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Abstract: This paper introduces the realization and wind tunnel testing of a novel variable camber
wing equipped with compliant morphing trailing edges. Based on the aerodynamic shape and
compliant mechanisms that were optimized in advance, a wind tunnel model called mTE4 was
developed, in which the rigid leading edge, rigid wing box, and compliant trailing edge were
manufactured by 3D printing technology using three different materials. Due to difficulties in
the detailed design of a small-scale model, special attention is devoted to the implementation
procedure. Additionally, the static and dynamic characteristics of the proposed wind tunnel model
were evaluated by ground tests, and the aerodynamic characteristics were evaluated by numerical
methods. Then, the aerodynamic performance and the static aeroelastic deformation of the compliant
trailing edge were investigated in a low-speed wind tunnel. The load-bearing ability of the proposed
compliant morphing trailing edge device was validated and the continuous outer mold surface was
found to persist throughout the entire testing period. Notably, a maximum deflection range of 37.9◦ at
the airspeed of 15 m/s was achieved. Additionally, stall mitigation was also achieved by periodically
deflecting the morphing trailing edge, enabling a stall angle delay of approximately 1◦ and 13%
increase in post-stall lift coefficient. Finally, the development procedure was validated by comparing
the lift between numerical and experimental results.

Keywords: variable camber morphing wing; wind tunnel test; aerodynamic; compliant structure;
morphing trailing edge; aeroelastic

1. Introduction

Intensifying environmental awareness around the world is pushing aeronautical
engineers to increase aircraft efficiency. Morphing aircrafts are believed to contribute to
fuel saving by maintaining an excellent aerodynamic performance over the entire flight
envelope, which means that this technology may help to achieve carbon neutrality in the
future [1]. By actively changing their local or global shapes to adapt to different flight
missions, speeds, or conditions, morphing aircrafts can satisfy multi-mission requirements
with different aerodynamic shapes and configurations. Among the various research topics,
camber morphing is one of the most promising candidates [2–4].

Compared with a conventional wing equipped with discontinuous control surfaces,
the camber morphing wing conformably modifies the wing shape and eliminates the drag
penalties attributed to the gaps between panels. From a design perspective, a variable
camber wing can easily be fulfilled with few actuation requirements in terms of mechanical
design and has little influence on the inertia and elastic forces despite having a large
influence on the aerodynamic force, producing considerable comprehensive benefits.

Since the proposition of the variable camber wing concept, researchers have been
committed to developing a comprehensive design solution to integrate structure, mecha-
nisms, actuators, and elastic skin using existing technologies. The main research projects
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of the last 10 years are listed in Table 1. Common solutions to the trailing edge for vari-
able camber wings can be divided into three categories: traditional mechanism solutions
(including hinged ribs [5] and the eccentric beam [6]), compliant structure solutions (in-
cluding belt-rib [7], Fishbone Active Camber concept [8] and compliant mechanisms [9])
and skin-driven solutions.

Table 1. Major variable camber wing research projects.

Project Abbreviation Period

Smart High Lift Devices for Next Generation Wings [10–13] SADE 2008–2012
Smart Fixed Wing Aircraft [14,15] SFWA 2008–2017
Mission Adaptive Compliant Wing [16–18] MACW 1998–2020
Optimization of Multiscale Structures with Applications to
Morphing Aircraft [19,20] OMSASA 2010–2015

Variable Camber Continuous Trailing Edge Flap [21] VCCTEF 2010
Novel Air Vehicle Configurations: From Fluttering Wings to
Morphing Flight [22,23] NOVEMOR 2011–2015

Smart Intelligent Aircraft Structures [24] SARISTU 2011–2015
Smart Morphing Wing [25,26] ETH–SMW 2011–2019
Combined morphing assessment software using flight
envelope data and mission-based morphing prototype wing
development [27,28]

CHANGE 2012–2015

AIRGREEN2 [29,30] AG2 2014–2021
Smart-X [31] Smart–X 2016–2022
Smart Morphing and Sensing [32] SMS 2017–2020

Compliant mechanisms are modern mechanisms that work as a replacement for
traditional rigid-body mechanisms, which generally fulfill specific functions, relying on
their distributed structural flexibility. As a monolithic structure, compliant mechanisms can
minimize the use of hinges, and are free from friction and lubrication. Furthermore, because
of the reduction in assembly complexity, compliant mechanisms can help to improve
accuracy and reliability [33]. Nonlinear instability problems induced by seams can also be
avoided, which is conducive to weight reduction and equipment manufacturing. Without
relying on complex distributed and embedded actuators, compliant mechanisms place
more emphasis on the utilization of a limited number of traditional actuators connected to a
compliant structure with reasonable stiffness distribution, transferring force and movement
through elastic deformation. Distributed deformation helps to reduce structural stress,
prolong anti-fatigue life, and increase service reliability. Initially introduced by FlexSys in
1998, compliant mechanisms are expected to be a feasible solution for a smooth, light, and
load-bearing variable camber trailing edge wing [34].

