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Abstract: The presence of a number of space debris in low Earth orbits poses a serious threat for
current spacecraft operations and future space missions. To mitigate this critical problem, interna-
tional guidelines suggest that an artificial satellite should decay (or be transferred to a graveyard
orbit) within a time interval of 25 years after the end of its operative life. To that end, in recent years
deorbiting technologies are acquiring an increasing importance both in terms of academic research
and industrial efforts. In this context, the plasma brake concept may represent a promising and
fascinating innovation. The plasma brake is a propellantless device, whose working principle consists
of generating an electrostatic Coulomb drag between the planet’s ionosphere ions and a charged
tether deployed from a satellite in a low Earth orbit. This paper discusses an analytical method to
approximate the deorbiting trajectory of a small satellite equipped with a plasma brake device. In
particular, the proposed approach allows the deorbiting time to be estimated through an analytical
equation as a function of the design characteristics of the plasma brake and of the satellite initial
orbital elements.

Keywords: plasma brake; Coulomb drag; spacecraft deorbiting; asymptotic expansion method;
trajectory analysis

1. Introduction

The number of near-Earth space debris constituted of out-of-order satellites, launcher
upper stages, fragments produced by collisions, and other man-made objects, has been
dramatically increasing during the last decades [1]. Recent estimates, based on statistical
models, suggest that the number of debris objects currently orbiting the Earth is above
131 million [1], of which about 1 million have a characteristic dimension in the range
between 1 cm and 10 cm.

This issue could jeopardize future launches and space operations [2,3] and is highly
problematic for heavily populated orbital ranges [4,5], such as the Low Earth Orbit (LEO)
region. The threat posed by space debris is further worsened by the Kessler syndrome
scenario, where collisions between existing debris generate a dramatically increasing
cascade effect [6]. Therefore, an end-of-life deorbiting strategy must be carefully considered
during the mission design phase [7] in order to guarantee either a passive or an active decay
within 25 years after the end of the operative life, in accordance with the Inter-Agency
Space Debris Coordination Committee (IADC) guidelines [8,9].

In this context, one promising and innovative deorbiting propellantless concept is the
electrostatic plasma brake (PB), which is theoretically capable of deorbiting a spacecraft
from a LEO by providing a decelerating (drag) force and without the need for any propellant
consumption. The PB concept derives from the working principle of the Electric Solar
Wind Sail (E-sail) [10,11], an interplanetary propellantless propulsion system proposed
in 2004 by Dr. Pekka Janhunen, which consists of a spinning grid of conducting tethers
kept at a high potential by a voltage source and immersed in the solar wind flux. The
incoming ions exchange momentum with the charged grid due to Coulomb collisions, thus
generating a continuous propulsive acceleration [12]. The peculiarity of the E-sail enables
heliocentric missions that could be difficult (or impossible) to achieve with conventional

Aerospace 2022, 9, 680. https://doi.org/10.3390/aerospace9110680 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9110680
https://doi.org/10.3390/aerospace9110680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-3143-2589
https://orcid.org/0000-0002-8390-9679
https://orcid.org/0000-0003-0811-0231
https://orcid.org/0000-0002-4277-1765
https://doi.org/10.3390/aerospace9110680
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9110680?type=check_update&version=2


Aerospace 2022, 9, 680 2 of 14

thrusters, including non-Keplerian orbits [13,14], asteroid deflection [15] and outer solar
system exploration [16–19].

Unlike the grid of tethers used in an E-sail arrangement, the typical configuration of a
PB device [20] consists of a single electrostatically charged tether, which is unreeled in the
highly-ionized upper stages of the Earth’s atmosphere, as illustrated in Figure 1.

low-Earth orbit

satellite

tether

tip mass

brake
force

Figure 1. PB-device conceptual scheme.

The interaction between the conducting tether and the upper Earth’s atmosphere
ions produces a dissipative force, usually referred to as Coulomb drag, which reduces the
spacecraft orbital energy and lowers its perigee altitude until the increasing effect of the
atmospheric drag becomes sufficient to complete the orbital decay. Preliminary numerical
simulations give encouraging results on the potentialities of the PB-enabled deorbiting
concept [21,22], which will hopefully be validated by experimental evidence.

