the cavity was denoted by ∂Ω. The
boundary between the research region and the outside region was denoted by ∂Ω̃. Then,
the OACs can be written as:

p ∈ Ωv (3)

The necessary initial state constraints and terminal state constraints were imposed:
p(t0) = p0
p(tf) = pf
v(t0) = v0
v(tf) = vf

(4)

where t0 and tf represent the initial and terminal times, respectively. p0 and v0 are the
position and velocity vectors at the initial time, respectively. pf and vf are the position and
velocity vectors at the terminal time, respectively. tf is treated as an unknown variable,
indicating that the optimal control problem with free terminal time is solved.
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Finally, the velocity increment was selected as the cost function. Minimizing this
cost function can save the fuel consumption of a rocket or the energy consumption of
a quadrotor:

J =
tf∫

t0

u dt (5)

The mathematical description of the optimal control problem is shown in Problem 1.
Problem 1:
Cost function: minimize

tf,u(t)
(5)

Subject to: (1)~(4)

3. HNSCP Algorithm

Traditional sequential convex programming (TSCP) is widely used in [13–15]. Unfor-
tunately, the TSCP algorithm can only deal with obstacles with simple geometric shapes.
Reference [22] shows that when the shape of an obstacle is complex, sub-SOCP may be
infeasible, and the iteration will be interrupted. Eventually, the convergence rate of the
algorithm will drop significantly. The convergence rate of TSCP in the simulation of
reference [22] is only 50%, and Example 1 in Section 6 also shows that the convergence rate
is only 22%. Therefore, it is necessary to introduce a better method to deal with complex
obstacles.

A flow chart of the proposed HNSCP algorithm is shown in Figure 2.
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Figure 2. Schematic diagram of proposed HNSCP algorithm.

For the convenience of explanation, Figure 2 takes the “maze” in Section 6 as an
example. First, mature modeling software (SolidWorks, Dassault Systemes, the United
States; AutoCAD, Autodesk, the United States) was used to build the maze and obtain two
boundaries, ∂Ω̃ and ∂Ω.

Given ∂Ω̃ and ∂Ω, the OIR approach proposed in Section 5 calculates the position
coordinates of the obstacle boundary in different “growth” states from ∂Ω̃ to ∂Ω with
a constant growth speed. We denoted the “growth” state of the obstacle with ε ∈ [0, 1],
also known as the homotopy parameter. The obstacle boundary, cavity, and obstacle at
homotopy parameter ε are denoted as ∂Ωε, Ωε

v, and Ωε
o, respectively. The OIR will output

∂Ωε, Ωε
v, and Ωε

o under a series of ε values. The schematic diagram is shown in the lower-
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left corner of Figure 2. The black lines are the contours of ε, representing the ∂Ωε when the
homotopy parameter is ε. Areas with a reddish color suggest that ε is close to 1. Areas with
a bluish color indicate that ε is close to 0.

Without a loss of generality, cavity Ωε
v is a nonconvex area. The MSD was defined

as dε.
dε = dε+ − dε− k = 1, 2, . . . , N
dε+ = inf{‖d‖|p + d ∈ Ωε

v }
dε− = inf{‖d‖|p + d /∈ Ωε

v }
(6)

The absolute value of dε is the shortest distance from the given position p to the
obstacle boundary. The MSD is negative if the coordinates are inside the cavity (p ∈ Ωε

v),
while the MSD is positive if the coordinates are inside the obstacle (p ∈ Ωε

o).
Subsequently, the HNN was trained using the sample generation and training method

proposed in Section 5. The inputs of HNN are the position coordinates and the homotopy
parameter ε, and the output is the estimated value of the MSD d̃ = Net(p, ε). The super-
script “~” indicates that the value is the prediction. The schematic diagram of the fitting
result is shown at the bottom of Figure 2. It is worth noting that Figure 2 only shows the
fitting result at ε = 1. The black line is the contour line that satisfies Net(p, 1) = 0, the
yellowish color indicates that the predicted d is larger, and the blue color indicates that the
predicted d is smaller. Finally, the neural network function Net(p, ε), which can predict the
MSD with any homotopy parameter, was obtained.

Then, the trained HNN was embedded into SCP, proposed in Section 4, as OACs. A
different ε was selected in the iteration to reduce the difficulty of solving and improve the
convergence. In the first iteration, ε was set to 0. ε increased linearly with a step size of ∆ε
as the number of iterations increased, until ε was equal to 1. The bottom-right corner of
Figure 2 shows the trajectory optimization results for different initial conditions.