Research on morphing trailing edges based on the concept of the compliant mechanism
is shown in Figure 1. In 1998, the AFRL supported FlexSys in the adoption of the concept of
a compliant mechanism to design wings with leading and trailing edges [34]. The earliest
literature reports the adoption of a single torsional actuator to control the leading and
trailing edge compliant structure of airfoil to achieve an active shape change. To test its
real load-bearing capacity and aerodynamic benefits, a straight wing model with a 1.27 m
span and 0.762 m chord was designed in 2006, with the morphing trailing edge mounted
within the last 30% chord length. The model successively underwent a wind tunnel test
and aircraft mount test, showing that it fulfilled ±10◦ deflection with a deflection rate of
30◦/second at the speed of Mach 0.55 [35]. Later, additional improvements were made
and achieved a 9◦ upward deflection and 40◦ downward deflection. They replaced the
inboard flaps on Gulfstream III with an active compliant variable camber trailing edge,
which proved to be a success in the 2016 flight test. At a maximum speed of Mach 0.75, the
compliant trailing edge operated normally under 18.4 kPa dynamic pressure [36]. Gaspari
and Ricci employed an aerodynamic shape optimization approach to obtain an airfoil
profile and derived the internal structure through the load path representation method
for compliant mechanisms [37]. Subsequently, they designed and created a wind tunnel
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model with a span of 930 mm and a chord length of 418 mm in 2016. With its main
structure fabricated of aluminum alloy and flexible leading and trailing edges fabricated of
nylon, the model was fabricated with 3D printing technology, achieving a 10◦ deflection
amplitude of the trailing edge. They carried out a test in the wind tunnel of Politecnico di
Milano, where the maximum wind speed was 40 m/s. Pressure coefficients are measured
by pressure sensors mounted on the wing surface. By comparison, with the simulated
data, the feasibility of the design procedure adopted for the synthesis of the structures was
validated [38]. Northwestern Polytechnical University also carried out relevant research in
this field. Recently, they designed a variable camber mechanism with compliant leading
and trailing edges with large deformation capacity. Actuated by two rotary servo motors,
the rotary motion is converted into linear motion via a leadscrew, driving the internal
compliant mechanism to deform [39].
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Figure 1. Trailing edge morphing solution by compliant mechanisms [1,34–39].

Nevertheless, the design of this type of device is sophisticated, and requires specialized
design methodologies, including shape parameterization for variable cambers, aerody-
namic shape optimization for target shapes, and the synthesis of compliant mechanisms.
Furthermore, the conflicting load-bearing and morphing requirements need compromise.
Prevalent concepts are under development with insufficient implementation and experi-
mental validation.

Our research aimed to establish a systematic design framework for a variable camber
wing with potential applications in a medium-scale unmanned aerial vehicle (UAV). The
whole project comprised the design, analysis, manufacture, and validation of the variable
camber wing based on compliant mechanisms. The trailing edge shape was first optimized,
subject to both the aerodynamic performance and kinematic relation of mechanisms. Then,
the planner-compliant mechanisms were designed and extended to the morphing trailing
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edge wing, capable of smoothly deforming along the chordwise direction. Finally, ground
and wind tunnel tests were carried out for evaluation. The whole project provides method-
ologies for the design of a variable camber wing and contributes a reference for the future
development of morphing aircraft.

This paper documents a part of this project, focusing on the “manufacturing–evaluation”
aspect. The aim of this work is to promote the development of morphing wings from the
concept stage to a more detailed model, and then evaluate the model through numerical
analysis and wind tunnel experiments.

The paper is organized as follows: In Section 2, the variable camber morphing wing
is developed and analyzed to provide structural properties and numerical aerodynamic
characteristics. Section 3 describes the wind tunnel setup, including the overall layout,
model installation, servo system, measurements, etc. Section 4 reports the aerodynamic
characteristics with different actuation inputs, angles of attack, and airspeeds. Section 5
investigates the static aeroelastic behavior of the wing. Section 6 explores the applications
in stall mitigation using an active vibrating trailing edge. Section 7 presents the conclusions.

2. Variable Camber Morphing Wing

This section presents the development, structural analysis, and numerical aerodynamic
simulation of the wind tunnel model mTE4. The variable camber morphing wing model
was designed with an optimized airfoil shape and compliant mechanisms. Then, the
modal and dynamic characteristics were evaluated by ground tests. At last, the numerical
aerodynamic characteristics were investigated.

2.1. Design Methodology

A low-speed airfoil was optimized to obtain the target airfoil with the objective
of maximizing the lift and constraints determined by the limitations of the subsequent
compliant structure [40]. The baseline airfoil was derived from an electric UAV developed
by Beihang university. Some of the basic tools needed for this process are:

• A proper airfoil shape parametrization method, class–shape transformation (CST) , is
used to describe the airfoil profile. As a combination of class and shape functions, class–
shape transformation (CST) is a popular method of creating analytical representations
of the surface coordinates of aerospace vehicles [41];

• A hybrid mesh deformation strategy consists of the deformation of the surface mesh
by a radial basis function (RBF) tool, and the deformation of the surrounding volume
mesh by the formulation of linear elasticity. The radial basis function is a real-valued
function whose value depends only on the distance to the origin. It was first used to
deal with the surface fitting problem of aircraft shape design by Hardy in 1971 [42];

• SU2 is an open-source suite for multiphysics simulation and design. It is a collection of
software tools written in C++ and Python for the analysis of partial differential equa-
tions (PDEs) and PDE-constrained optimization problems on unstructured meshes
with state-of-the-art numerical methods [43]. This was used as an aerodynamic and
adjoint solver. Our analyses were carried out using fully turbulent fields that do not
account for boundary layer transition.