The first test mission of the PB technology was planned to be the Estonian satellite
EstCube-1 [23], but a failure occurred in the conducting tether unreel mechanism [24].
More recently, a similar problem in the unreeling motor caused the failure of a PB test [25]
in the Finnish 3U-CubeSat Aalto-1 [26,27]. However, since such failures were related to
technological issues and not to intrinsic problems of the PB concept, other in-orbit tests are
planned to be repeated in the near future. In this regard, the Finnish Centre of Excellence
in Research of Sustainable Space (FORESAIL) developed the FORESAIL-1 satellite, a 3U-
CubeSat launched in May 2022 [28]. One of the FORESAIL-1 mission objectives consists of
the deployment of a 40 m-tether and in the implementation of a PB test at the end of the
satellite operative life [29]. Moreover, the EstCube project, which was not stopped by the
failure of EstCube-1 mission, has scheduled the launch of a new satellite (called EstCube-2)
in 2023, with the aim of deploying a 300 m-tether and performing a Coulomb drag-based
deorbiting from 700 km to 500 km of altitude [28,30]. The growing interest in the Coulomb
drag-based technologies is confirmed by the design of the private satellite AuroraSat-1,
a 1.5U-CubeSat launched on May 2022, which is equipped with a PB tether to perform a
deorbiting at the end of its operative phase. Figure 2 summarizes past, current, and future
missions aimed at testing the PB technology.

The aim of this paper is to provide an approximate model capable of simulating the
geocentric trajectory of a PB-based spacecraft orbiting in a LEO, by using a set of non-
singular modified orbital parameters. The PB-induced force used in the simulations is
estimated with an analytical mathematical model [31], which introduces some simplifying
assumptions. In fact, the small magnitude of the Coulomb drag allows a perturbative
approach and an asymptotic series expansion to be employed [32–34] in the spacecraft
trajectory analysis. The resulting differential equations that describe the evolution of the
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osculating orbit are written in terms of a set of non-singular modified orbital parameters.
These equations can be integrated, and the results can be used to analyze the spacecraft
geocentric trajectory during the deorbiting phase. The accuracy of the method can be
improved by periodically updating the initial conditions with a rectification procedure.
In this case, the magnitude of the Coulomb drag can be adjusted at each rectification point
and maintained constant between two consecutive rectifications.

2013

ESTCube-1 2023

2022

2022
2017

FORESAIL-1

AuroraSat-1

Aalto-1

ESTcube-2

Figure 2. Timeline of the space missions that uses PB technology.

This paper is structured as follows. The trajectory equations of a spacecraft with a small
continuous drag acceleration, based on a perturbative approach, are first specialized to the
PB case. The PB-induced drag is then estimated by means of the simplified mathematical
model proposed in Ref. [31], which is here briefly summarized. Finally, the approximate
model is validated by comparison with an orbital propagator for some deorbiting profiles
of small satellites initially placed on a LEO, and the PB device performance is evaluated in
a test scenario.

2. Trajectory Approximation

Consider a spacecraft of mass m, equipped with a PB device, which is initially tracing
a LEO with orbital eccentricity e0. At a given time instant t0 , 0, when the spacecraft
altitude is h(t0) , h0 (i.e., the orbital radius is r(t0) , r0 = h0 + R⊕, R⊕ being the Earth’s
mean radius), and the true anomaly is ν(t0) , ν0, the PB conducting tether is unreeled and
charged by a suitable electric voltage source. Note that if the tether polarity is negative,
the spacecraft itself can act as an electric power supply, since it acquires a negative charge
due to the high thermal mobility of the electrons, thus removing the necessity of a power
source [21,35]. In the rest of the work, a negative voltage is accordingly assumed.

The interaction between the ionosphere and the tether generates a Coulomb drag that
acts in the opposite direction with respect to the relative velocity between the spacecraft
and the ions. If the thermal oscillations are neglected, the ion-spacecraft relative velocity
coincides with the actual vehicle orbital velocity, and the direction of the PB-induced drag
acceleration substantially coincides with the tangent to the spacecraft osculating orbit [20].

In analogy with Refs. [32–34], the spacecraft motion under the Earth’s gravity and the
PB-induced (Coulomb) drag can be described with a set of non-singular orbital parameters
{q1, q2, q3} that depends on the spacecraft osculating orbit eccentricity e and the specific
angular momentum magnitude H, viz.

q1 ,
e
H̃

cos ω , q2 ,
e
H̃

sin ω , q3 ,
1
H̃

(1)

where H̃ , H/
√

µ⊕ r0 is the osculating orbit dimensionless angular momentum, and ω is
the rotation angle of the eccentricity vector e, measured counterclockwise with respect to
the direction of the eccentricity vector e(t0) , e0 at the initial time t0; see Figure 3.
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Figure 3. Reference frame and PB-based spacecraft orbital parameters.