4. Online Procedure
4.1. Discretization and Convexification
4.1.1. Discretization

The whole flight process was divided into N − 1 segments according to equal time
intervals; then, the discrete time step was as follows:

∆t =
tf − t0

N − 1
(7)

Without a loss of generality, take t0 = 0. Given the constant discrete number N, the
discrete step size ∆t is only related to the terminal time tf. To address the free final time
problem, ∆t was regarded as a decision variable in this study. The discrete state variables
and control variables with serial number k are defined as:

pk = p(k∆t− ∆t)
vk = v(k∆t− ∆t)
uk = u(k∆t− ∆t)
k = 1, 2, . . . , N

(8)

To avoid the “artificial infeasibility” in the first few iterations, the virtual control
variables avk ∈ R3 were augmented to control the variables [9]. Using the trapezoidal
discrete method, Equation (1) can be discretized and written as follows:

pk+1 − pk − 1
2 ∆t vk − 1

2 ∆t vk+1 = 0
vk+1 − vk − 1

2 ∆t uk − 1
2 ∆t uk+1 − 1

2 ∆t avk − 1
2 ∆t av(k+1) − ∆t g = 0

k = 1, 2, . . . , N − 1
(9)
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4.1.2. Convexification of Dynamical Equations

Equation (1) was converted into 6 (N− 1) algebraic equations. The linearized equations
can be obtained by taking the first-order approximation of the Taylor expansion. The
coefficient matrices can be simplified as follows:

Ak

[
pk

pk+1

]
+ Bk

[
vk

vk+1

]
+ Ck

[
uk

uk+1

]
+ Dk

[
avk

av(k+1)

]
+ Ek∆t = Fk k = 1, 2, . . . , N − 1

Ak =

[
−I3×3 I3×3
03×3 03×3

]
Bk =

[
− 1

2 ∆t̂ I3×3 − 1
2 ∆t̂ I3×3

−I3×3 I3×3

]
Ck =

[
03×3 03×3

− 1
2 ∆t̂ I3×3 − 1

2 ∆t̂ I3×3

]
Dk =

[
03×3 03×3

− 1
2 ∆t̂ I3×3 − 1

2 ∆t̂ I3×3

]

Ek =

[
− 1

2 (v̂k + v̂k+1)

− 1
2

(
ûk + ûk+1 + âvk + âv(k+1) + 2g

) ]Fk =

[
− 1

2 (v̂k + v̂k+1)∆t̂
− 1

2

(
ûk + ûk+1 + âvk + âv(k+1)

)
∆t̂

]
(10)

where the variables with the superscript “ˆ” represent reference variables and are regarded
as known variables. All coefficient matrices in (10) are constant, and all constraints are
converted into affine constraints.

The transformation from (9) to (10) introduces linearized approximation. Trust region
constraints were added to ensure that the linearized constraints were still valid [9]. The
new variables σuk and σ∆t were introduced to represent the trust regions of the control
variables and the discrete time step, respectively:

‖uk − ûk‖ ≤ σuk k = 1, 2, . . . , N (11)

‖∆t− ∆t̂‖ ≤ σ∆t (12)

The above trust regions were augmented into the cost function in the form of penalty
terms. In addition, it is crucial to introduce the new variables σak and augment them to the
cost function in the form of penalty terms to constrain the magnitude of virtual control:

‖avk‖ ≤ σak k = 1, 2, . . . , N (13)

4.1.3. Convexification of Obstacle Avoidance Constraints

According to (6), the OACs are then denoted by nonlinear inequations:

dε
k ≤ 0 k = 1, 2, . . . , N (14)

where dε
k is only related to the position coordinate pk when cavity Ωε

v is determined.
Replacing dε

k with the HNN leads to the following inequality:

Net(pk, ε) ≤ 0 k = 1, 2, . . . , N (15)

Since the HNN is continuously differentiable, Equation (15) can be simplified by using
the Taylor expansion, and only the first-order linear terms are retained:[

∂

∂p̂T
k

Net(p̂k, ε)

]
pk ≤

[
∂

∂p̂T
k

Net(p̂k, ε)

]
p̂k −Net(p̂k, ε)− dmar k = 1, 2, . . . , N (16)

One can obtain p̂k from the result of the previous iteration. The collision safety
margin dmar ≥ 0 was embedded, which avoids the increased risk of collision due to fitting
errors of the HNN. The numerical finite difference method was adopted to approximate
the differential operation. It is worth noting that the method proposed in this study
cannot guarantee obstacle avoidance between discrete time steps. However, the numerical
simulation shows that in most cases, there were only finite isolated points on the trajectory
making the constraints (16) tight, and there is the possibility of violating the constraint
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near these isolated points. We addressed this problem by choosing the appropriate discrete
number N and safety margin dmar. For Example 1, the simulation shows that the OACs are
satisfied between discrete time steps when N ≥ 30 and dmar ≥ 3 m. For Example 2, it is
suitable to choose N ≥ 100 and dmar ≥ 5 m.