In other words, theoretically, the optimal shape can be achieved by deflecting the
trailing edge of the baseline airfoil, and its advantage lies in its maximized lift. The
optimization aims for the trailing edge to deflect 15◦ downward under taking-off conditions,
with an angle of attack of 5◦, airspeed of 15 m/s and Reynolds number of 300,000. The
baseline profile and the optimized airfoil are shown in Figure 2, and their aerodynamic
coefficient comparison is shown in Figure 3.
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Figure 2. Profile of the baseline and optimized airfoil.
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Figure 3. Comparison of the aerodynamic coefficient for the baseline and the optimized airfoil. (a) Lift
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Then, the optimal airfoil obtained above was used as input to design the compliant
mechanisms. The structural topology optimization method was adopted to achieve the
target deformation under the action of a suitable driving force, using the load path method
that includes the design space definition, the base structure generation, the establishment of
the load path library and the treatment of skin dimensions [44,45]. After that, the topology
and sizing optimization of the compliant mechanisms with deformation accuracy as the
target were solved, and the results are shown in Figure 4 [46].
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After obtaining the aerodynamic and structural profile, we can proceed to the wing
development.



Aerospace 2022, 9, 699 6 of 26

2.2. Wind Tunnel Model

A demonstrator with a variable camber named Morphing Trailing Edge Wing Version 4
(mTE4) was developed and manufactured, and the layout is illustrated in Figure 5. The
model consisted of a leading edge, a wing box, and a compliant morphing trailing edge.
The rigid leading edge was used to provide the aerodynamic profile. The wing box with
high stiffness is the main supporting structure of the prototype, connecting the leading edge
and the trailing edge. The compliant trailing edge is the main deformation component,
playing the role of an aerodynamic control surface. All three of the above parts were
manufactured by 3D printing. Considering the pricing, elasticity, surface roughness, and
other limits, different materials were used for those parts, as indicated in Table 2.
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Table 2. Material used for mTE4 [47].

Part Material
Name Serial Manufacturing Technique

Tensile
Modulus

(MPa)

Tensile
Strength

(MPa)

Leading edge Photosensitive resin 8200 Pro Resin Stereolithographic (SLA) 2589~2695 38~56

Wing box Glass fiber-reinforced
polyamide 12 7200 Nylon Selective laser sintering (SLS) 3500 44

Compliant morphing
trailing edge HP 3D polyamide 12 7500 Nylon Multi Jet Fusion (MJF) 1700 48

Figure 6 shows an isometric drawing of mTE4, and Figure 7 demonstrates the wing
box, providing more model details. Owing to the limitations of the 3D printer, the chord
length of the prototype was 276 mm, and the span length was 300 mm. Both the leading
edge and the compliant morphing trailing edge were bolted to the wing box. The MR3
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slide rail was fixed to the lower surface of the wing box, while small holes were punched
on the upper surface to facilitate assembly of the slides. The length of slider rail was 50 mm,
which provides sufficient length for sliding. The MR3M sliders were mounted on the
lower surface of the compliant morphing trailing edge using two M1.6 × 5 countersunk
screws. Additionally, the slide rail was covered by a carbon filer composite with a size
of 300 × 45 × 0.5 mm as fairing, which maintains the smoothness of the lower surface,
as shown in Figure 7. In addition, the main spar fabricated of stainless steel was bolted
to the wing box and extended beyond the wing root, allowing for the entire prototype to
be installed on the force balance by a fixture and a flange. The stainless steel main spar
enhanced the spanwise stiffness of the wing model.
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The variable camber trailing edge system is the core component of the prototype, as
shown in Figure 8, which consists of the compliant mechanisms of the trailing edge, two
servo-link drive systems, and two sensor systems.
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The two servo-link drive systems were symmetrically mounted in the wing box and
connected to the trailing edge, as shown in Figure 9. The servo was hinged to a 68 mm long
shaft mounted in the compliant trailing edge through a servo arm and a long linkage. The
two servos that provided power are Futaba HPS-A700 high-performance brushless servos
with a size of 40.5 × 21.0 × 39.4 mm and weight of 82 g. This can achieve a maximum
rotation speed of 500◦ per seconds and a maximum torque of 7.25 N·m at a rated voltage
of 7.4 V. Due to the symmetrical installation, the anti-phase synchronization operation
was adopted.
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The sensor system was also installed, as shown in Figure 9. Two (one per actuator)
non-contact Hall angle sensors were used to concurrently measure the servos’ rotation
angle of servos and were mounted co-axially with the servo arms. The rear view of the
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sensor system demonstrates that an arm attachment was employed on the servo arm with
a Rubidium magnet buried at the end; a Hall angle sensor was mounted on the wing box; a
1 mm gap was left between the sensor and the Rubidium magnet. These sensors measured
the strength of the magnetic field induced by the current flow through the servo arm and
generated an output voltage that is directly proportional to the current magnitude.