Now introduce an angular coordinate θ, defined as the angle (measured counterclock-
wise) from the direction of e0 to the current spacecraft position vector r, that is

θ = ν + ω with θ(t0) , θ0 = ν0 (2)

The spacecraft orbital radius r is given by the simple equation

r =
r0

q1 q3 cos θ + q2 q3 sin θ + q2
3

(3)

Using θ as the independent variable, the evolution of the non-singular modified orbital
parameters may be written as [32,36]

d
dθ

q1
q2
q3

 = − ε

q3 s3
√

e2 + 2 e cos ν + 1

 s sin θ (s + q3) cos θ
−s cos θ (s + q3) sin θ

0 −q3

 [ e sin ν
1 + e cos ν

]
(4)

where ν is the spacecraft true anomaly measured on the osculating orbit, and s is an
auxiliary dimensionless parameter defined as

s , q1 cos θ + q2 sin θ + q3 (5)

while ε is the ratio of the Coulomb drag magnitude Dc to the Earth’s gravitational attraction
at t0, or

ε ,
Dc

m µ⊕/r2
0

(6)

The parameter ε can be thought of as the dimensionless form of the PB-induced drag
acceleration, being the spacecraft mass m a constant.

The initial conditions of Equation (4) are found by calculating the values of the non-
singular modified orbital parameters at t0, viz.

q1(ν0) =
e0

H̃0
, q2(ν0) = 0 , q3(ν0) =

1
H̃0

(7)

where the subscript 0 denotes the value on the initial orbit. The initial magnitude of the
specific angular momentum may be written as

H̃0 ,
H0√
µ⊕ r0

≡
√

1 + e0 cos ν0 (8)
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so that Equation (7) becomes

q1(ν0) =
e0√

1 + e0 cos ν0
, q2(ν0) = 0 , q3(ν0) =

1√
1 + e0 cos ν0

(9)

2.1. Asymptotic Series Expansion Approach

The analysis of the spacecraft trajectory can be simplified by assuming that the
Coulomb drag magnitude is significantly smaller than the local gravitational gravity [31],
that is, ε � 1 in Equation (4). In other terms, the PB-induced drag behaves like a per-
turbation acting on a Keplerian motion, in analogy with the approach highlighted in
Ref. [32].

We will therefore adopt the same procedure discussed in Refs. [33,34] for either a solar
sail or an E-sail spacecraft, by specializing it to the case of a tangential drag [37]. To that
end, the modified orbital parameters (1) are written with a series expansion in the form

qi = qi0 + ε qi1 +O(ε
2) with i ∈ {1, 2, 3} (10)

where the generic qij coincides with the j-th order perturbative term of qi.
When Equation (10) is substituted into Equation (4) and the perturbative terms of

the same order are equated, we obtain a set of differential equations that approximate the
variation of the perturbative terms with respect to the angular coordinate θ. In particular,
the zeroth order terms are found to be

dqi0
dθ

= 0 with i ∈ {1, 2, 3} (11)

which, as expected, simply state that the modified orbital parameters are constant when
the trajectory is unperturbed (Keplerian). Enforcing the initial conditions, we obtain

q10 =
e0√

1 + e0 cos ν0
, q20 = 0 , q30 =

1√
1 + e0 cos ν0

(12)

A more interesting result comes from the equations involving the first-order perturba-
tive terms, which may be written as follows

d
dθ

q11
q21

q31

 =
H̃3

0

(1 + e0 cos θ)2
√

e2
0 + 2 e0 cos θ + 1

e0 + 2 cos θ
2 sin θ
−1

 (13)

where H̃0 is given by Equation (8). Assuming a constant magnitude of the Coulomb drag,
and so a constant value of ε, Equation (13) can be integrated in the angular coordinate θ to
obtain the evolution of the generic qi1 term. More precisely, with the aid of Equation (1),
the modified orbital parameters can be written as

q1 = −2 ε (sin θ − sin ν0) (14)

q2 = 2 ε (cos θ − cos ν0) (15)

q3 =
1

H̃0
+ ε (θ − ν0) (16)

which are valid in case of initial circular orbit (e0 = 0). If, instead, the initial orbit is elliptic
(e0 6= 0), then

q1 =
e0

H̃0
− ε

H̃3
0

(1− e2
0)

2 [Q1(e0, E)−Q1(e0, E0)] (17)
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q2 = −ε
H̃3