4.1.4. Convexification of Control Magnitude Constraints

When the lower bound of the thrust acceleration umin is non-zero, the feasible set of
the thrust acceleration is non-convex. New slack variables were introduced to transform
the thrust magnitude constraints (2) in the primal problem into convex ones:

‖uk‖ ≤ Γk (17)

umin ≤ Γk ≤ umax (18)

where Γk represents the slack variable. Reference [36] and a large number of numerical
simulations show that although the feasible region of the problem has changed after
relaxation, the optimal solutions are equivalent.

4.1.5. Convexification of Cost Function

After augmenting the penalty terms, the modified linear cost function is listed as follows:

J =
N

∑
k=1

(
Γ̂k∆t + ∆t̂ Γk + ωaσak + ωuσuk

)
+ ω∆tσ∆t (19)

where ωa, ωu, and ω∆t are fixed penalty coefficients that can be set manually by users. The
selection of these parameters follows two principles. First, ωa needs to be a large positive
number to ensure that the magnitude of the virtual control variable converges to zero.
Second, ωu and ω∆t need to be selected as small positive numbers to ensure the convergent
solution is near the reference one.

The convexified problem is summarized in Problem 2. Problem 2 is an SOCP and can
be solved efficiently using the prime-dual interior point method.

Problem 2:
Cost function: minimize

∆t,pk ,vk ,uk ,avk ,σuk ,σak ,σ∆t ,Γk
(19)

Subject to: (4), (10–13), (16–18) with given ε
Table 1 lists the number of variables, affine equations, affine inequalities, and second-

order cones.

Table 1. Variables and constraints in Problem 2.

Category Item Number Dimension of the
Cone Total Number

Variables to be optimized

Time step ∆t 1

- 15 N + 2

Position pk 3 N
Velocity vk 3 N
Control uk 3 N
Virtual control avk 3 N
Control trust regions σuk N
Virtual control magnitude relaxation variables σak N
Time trust region σ∆t 1
Control magnitude relaxation variables Γk N

Affine equality constraints Boundary value conditions, Equation (4) 12 - 6 N + 6Dynamic constraints, Equation (10) 6 (N − 1)

Affine inequality constraints OACs, Equation (16) N - 3 NControl magnitude constraints, Equation (18) 2 N

Second order cone constraints

Control trust region constraints, Equation (11) N 4

3 N + 1
Time trust region constraint, Equation (12) 1 2
Virtual control constraints, Equation (13) N 4
Control magnitude constraints, Equation (17) N 4

Assume N = 100. According to Table 1, there are 1502 variables, 606 affine equations, 300 affine inequations, and
301 s-order cones. Therefore, Problem 2 is a medium-scale SOCP with thousands of variables.
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4.2. Successive Iterative Algorithm

The successive iterative algorithm solving the primal problem is shown below.
Algorithm 1 required an initial reference trajectory. Unfortunately, it is difficult to

generate high-quality initial reference trajectories in real time due to the complexity and
variability of the problem [1]. In this work, Algorithm 2 was adopted to generate rough
initial reference trajectories efficiently.

Algorithm 1: Online Procedure of Homotopy Network Sequential Convex Programming (HNSCP)

Step 1: Algorithm initialization. Set the maximum number of iterations imax. Set the penalty coefficient ωa , ωu and ω∆t . Set
the iteration convergence criterion εmax,u , εmax,t , εmax,a . Set the increment step of the homotopy variable ∆ε. Set the
homotopy variable ε = 0;
Step 2: Set initial reference variables, ∆t̂(0) , p̂k

(0) , v̂k
(0) , ûk

(0) , âvk
(0) , according to Algorithm 2;

For i = 0: imax
If ε < 1.0

ε = ε + ∆ε
Else

ε = 1.0
End

Step 3: Solve Problem 2, and the obtained solution is used to update the reference variables ∆t̂(i+1) , p̂k
(i+1) , v̂k

(i+1) , ûk
(i+1) ,

âvk
(i+1) ;

If
N
∑

k=1
σuk

(i) ≤ εmax,u , σ∆t
(i) ≤ εmax,t ,

N
∑

k=1
σak

(i) ≤ εmax,a and ε = 1.0

A convergent solution ∆t̂(i) , p̂k
(i) , v̂k

(i) , ûk
(i) , âvk

(i) is obtained;
Return;