2.3. Structural Properties
2.3.1. Modal Analysis

Ground vibration tests were conducted when the servo actuator was activated, and
accelerometers were used to measure the out-of-plane response. The exciting frequency
up to 512 Hz, and the natural modes of vibration below 100 Hz were analyzed. With the
actuation input of 40◦, the trailing edge deflected downwards; the modes of mTE4 are
shown in Figure 10. The first-order mode is the trailing edge deflection with a frequency of
37.06 Hz, while the second-order mode is torsion with a frequency of 64.53 Hz.
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Figure 10. The first two modes of mTE4.

The relationship between the frequencies and the actuation inputs of mTE4 is shown
in Figure 11. The deflection of the trailing edge changes the dynamics of the wing. Overall,
the deflection of the trailing edge increases the structural natural frequency. This is because
the deformation increases the internal stresses and the strain energy, which has a stiffening
effect on the structure.
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2.3.2. Dynamic Characteristics

The dynamic characteristics of the variable camber trailing edge system were investi-
gated by frequency sweep. Stepped sine signals with amplitudes of 2 and 4◦ were used
as the actuation inputs u. The frequency ranged from 0.3 Hz to 10 Hz, with an interval of
0.2 Hz.

The time domain results for a frequency sweep of mTE4 with an actuation input
(represented by D) of −20◦ and amplitude (represented by A) of 4◦ are shown in Figure 12.
ym represents the distance that the trailing edge slides on the slide rail (detected by laser
displacement sensor), ys1 and ys2 represents the rotation angle measured by the two angle
sensors with unit of degree.
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The time domain signals of the actuation input u to trailing edge sliding distance ym
and u to servo 2 rotation ys2 in Figure 12 were analyzed in the frequency domain, and the
magnitude–frequency characteristics were obtained, as shown in Figure 13. The gain and
phase all decreased with increasing frequency in the swept range.
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2.4. Numerical Aerodynamic Simulation

The lift characteristics of proposed morphing wing was numerically investigated at
the freestream velocity of 25 m/s. The comparison of lift coefficients between the deformed
wing with 15◦ downward deflection and the undeformed wing was fabricated.
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2.4.1. Numerical Methodologies

The aerodynamic results were obtained by solving the incompressible Reynolds-
averaged Navier–Stokes (RANS) equations combined with the Shear Stress Transport
(SST) turbulence model. The operating Reynolds number is 500,000 and the freestream
turbulence intensity is 0.25%. Concerning the numerical settings of the flow solver, the Flux
Difference Splitting (FDS) second order upwind schemes with low-speed preconditioning
was adopted for the discretization of convective fluxes.

The unstructured mesh and the corresponding boundary conditions are shown in
Figure 14, where c is the chord length and b is the span of the wing. The mesh for 3D
simulation contains 2.26 million nodes and 2.21 million cells. In detail, the computational
grid comprises a circular rotating zone (inner sub-domain) and a rectangular stationary
zone (outer sub-domain), which are coupled through the interface. By rotating the inner
subdomain, various angles of attack can be easily achieved without mesh regeneration.
In particular, the grids near the wing are refined. The initial wall normal grid points
for boundary layer mesh are located at 1.5 × 10−5 m with a growth rate of 1.05, and the
corresponding y+ ≈ 1.15. This mesh was tested for grid independence to ensure that further
mesh refinement does not change the lift coefficient significantly.
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Figure 14. Computational mesh for the deformed wing. (a) Full view. (b) Zoom-in mesh detail
around the airfoil. (c) Zoom-in mesh detail near the trailing edge.

Figure 15 shows the top view of the mesh. The details of the wing model, the 5 mm
gap, and the wall are shown in Figure 15b. The gap and no-slip wall condition were set to
simulate the presence of the end plates.
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2.4.2. Results

The comparison of lift coefficients between the deformed and undeformed wing at
−5, 0, 5, 10, 13, and 16◦ is shown in Figure 16. As the morphing trailing edge deflects 15◦

downward, the lift coefficient increases while the slope of the lift curve remains roughly
the same.
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Figure 16. Comparison of lift coefficients between deformed and undeformed wing.

Figure 17 plots the pressure coefficient distributions and streamlines for the deformed
and undeformed wing at an angle of attack of 5◦. In the wind tunnel, the model experiences
a different induced angle due to the presence of the walls and three-dimensional effects due
to the finite aspect ratio. Compared with the undeformed wing, the camber of deformed
wing increases, causing stronger separation of the flow near the trailing edge.
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Figure 17. Pressure coefficient distributions and streamlines of the undeformed and deformed wing
(with 15◦ downward deflection) at a 5◦ angle of attack. (a) Undeformed wing. (b) Deformed wing.

3. Wind Tunnel Setup

A wind tunnel experiment was performed to assess the aerodynamic and aeroelastic
performance of mTE4. This experiment was conducted in a low-speed wind tunnel with a
rectangular opening section equipped with a sideslip platform, force balance, and digital
image correlation (DIC) [48] system, with the ability to measure the forces, moments, and
displacement of the prototype. The characteristics investigated in the wind tunnel test are
as follows:

• Aerodynamic characteristics of mTE4 with different actuation inputs, airspeeds and
angles of attack;

• Aeroelastic characteristics with different actuation inputs;
• Stall mitigation by trailing edge vibration with different frequencies and amplitudes.

The tests were performed at speeds of 10, 15, and 25 m/s. Considering the chord of
the wing c = 0.276 m, the resulting Reynolds numbers were 200,000, 300,000, and 500,000.
The angles of attack varied from −15 to 30◦, and the actuation input angle varied from −55
to 55◦. For the convenience of presentation, only a portion of the data were used in the
subsequent analysis, following the descriptions in each subsection.

An overview of the wind tunnel is shown in Figure 18. The model was mounted
vertically and attached to the sideslip platform by a force balance. Therefore, the model‘s
angle of attack was changed using the sideslip angle platform with an accuracy of 0.01◦.
Additionally, two end plates were mounted on the framework, positioned on the top and
bottom of the model to mitigate the three-dimensional effect. There was a 5 mm gap
between the end plates and the model to avoid contact.

An in situ stereoscopic DIC system was used to measure the displacement field and
the deformation of the trailing edge. The core idea of DIC is to estimate the coordinates and
displacements of the full-field speckle pattern by solving an optimization problem based
on a typical transfer function model, such as optic flow [49]. By pasting the sticker printed
with speckle on the skin of the trailing edge, the shape and deformation can be recorded.
Specifically, after the camera calibration, image pre-processing, definition of area of interest
(AOI), digital image correlation, and post-processing of the results, the deformation field
can be obtained, and the coordinate system transformation and plotting can be realized.
Additionally, the average standard deviation of DIC is 0.009 mm.
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Figure 18. An overview of the wind tunnel equipped with test platform and morphing wing model.

A six-axis force balance was used to measure the aerodynamic load on the model. For
each test condition, the sampling time was 10 s with a sampling frequency of 100 Hz. Then,
the aerodynamic loads were obtained with proper coordinate system transformation. The
standard deviation of the force balance is 0.096 N; thus, the derived maximum standard
deviation of the aerodynamic coefficients is 0.0023.

The turbulence intensity of the wind tunnel is less than 0.25%. The spatial and temporal
uncertainty of flow is ±1 m/s; thus, we recorded the results on the anemometer in real
time for post-processing. The blockage ratio of the model frontal surface to the test section
ranged from 1.5% to 5.38%, depending on different angles of attack and actuation inputs.

4. Aerodynamic Results

This section details the aerodynamic characteristics at various airspeeds, actuation inputs,
and angles of attack; moreover, the aerodynamic coefficients are recorded and discussed.

4.1. Aerodynamic Characteristics at Fixed Airspeed

At an airspeed of 25 m/s, the relationship between the aerodynamic characteristics
of the mTE4, with different actuation inputs and angles of attack, is shown in Figure 19,
including lift, drag, lift-to-drag ratio, polar profile, and pitch moment coefficient with
reference point at 30% chord length position. The Reynolds number is about 500,000. The
actuation inputs D ranges from −30◦ to 55◦ in 12 groups, and the positive inputs actuate
the trailing edge deflecting downwards. The angle of attack ranges from −15◦ to 30◦, and a
higher sampling density is adopted near the stall angle.

Figure 19a shows the lift coefficients of the mTE4. As the servo actuation input
increases, the camber increases, causing the lift coefficient to significantly rise while the
slope of the lift line remains roughly the same. Linearity is observed in the range from
−10◦ to 19◦, but then nonlinear characteristics are exhibited until stall. A larger camber
leads to earlier flow separation (point of separation more upstream), and thus, a smaller
stall angle. The maximum lift coefficient is 1.50, obtained with the servo actuation input of
55◦ and angle of attack of 23◦. Furthermore, the variation in the maximum lift coefficient
with actuation input is shown in Figure 20a.
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Figure 19. Aerodynamic characteristics for mTE4 (Airspeed 25 m/s). (a) Lift coefficient. (b) Drag
coefficient. (c) Pitch moment coefficient. (d) Efficiency. (e) Polar.
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Figure 20. Maximum lift coefficient and maximum lift-to-drag ratio under different actuation inputs.
(a) Maximum lift. (b) Maximum lift-to-drag ratio.

The drag coefficients of the mTE4 are shown in Figure 19b. The airfoil camber increases
with increasing actuation input, causing the overall drag curve to shift left, while the
minimum drag also increases. This may be because the area that is directly exposed to the
wind is larger with a greater camber. For example, when the actuation input is −5◦, the
mTE4 model reaches the minimum drag of 0.0326 at 0◦ ; when the deflection input is 55◦,
the minimum drag coefficient increases to 0.100 at the angle of attack of −10◦. In the test,
as the angle of attack increases, the drag coefficient first decreases and after reaching the
minimum drag coefficient, gradually increases and reaches the local maximum drag at the
critical angle. The maximum drag coefficient for this model is 0.613 when the actuation
input is 55◦, with an angle of attack of 24◦. Subsequently, a sudden decrease in the drag
coefficient is caused by an abrupt change in the location of the flow separation point and
the reattachment of the turbulent shear boundary layer during the stall [50]. When the
wing is fully stalled, the drag continues to increase.