End
End
Step 4: Fail to converge;
Return;

Algorithm 2: Initialization of HNSCP’s Reference Variables

Step 1: Obtain the initial states and the terminal states p0, v0, pf, vf
Step 2: Set the reference speed constant vref;
Step 3: Set the linear reference variables;
∆t̂(0) = ‖pf − p0‖/vref;
For k = 1: N

p̂k
(0) = p0 + (k− 1)(pf − p0)/(N − 1); v̂k

(0) = (pf − p0)/∆t̂(0) ; ûk
(0) = [0, umax, 0]T ;

âvk
(0) = [0, 0, 0]T ;

End
Return;

5. Offline Procedure
5.1. Obstacle Interface Regression Approach

The eikonal equation, a typical hyperbolic partial differential equation, was first
applied to wave propagation. The position of the wavefront at different time steps can be
obtained by solving the partial differential equation. Inspired by this, this section extends
the method to describe the growth and construction of obstacles and proposes a universal
method to address this issue. There are mature methods and commercial software for
solving boundary value problems of partial differential equations. Therefore, the proposed
method enjoys simple programming and strong universality. Consequently, it is more
competitive than other methods.

5.1.1. Basic Principles

The obstacle’s “growth” process is a kind of interface regression phenomenon. This
phenomenon has been extensively studied in optics [37], combustion [38,39], and image
processing [40]. Sethian [41,42] proposed the level-set method and the fast marching
method. These two methods solve the initial value problem of the level-set equation and
the boundary value problem of the eikonal equation, respectively. The solution describes
the interface at the given regression state. Although these two methods have been widely
used, there are still many difficulties in solving hyperbolic partial differential equations.
Mokrý [37] and Li [39] proposed a method to solve an ellipse-form eikonal equation, which
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can be directly embedded in the finite element software. The original eikonal equation is
as follows:

∇T(p) · ∇T(p) =
1

r(p)2 (20)

where T is a scalar field. Its physical meaning is the moment when the interface propagates
to the given position, so T’s contour line is the interface. r is the regression speed.

It is hard to obtain a reliable solution for (20) by using existing numerical methods, so
(20) needs to be approximated to an ellipse form:

αr∇2T = r2∇T · ∇T − 1 (21)

where α, a small-enough positive number, is the diffusion term coefficient set manually by
users. It is worth noting that (21) degenerates into (20) if α = 0.

Equation (21) is a nonlinear Poisson equation. Solving (21) requires a series of bound-
ary conditions. The initial interface adopts the Dirichlet condition T = 0, and the rest
of the boundaries adopt the “zero flux” condition. The nonlinear Poisson equation can
then be transformed into sparse quadratic equations using a finite element method. The
system of algebraic equations can be efficiently solved using the Newton–Raphson method.
Powerful commercial finite element software (COMSOL Multiphysics, Comsol Inc, Zürich,
Switzerland; ANSYS, Ansys Inc, Champaign, IL, USA) can be used for mesh generation,
equation resolving, and post-processing.

It is worth noting that the proposed method can only solve the approximate solution.
The value of α determines the performance of the algorithm. If α is large, the approximate
error of (21) is large, which will eventually lead to a large error in the regression result. If
α is small, it will be difficult for the Newton–Raphson method to converge. To take into
account the convergence and error, with the aid of a large number of numerical simulations,
a reasonable range of α was concluded [39]:

α ∈ [0.1h, 0.5h] (22)

where h is the scale of the local mesh element.

5.1.2. Implementation

Firstly, the Dirichlet boundary condition was set as:

T(p) = 0, p ∈ ∂Ω̃ (23)

The regression speed r was used to describe spatial distribution of the obstacle:

r(p) =
{

κr0 p /∈ Ωo
r0 p ∈ Ωo

(24)

where κ is a number much less than 1 and r0 is the unit regression speed, which can be
taken as 1 m/s. Its practical implication is as follows: the regression speed of the interface
in the obstacle Ωo is r0, while the regression speed in the cavity Ωv is so small that it can be
ignored numerically. Since the interface will preferentially pass through the obstacle region
Ωo, the T contours describe the “growth” boundaries of the obstacle from ∂Ω̃ to the given
∂Ω, as shown in Figure 3.



Aerospace 2022, 9, 720 11 of 23

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 25 
 

 

it can be ignored numerically. Since the interface will preferentially pass through the ob-
stacle region Ωo , the T contours describe the “growth” boundaries of the obstacle from 
∂Ω  to the given ∂Ω , as shown in Figure 3. 

 
Figure 3. Schematic diagram of obstacle interface regression. 

The normalized scalar field ε  was defined as: 

( )ε =
2

2

max

Tr
Tr

 (25)

The subscript “max” means obtaining the maximum value of the whole field, and the 
ε  field is a scalar field ranging between 0 and 1. The ε  field’s contours represent the 
obstacles’ boundaries in different “growth” states. For example, the contour line ε = 0  
indicates no obstacles, the contour line ε = 0.45  suggests that the obstacle has grown to 
45%, and the contour line ε = 1  indicates that the obstacle has been restored to Ωo . 

Figure 4 shows the flow charts and results for the two examples in Section 6, respec-
tively. First, finite element software or CAD software was used to model the obstacle; the 
blue area represents the cavity, and the yellow area represents the obstacle. Then, the in-
terface regression speed was set according to (24), and the boundary conditions were set 
according to (23). After dividing the uniform triangular second-order element or the tet-
rahedral second-order element, the Newton iteration method was used to solve (21) to 
obtain the T field. Finally, the ε  field was obtained according to (25). The method can 
return the “growth” boundary coordinates for a given ε , laying the foundation for the 
sample generation of the HNN in the next section. 

 
Figure 4. OIR flow charts of two examples in Section 6. 

5.2. Homotopy Neural Network 
5.2.1. Structure 

The feedforward neural network (FNN) was the first artificial neural network in-
vented. The units in each layer can receive signals from the units in the previous layer and 
transmit signals to the next layer. According to the universal approximation theorem, for 

Figure 3. Schematic diagram of obstacle interface regression.

The normalized scalar field ε was defined as:

ε =
Tr2

(Tr2)max
(25)

The subscript “max” means obtaining the maximum value of the whole field, and
the ε field is a scalar field ranging between 0 and 1. The ε field’s contours represent the
obstacles’ boundaries in different “growth” states. For example, the contour line ε = 0
indicates no obstacles, the contour line ε = 0.45 suggests that the obstacle has grown to
45%, and the contour line ε = 1 indicates that the obstacle has been restored to Ωo.

Figure 4 shows the flow charts and results for the two examples in Section 6, respec-
tively. First, finite element software or CAD software was used to model the obstacle;
the blue area represents the cavity, and the yellow area represents the obstacle. Then, the
interface regression speed was set according to (24), and the boundary conditions were
set according to (23). After dividing the uniform triangular second-order element or the
tetrahedral second-order element, the Newton iteration method was used to solve (21) to
obtain the T field. Finally, the ε field was obtained according to (25). The method can return
the “growth” boundary coordinates for a given ε, laying the foundation for the sample
generation of the HNN in the next section.
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5.2. Homotopy Neural Network
5.2.1. Structure

The feedforward neural network (FNN) was the first artificial neural network invented.
The units in each layer can receive signals from the units in the previous layer and transmit
signals to the next layer. According to the universal approximation theorem, for an FNN
with a linear output layer and at least one hidden layer using a nonlinear activation
function, as long as the number of units in the hidden layer is large enough, the FNN can
approximate any real function defined in a bounded closed set [43,44].

Considering the training time cost and fitting accuracy, an FNN composed of three
hidden layers was used to predict the MSD field. The input layer was denoted as layer 0,
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the hidden layers were denoted as layers 1 to 3, and the output layer was denoted as layer
4. Table 2 gives the relevant notation used in this section.

Table 2. The meaning of the associated notation.

Notation Explanation

Ml Number of units in layer l
fl(·) Activation function of the units in layer l
W(l) ∈ RMl×Ml−1 Weight matrix from layer l − 1 to layer l
b(l) ∈ RMl Bias vector from layer l − 1 to layer l
z(l) ∈ RMl Net input (net activation) of units in layer l
a(l) ∈ RMl Output (activation) of units in layer l

Setting the input of the neural network as the position coordinates and homotopy
parameters, the following equation exists:

a(0) =
(

pT , ε
)T

=
(

px, py, pz, ε
)T (26)

Then, the output of the other layers can be calculated using the following propagation
formula:

z(l) = W(l)a(l−1) + b(l)

a(l) = fl(z(l))
l = 1, 2, 3, 4 (27)

The neural network will recursively obtain the output according to the following
process. First, the net activation of layer l − 1 is calculated from the activation of layer l − 1
and the weight matrix and bias vector of layer l. The nonlinear activation function is used
to calculate the activation of the l layer. This process is repeated until reaching the output
layer. The activation of the output layer satisfies the following equation:

a(4) = d̃ (28)

where d represents the MSD and its superscript “~” indicates that the value is the prediction.
The schematic diagram of the HNN’s structure is shown in Figure 5.
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Generally speaking, to reduce the fitting error, the number of units in each layer should
be appropriately increased if the obstacles are more complex. The two examples in Section 6
used different unit scales to obtain better performance, and the specific parameters are
shown in Table 3. It is worth noting that the activation function was selected similarly. The
hidden layers adopted the sigmoid activation function, and the output layer adopted the
linear activation function.
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Table 3. Selection of the HNN structure in different examples.