Figure 19c demonstrates the pitch moments of the mTE4 with a reference point at the
30% chord length position. The pitch moment curve is directly related to the lift because
the aerodynamic center is constant. As the actuation input increases, the curve shifts
downwards; consequently, the downward force moment increases. At a 0◦ angle of attack,
the pitch moment coefficient adjustment range of 0.23 can be achieved by camber control at
the trailing edge.

The lift-to-drag ratio curves of the mTE4 are shown in Figure 19d. The higher the
lift-to-drag ratio, the higher the aerodynamic efficiency. Models with different cambers
achieved different maximum lift-to-drag ratios and different angles of attack to obtain the
maximum lift-to-drag ratio. The relationship between the maximum lift-to-drag ratio and
actuation inputs is shown in Figure 20b. In the negative input range, the maximum lift-to-
drag ratio increases with the actuation, and the maximum lift-to-drag ratio L/Dmax = 5.62
is obtained at the actuation input of 5◦ and angle of attack of 5◦. After that, the maximum
lift coefficient rapidly decreases with the increase in camber. When the wing stalls, the
lift-to-drag ratio sharply decreases, and its trend tends to be the same for different cambers,
indicating that camber has a relatively small influence on the aerodynamic characteristics
when stall occurs.

There is a maximum upper limit of the lift-to-drag ratio for the given mTE4, called the
‘efficiency envelope [51]’, i.e., there is an optimal trailing edge actuation input at different
angles of attack that allows for the mTE4 to achieve the maximum lift-to-drag ratio, as
shown in Figure 21a. Then, the relationship between the lift-to-drag ratio and angle of
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attack is plotted in Figure 21b, following an ‘S-shaped’ curve. For a certain lift coefficient,
there is an actuation input that minimizes the drag. This means that under different flight
conditions (e.g., changes in vehicle weight resulting in different lift coefficient requirements),
the drag coefficient can be minimized, or the lift-to-drag ratio can be increased by active
camber morphing [52]. This similar efficiency envelope can also be observed in the polar
curves, as shown in Figure 19e.
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Figure 21. Efficiency envelope for mTE4 (airspeed 25 m/s). (a) Maximum lift-to-drag ratio for
different lift coefficients and actuation inputs. (b) Maximum lift-to-drag ratio for different angles
of attack.

4.2. Aerodynamic Characteristics at Various Airspeeds

Extending the wind tunnel test speed to two cases of 10 m/s and 25 m/s, with a
chord length of 0.28 m as the reference size, the Reynolds numbers are 200,000 and 500,000,
respectively. Figure 22 compares the lift coefficient versus actuation input and angle of
attack (AoA) at two airspeeds, in which brighter colors indicate larger values.
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Figure 22. Lift coefficient versus AoA/actuation input for mTE4 at different airspeeds. (a) Airspeed
10 m/s. (b) Airspeed 25 m/s.

The maximum lift coefficients under each actuation input are connected by a dashed
line. The dashed line divides the contour into two regions, left and right, marked as region
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I and region II, respectively, as shown in Figure 22. In each region, the trend of the lift
coefficients with servo actuation inputs and angles of attack is the same for both operating
conditions. In region I, the lift coefficient increases as the actuation inputs and angles
of attack increase, i.e., in the direction indicated by the arrow. Additionally, when the
angle of attack further increases, the turbulence separation point on the upper surface
gradually moves from the trailing edge to the leading edge; consequently, the wing starts
to stall. The static lift characteristics after stall are shown in region II, where the flow on the
upper surface has been completely separated, and the contribution of the camber on the
aerodynamic characteristics is relatively small. The difference is that the slope of the lift
curve is greater at a high Reynolds number; as the Reynolds number increases, the stall
angle of attack increases and the dashed line moves to the right. At a speed of 10 m/s, the
maximum lift coefficient is 1.14; when the speed is 25 m/s, the maximum lift increases
to 1.50.

With the increase in Reynolds number, the slope of the lift curve and stall angle of
attack increase. Several angles of attack were selected to plot the relationship between lift
and actuation input at different angles of attack, as shown in Figure 23. The lift increases
with the increase in wing camber, and no stall occurs in the full range of actuation inputs.
Additionally, the lift coefficient changes faster with actuation inputs at a high airspeed.
When the angle of attack is 24◦ and 26◦, the mTE4 stalls at large actuation input angles,
and correspondingly the stall angle is greater at a high Reynolds number then that at a low
Reynolds number.
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Figure 23. Lift coefficient versus actuation input for mTE4 at different airspeeds. (a) Airspeed 10 m/s.
(b) Airspeed 25 m/s.

At greater wind speeds, the stall angle is greater. This is probably because the sep-
aration is due to the fact that the velocity is too low (due to the effect of viscous drag,
etc.) and the flow struggles to continue to follow a surface. At greater flow velocities,
the Reynolds number and dynamic pressure are greater, i.e., the boundary layer energy
is higher. Separation does not occur when the adverse pressure gradient is not greater
than a certain threshold, resulting in an easy access to the adverse pressure gradient at low
velocities, while, at high velocities, separation is delayed. This can also be seen in the basic
method of stall suppression, i.e., injecting energy into the boundary layer, which makes
it easier for the airflow to follow a surface when it is accelerated. As for the difference in
the influence of trailing edge camber on the stall angle at the two wind speeds, it can be
understood that at high speeds, the boundary layer energy easily reaches a sufficient level
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to maintain the flow, so it is more insensitive to the change in the adverse pressure gradient
brought about by the trailing edge camber.