Parameter Example 1 Example 2

M0 4 4
M1 10 40
M2 20 40
M3 10 40
M4 1 1

5.2.2. Sample Generation

The traditional method of fitting control variables and trajectories using supervised
learning requires many samples [28–33], and the only way to obtain samples is to solve
complex optimal control problems. Therefore, acquiring a large number of samples has
become a challenge in neural network training. Training the HNN proposed in this study
only required calculating the MSD. Therefore, a large number of samples can be generated
efficiently. The specific algorithm is given below.

5.2.3. Training

First, a loss function called the mean square error (MSE) was defined to evaluate the
fitting accuracy of the HNN:

σMSE =

n
∑

i=1

(
di − d̃i

)2

n max
(
d2

i
) =

n
∑

i=1

[
di −Net

(
pT

i , εi
)]2

nmax
(
d2

i
) (29)

where n is the total number of samples, di is the target value generated by Algorithm 3, and
di is the estimated value of the HNN. A total of 85% of the data set was used for training
and 15% was used for test. The Bayesian regularization training method [45] was used
to train the HNN. This method can effectively avoid overfitting and has a better fitting
performance for complex problems. The training results of the two examples in Section 6
are shown in Table 4.

Algorithm 3: Sample Generation

Step 1: Obtain the output of the OIR algorithm: ∂Ωε, Ωε
v and Ωε

o.
Step 2: Generate n random samples (pT

i , εi)
T , where pi ∈ ∂Ωε ∪Ωε

v ∪Ωε
o and εi ∈ [0, 1];

For i = 1: n
Step 3: Compute the MSD according to (6);
Step 4: Store the data in the sample set;

End
Return;

Table 4. Statistics of training results.

Parameter Example 1 Example 2

Number of samples n 54,270 77,920
Mean square error (MSE) 9.0688× 10−6 3.0411× 10−5

MSE of the training set 8.9248× 10−6 2.9356× 10−5

MSE of the test set 9.8816× 10−6 3.6390× 10−5

Training time 30 min 14 s 3 h 21 min 10 s

The MSE of the training set and the sample set in the two examples were close, which
indicates that the training did not overfit. In addition, all test set errors were at a small
level, showing that the HNN had an excellent fitting performance.
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6. Numerical Examples

This section presents the application of the algorithm in two scenarios with complex
obstacles. It is worth noting that although a 3-DOF dynamic model was established, only
the trajectory in the x − y plane was drawn in the results for the convenience of display. All
numerical simulations were performed on a PC with an Intel Core i7-11700k at 3.5 GHz and
16 GB of RAM. We adopted ECOS [46] as the interior point solver, and the programming
language was C.

6.1. Example 1: Comparison with State-of-Art Algorithms

This section compares the results between HNSCP and two other advanced SCP-
based algorithms (continuous state-triggered constraint (CSTC) method [21] and homotopy
(HOMO) method [4]). The comparison items included real-time, convergence, and optimal-
ity performance.

First, the obstacle and cavity were manually set. Then, the OIR method was used to
compute the “growth” of the obstacle boundary, and Algorithm 3 was used to generate a
large number of samples for HNN training. The fitting performance of the trained HNN is
shown in Figure 6. Ultimately, Algorithm 1 and Algorithm 2 can be used to generate the
optimal trajectory in real-time.

Figure 6 shows the prediction results of the HNN when the homotopy parameter
ε increased from small to large. It can be seen that with an increase in ε, the MSD field
predicted by the HNN changed from simple to complex and gradually approached the
MSD field of the primal problem. When ε = 1 (see Figure 6d), the recovery of the MSD
field was complete. The vehicle’s initial and terminal states were set, and then the HNSCP,
HOMO, CSTC, and TSCP algorithms were adopted to solve the optimal trajectory. The
specific parameter settings of the algorithm are shown in Table 5, and the results are shown
in Table 6 and Figure 7.

It can be seen from Table 6 that under the same parameter settings, HNSCP, HOMO,
and CSTC could all obtain the local optimal solution. Among them, the performance
index obtained by HNSCP was the smallest, the number of iterations was the smallest, and
the elapsed time was also the shortest. Therefore, under these boundary conditions, the
HNSCP algorithm was better. It is worth noting that the subproblem was infeasible after
six iterations using the TSCP algorithm.

Figure 7a shows the iterative details of the HNSCP algorithm. It was found that
in the first few iterations, the trajectory traversed the obstacle. As the number of itera-
tions increased, the trajectory gradually avoided obstacles and converged to a feasible
solution. Figure 7b compares the trajectories solved by different algorithms. The CSTC
results were quite different from those of the other two algorithms, and the trajectory
was more curved, which significantly increased the consumption of fuel. Figure 7c shows
the thrust acceleration profile in the “bang-bang” form, which is also the basic feature of
the fuel-optimal trajectory. In order to compare the performance of different algorithms
more comprehensively, a Monte Carlo simulation was conducted with 100 samples under
different discrete number conditions. Given the discrete number, the initial positions of the
vehicle were randomly selected to solve the optimal trajectories. The statistical results are
shown in Table 7. The optimality performance was evaluated with Iopt, and its expression
is as follows:

Iopt =
m

∑
i=1

J∗

mJ∗HNSCP
(30)

where m is the number of Monte Carlo test samples. J∗ is the velocity increment solved by
the algorithm to be evaluated, and J∗HNSCP is the velocity increment solved by HNSCP.
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Table 5. Parameter setting of Example 1.

Parameter Value Parameter Value

p0 [50, 10, 0]T m ωa 100,000.0
v0 [0, 0, 0]T m/s ωu 0.1
pf [950, 10, 0]T m ω∆t 0.1
vf [0, 0, 0]T m/s ∆ε 0.2
umax 20 m/s2 vref 30 m/s
umin 5 m/s2 dmar 5 m

Table 6. Comparison between different SCP-based algorithms (N = 100).

Algorithm Velocity
Increment (m/s)

Number of
SCP Iterations

Elapsed
Time (s)

Terminal
Time (s)

HNSCP 490.80 (Best) 19 (Best) 0.487 (Best) 44.93
HOMO 509.07 19 (Best) 1.710 47.80
CSTC 609.48 29 0.920 56.35
TSCP - Infeasible after 6 - -
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Figure 7. The results of Example 1. (a) Trajectories obtained by HNSCP algorithm with different
iteration numbers. (b) Optimal trajectories solved by different algorithms, namely HNSCP, HOMO,
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(e) Profiles of velocity components. (f) Profiles of position components.

For the convergence rate, the HNSCP algorithm could achieve 100% convergence,
which was slightly higher than that of the HOMO and CSTC algorithms and much higher
than that of the TSCP algorithm. Therefore, HNSCP has certain advantages in ensuring
the safe and reliable flight of the vehicle. For real-time performance, HNSCP’s and TSCP’s
elapsed times were relatively short. The CSTC algorithm needed more iterations. Therefore,
the real-time performance was slightly inferior. The HOMO algorithm introduced more
auxiliary variables and auxiliary cone constraints, making each iteration longer. Therefore,
the real-time performance was the worst. In fact, assuming that the cavity is composed of a
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union of nss cuboid spaces, the HOMO algorithm needs nssN extra auxiliary variables. As
the number of obstacles increases, the scale of the problem will expand dramatically. The
relationship between the elapsed time and the discrete number is shown in Figure 8. For
optimality, HNSCP, HOMO, and TSCP were similar, while the trajectory planned by the
CSTC algorithm was more curved, and the performance index was usually 1.1–1.25 times
larger than that of the other algorithms.

Table 7. Monte Carlo simulation of Example 1.

Algorithm N Convergence
Rate

Average Elapsed
Time (s)

Solver’s Average
Consumed Time (s)

Optimality
Performance

Can it be Extended
to Exp. 2

HNSCP

30 100% 0.1087 0.0950 1.0

Easy60 100% 0.2546 0.2129 1.0
100 100% 0.5249 0.4124 1.0
150 100% 1.0450 0.7658 1.0

HOMO
(Poor real-time
performance)

30 96% 0.3218 0.2782 0.9912

Hard
60 98% 0.7077 0.5451 1.0001
100 100% 1.6043 1.1096 1.0058
150 100% 3.6225 2.0957 1.0153

CSTC
(Poor
optimality
performance)

30 99% 0.1175 0.1050 1.1052

Hard
60 99% 0.3441 0.2980 1.1559
100 100% 0.8270 0.6561 1.2239
150 98% 1.6957 1.2685 1.2217

TSCP
(Poor
convergence
performance)