4.3. Comparison and Validation

In this section, we validated the accuracy of the wind tunnel tests by comparing the
lift coefficients with numerical results at the freestream velocity of 25 m/s. The deformed
wing with 15◦ downward deflection and the undeformed wing were used.

The comparison between the CFD results and the wind tunnel measurements for the
deformed and undeformed wing at −5, 0, 5, 10, 13, and 16◦ is shown in Figure 24. The two
results match well when the angles of attack are small, and the error are generally within
10% or less than 0.04. When the angle of attack increases to more than 10◦, the difference
between the two results seems to be larger, indicating it is difficult for CFD to predict the
transition [53]. In general, good correspondence between the CFD and the experimental lift
coefficients validates the accuracy of the experimental results.
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5. Aeroelastic Results

The in situ DIC system measures the trailing edge deformation. The measurement
range includes the upper and lower surfaces and the fairing, occupying from 40% of the
chord to the end of the trailing edge.

Firstly, the static aeroelastic characteristics of the mTE4 at the airspeed of 15 m/s
were studied, and the range of actuation inputs was adjusted from −55◦ to 55◦. The
deformation of the upper and lower surfaces is shown in Figure 25. The mTE4 consistently
deforms along the spanwise direction, and mainly shows the variation in camber. When
the servo actuation input is −55◦, the maximum upward displacement of the trailing
edge is 39.0 mm, and the equivalent upward deflection angle is 22.2◦ (based on the chord
length of 103 mm covered by the DIC measurement region). The maximum downward
displacement achieved is 27.8 mm, with an actuation input of 55◦, and the corresponding
maximum downward deflection angle is 15.7◦. In summary, the mTE4 achieves a trailing
edge camber morphing of 37.9◦ and a chordwise displacement range of 24.4 mm at the
lower surface slide.

Experiments were conducted to study the static aeroelastic deformation characteristics
of the mTE4 at an airspeed of 10 m/s. The location of the upper surface at the half-span
section with or without aerodynamic load is shown in Figure 26 (recorded at the DIC
coordinate system) with an actuation input of −30◦ and an angle of attack of 26◦. The white
background area is the wing box area, and the gray background is the trailing edge; the
black solid line is the deformation without wind, and the red dashed line is the deformation
with airspeed of 10 m/s. The trailing edge is slightly deformed with airflow: the lift makes
the trailing edge deflect upward and reduces the camber. Furthermore, the transverse
deformation difference was obtained by comparing the red dashed line and the black one
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in Figure 26a, as shown in Figure 26b. In the wing box region, an overall deformation of
about 0.1 mm is observed; in the trailing edge region, the deformation gradually increases
along the chord until it finally grows to a maximum of 0.7 mm, which is less than 1%.
Additionally, the rugged area may be caused by the wrinkle in the adhesive stickers. It
should be noted that the appearance of this deformation is also related to the gap caused
by the fisheye ball head on the linkage long shaft connection. This allows for the small
deformation caused by the aerodynamic load not being constrained by the servo system.
To conclude, the variable camber trailing edge developed in this work has a better load-
carrying capacity, better environmental adaptability and shape control capability compared
with the corrugated-based variable camber trailing edge (e.g., FishBAC [51]).
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Figure 25. Deformation at half span (airspeed 15 m/s, AoA 0◦). (a) Upper surface. (b) Lower surface.

Figure 27 shows the relationship between the static aeroelastic deformation and the
actuation input with angles of attack, by using the transverse deformation difference at
the probe point as the indicator. The airspeed is 10 m/s. The deformation is generated by
comparing the shape of the trailing edge with and without aerodynamic loads. The probe
point is located at the half-span position and 95% of the chord length on the upper surface.
The angle of attack measurement ranges from −15◦ to 30◦, and the actuation input range
ranges from −30◦ to +30◦. At an angle of attack of −15◦ and actuation input of −10◦, the
displacement is the smallest, which is 0.108 mm. At an angle of attack of 26◦ and actuation
input of −30◦, the displacement reaches the maximum at 0.568 mm.
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Figure 26. Static aeroelastic deformation of mTE4 (actuation input −30◦, AoA 26◦). (a) Transverse
location. (b) Transverse deformation.
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Figure 27. Static aeroelastic deformation of probe point on mTE4 (Airspeed 10 m/s).

The black dashed and dotted lines divide the region into four quadrants, as shown
in Figure 27. In quadrants II and III, the displacement increases with increasing absolute
actuation input values and angle of attack; in quadrants I and IV, it decreases with increasing
angle of attack. In quadrants II and III, the increase in actuation input angle and angle
of attack causes the aerodynamic load to increase; while quadrants I and IV are the post-
stall region, the local aerodynamic load also decreases as the airflow separates in the
trailing edge.
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6. Application in Stall Mitigation

The literature suggests that it is possible to achieve stall mitigation by periodically
deflecting the trailing edge [54,55]. In this test, mTE4 was used for stall mitigation with
an actuation offset of 20◦, amplitudes of 4◦ and 6◦, and frequency range from 1 to 8 Hz.
The airspeed was 10 m/s, with a corresponding Reynolds number of about 200,000. The
angles of attack ranged from 21◦ to 28◦, covering the entire stall range. The corresponding
reduced frequencies are shown in Table 3.

Table 3. Frequency and corresponding reduced frequency.

Frequency (Hz) 1 2 3 4 5 6 7 8

Reduced Frequency 0.1759 0.3519 0.5278 0.7037 0.8796 1.0556 1.2315 1.4074

The effect of vibration of the trailing edge on the lift coefficient was first tested to
exclude the inertial force. As shown in Figure 28, the increment in lift coefficient is less than
0.012, which is about 1% relative to the maximum lift coefficient.
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Figure 28. Effect of trailing edge vibration on force measurement without airflow.

The variation in the lift coefficient near the stall angle with different actuation fre-
quencies is shown in Figure 29, considering the actuation amplitudes of 4 and 6◦. The
angles of attack are divided into pre-stall, critical, and post-stall states, corresponding to
the angle ranges of less than 23◦, 23◦ to 25◦, and greater than 25◦, respectively. Before stall,
the maximum lift coefficient could be increased by 0.03~0.04, which is about 3%. After the
stall, the maximum lift coefficient increasement was 0.08, which is about 13%. The critical
state has strong unsteady and hysteresis characteristics, and the flow presents separation
and reattachment, resulting in large uncertainty. The data in the figures show that trailing
edge vibration in this range could increase the lift coefficient by about 0.10~0.22, which is
about 16~33%.

The variation in the lift coefficient with the actuation frequency is shown in Figure 30.
In the test range, the effect of stall mitigation increases with increasing frequency. The
data were analyzed as three groups, namely, before stall, critical stall, and after stall, using
the linear fitting tool, and the resulting fitted curves are shown as black dashed lines in
Figure 30. Anomalies are excluded in the linear fitting. Before the stall, the slopes in the
lift coefficient versus frequency are 0.0044/Hz and 0.0026/Hz, corresponding to the servo
actuation input amplitudes of 4◦ and 6◦, respectively.

As the angle of attack increases, trailing edge vibration leads to a more significant lift
increment. At the critical angle, the slope of the lift coefficient with respect to frequency
increases to 0.00485/Hz and 0.00416/Hz, respectively. After stall, the increase in vibration
frequency has a greater effect on the lift coefficient, and the slope of the lift coefficient with
respect to frequency increases to 0.00872/Hz and 0.00811/Hz, respectively.
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Figure 29. Lift coefficient of mTE4 at different trailing edge vibration frequencies and amplitudes
(airspeed 10 m/s). (a) Vibration amplitude of 4◦. (b) Vibration amplitude of 6◦.
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Figure 30. Lift coefficient versus frequency for different angles of attack (airspeed 10 m/s). (a) Vibra-
tion amplitude of 4◦. (b) Vibration amplitude of 6◦.

7. Conclusions

In this article, a compliant morphing wing (named mTE4) featuring a novel, load-
bearing morphing trailing edge was introduced and tested. The aerodynamic and structural
profile of the wing was obtained from a numerical optimization-based methodology utiliz-
ing a multi-disciplinary approach in the previous work. With a comprehensive detailed
design of actuator and sensor systems, the mTE4 was developed and manufactured. Then,
a wind tunnel test was conducted to evaluate the aerodynamic and aeroelastic behavior of
this novel device. Furthermore, the possibility of stall mitigation using an actively vibrating
trailing edge was verified. Finally, a validation study was carried out to assess the accuracy
of the experimental procedure. The main contributions are summarized as follows:

1. The proposed morphing wing concept is manufacturable. Under actuation, the skin
length of the trailing edge upper surface remains constant, and the lower surface is
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allowed to slide into the wing box, solving the challenge of skin continuity during the
deformation process;

2. The novel wing concept is actuated by a traditional servo system, while the aim of
smoothing deformation is achieved by compliant mechanisms. The manufactured
morphing wing can achieve a maximum deflection range of 37.9◦ continuously, prov-
ing its morphing capacity. The model operates as expected, demonstrating robustness
and load-bearing ability;

3. By activating the actuators, variations in lift coefficient ∆CL ≈ 0.23 and pitch moment
coefficient ∆CMz ≈ 0.22 in various angles of attack at 25 m/s can be achieved;

4. Different wind speeds lead to different Reynolds numbers, which affect the test results.
As the airspeed increases, the airflow is less likely to separate from the upper surface
of the wing, resulting in increments in the maximum lift coefficient, the stall angle,
and the lift curve slope;

5. Stall mitigation is achieved by periodically deflecting the morphing trailing edge,
enabling a stall angle delay of approximately 1◦ and 13% increase in post-stall lift
coefficient;

6. Good correspondence between the CFD and the experimental lift coefficients validates
the effectiveness of the development procedure.

However, mTE4 deforms along the chordwise but not spanwise direction. In this case,
only segmental control of the wing can be achieved by slitting between adjacent variable
camber trailing edges, which goes against the original design intent of a full, continuous,
smooth deformation. Without spanwise transition abilities, the application of morphing
trailing edges in the aircraft industry would be of limited significance. Therefore, in future
work, we aim to extend the compliant mechanism to wing with chordwise–spanwise
trailing edge deformation.
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