30 22% 0.1093 0.0968 1.0234

Easy60 18% 0.2488 0.2117 1.0001
100 18% 0.4781 0.3856 1.0001
150 18% 0.8242 0.6172 1.0000
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In summary, each algorithm had some shortcomings. HOMO had poor real-time
performance, the CSTC algorithm had a poor performance index, and the TSCP algorithm
had poor convergence. However, the HNSCP algorithm could balance various evaluation
indicators, and its performance was relatively good. In addition, CSTC and HOMO
were also limited because the cavity must be abstracted as a union of multiple cuboids,
which cannot well-simulate real and complex environments and has poor extendibility.
Conversely, HNSCP can be applied to a wide range of scenarios, which will be shown in
Example 2.
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6.2. Example 2: Application in a Complex Maze

This section increases the obstacles’ complexity and verifies the HNSCP algorithm’s
adaptability. First, a flat “maze” was constructed using modeling software. Then, the steps
in Figure 2 were followed to solve the optimal trajectory. The fitting performance of the
trained HNN is shown in Figure 9. As the homotopy parameter increased, the signed
distance field predicted by the HNN gradually recovered the primal one.
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(c) ε = 0.4, (d) ε = 0.6, (e) ε = 0.8, and (f) ε = 1.0.

The test was divided into a single test and a Monte Carlo test. The settings of the
algorithm parameters in a single test were slightly different from those in Table 5. The
initial position coordinate was set to [90, 80, 0]T , the terminal coordinate was [970, 80, 0]T ,
and ∆ε = 0.02. The other parameters were the same as those in Table 5. The Monte Carlo
test was still randomly selecting the initial position coordinates to solve the trajectories.
The results obtained for both tests are shown in Table 8 and Figure 10.
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Table 8. The result of Example 2.

Single Test Velocity increment (m/s) Number of Iterations Elapsed Time (s) Terminal Time (s)
Results 751.21 59 1.728 60.179

Monte Carlo Test Sample Quantity Convergence Rate Average Elapsed Time (s) Solver’s Average
Consumed Time (s)

Results 100 100% 1.945 1.487
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Figure 10. The results of Example 2. (a) Optimal trajectory solved by HNSCP, where the blue boxes
indicate the full thrust arcs (12 arcs in total). (b) Optimal trajectory solved by HNSCP, where the red
circles indicate the events when the vehicle appeared close to the obstacle boundary (14 events in
total). (c) Trajectories obtained by HNSCP algorithm with different iteration numbers. (d) Monte
Carlo random test trajectories. (e) Profiles of thrust acceleration magnitude, where the full thrust arcs
have been marked with numbers. (f) Profiles of thrust direction. (g) Profiles of velocity components.
(h) Profiles of position components.

We chose a small ∆ε to ensure that the algorithm had better convergence (100%). This
adjustment significantly increased the number of iterations and, thus, the elapsed time.
However, it can be seen from Table 8 that the algorithm could still converge within 2 s
and had the potential for online applications. It was noted that in the single test, the TSCP
algorithm was interrupted after the 24th iteration and failed to find a feasible solution.

From Figure 10a,e, it can be seen that the thrust acceleration profile calculated by
HNSCP was the “bang-bang” form, and a total number of 12 maximum thrust arcs were
found. Figure 10b shows the trajectory details, where the planned trajectory approached
the constraint boundary 14 times (see from A to N), but none violated the constraint. The
above results show that the algorithm had a strong adaptability and could still find a locally
optimal feasible solution even in an extremely complex environment. Figure 10c shows the
iterative details of the HNSCP algorithm. In the first few iterations, the trajectory traversed
the obstacle. As the number of iterations increased, the trajectory gradually avoided all
obstacles and converged to a feasible solution. Figure 10d shows the Monte Carlo test
results. Starting from different positions, the HNSCP algorithm could find optimal feasible
trajectories from the linear interpolation reference trajectory.

Due to the fitting error of the HNN, there may be the possibility of collision with real
obstacles. Three strategies can be adopted to avoid such phenomena:

1. Set and increase the safety margin dmar (adopted in this work);
2. Increase the scale of the neural network to improve the fitting accuracy;
3. Take the HNSCP result as the initial value, and use the TSCP algorithm to refine

the solution.

7. Conclusions

This work combines the sequential convex optimization algorithm with homotopy and
neural network techniques. Compared with traditional methods, the proposed algorithm
can deal with much more complex OACs and has significant advantages in convergence,
real-time, and optimality. Numerical simulations show that for complex “maze” obsta-
cle constraints, the proposed algorithm can achieve 100% convergence and find the local
optimal solution within 2 s (N = 100). Consequently, it has the potential for onboard
applications. Adding homotopy and neural network technologies has dramatically im-
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proved convergence in practice, but lacks theoretical explanation. Future work will address
this issue.
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