0
(1− e2

0)
3/2 [Q2(e0, E)−Q2(e0, E0)] (18)

q3 =
1

H̃0
− ε

H̃3
0

(1− e2
0)

2 [Q3(e0, E)−Q3(e0, E0)] (19)

Note that in Equations (17)–(19) the angle E depends on the angular coordinate θ through
the equation

E = E(e0, θ) , 2 arctan

[√
1− e0

1 + e0
tan
(

θ

2

)]
(20)

with

E0 = 2 arctan

[√
1− e0

1 + e0
tan
(ν0

2

)]
(21)

Finally, the expressions of Qi in Equations (17)–(19) are [32]

Q1(e0, E) =
2 C1(e0)(2− e2

0)− 4 C2(e0)

π e0
E +

(
15 e4

0
32

+
3 e2

0
4

+ 2

)
sin(E)+

−
(

e3
0
8
+

e0

2

)
sin(2 E) +

(
5 e4

0
64

+
e2

0
12

)
sin(3 E)−

(
e3

0
32

)
sin(4 E) +

(
3 e4

0
320

)
sin(5 E) (22)

Q2(e0, E) = −
(

3 e4
0

32
+

e2
0
4
+ 2

)
cos(E) +

(
e3

0
8
+

e0

2

)
cos(2 E)+

−
(

3 e4
0

64
+

e2
0

12

)
cos(3 E) +

(
e3

0
32

)
cos(4 E)−

(
3 e4

0
320

)
cos(5 E) (23)

Q3(e0, E) =
2 C1(e0)− 4 C2(e0)

π
E +

(
3 e3

0
32

+ 2 e0

)
sin(E)+

−
(

3 e2
0

8
+

7 e4
0

32

)
sin(2 E) +

(
e3

0
12

)
sin(3 E) +

(
−

7 e4
0

256

)
sin(4 E) (24)

where C1(x) and C2(x) denote the complete elliptic integrals of the first and second kind of
the argument x, respectively.

2.2. Rectification Procedure

The error introduced by the asymptotic series approximation increases when either
the “perturbative” parameter ε or the angular coordinate θ increases. Here, the term error is
intended as the difference between the approximate value and the numerical solution of the
spacecraft equation of motion. Moreover, since the plasma properties in the Earth’s upper
atmosphere vary with altitude, the assumption of a constant Coulomb drag throughout
the whole deorbiting profile is not realistic [22,31]. To overcome these issues, a rectification
procedure can be easily added to the mathematical model. The necessary operative steps
are thoroughly discussed in Refs. [32,33] and are here briefly summarized.

First, the angular coordinate θ = θr at which the rectification takes place is selected,
and the corresponding osculating orbital parameters are calculated as

er =

√
q2

1r
+ q2

2r

q3r

, H̃r =
1

q3r

, ωr = arctan
(

q2r

q1r

)
, νr = θr −ωr (25)
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where qir = qi(θr). Bearing in mind the expression of r from Equation (3), the spacecraft
altitude h(θr) , hr at the rectification point is calculated from

hr = rr − R⊕ ≡
r0

q1r q3r cos θr + q2r q3r sin θr + q2
3r

− R⊕ (26)

in such a way that a new set of auxiliary variables may be defined for θ ≥ θr, that is

θ̄ , θ −ωr , ω̄ , ω−ωr , q̄1 ,
e
H̃

cos ω̄ , q̄2 ,
e
H̃

sin ω̄ , q̄3 ,
1
H̃

(27)

whose initial conditions at the rectification point are

θ̄0 = νr , ω̄0 = 0 , q̄10 =
er

H̃r
, q̄20 = 0 , q̄30 =

1
H̃r

(28)

with er, ωr, and H̃r given by Equation (25).
The definitions of Equation (27) generate a new set of initial conditions for the aux-

iliary parameters, given by Equation (28), that are analogous to the ones expressed by
Equation (12). Moreover, when the rectification procedure is applied, a new value of the
dimensionless propulsive parameter ε̄ is calculated, as is discussed in the next section.
The new value of the dimensionless propulsive parameter is used for the trajectory determi-
nation just after the rectification point, that is, for θ ≥ θr. In other terms, the geocentric trajec-
tory of the PB-based spacecraft is obtained by considering a sort of piecewise-constant [38]
Coulomb drag acceleration.

Given all the previous considerations, the spacecraft geocentric trajectory for θ ≥ θr
can be estimated from Equations (14)–(16) if er = 0, or from Equations (17)–(19) if er 6= 0,
provided that e0, H̃0, ν0, ε, and θ are substituted with er, H̃r, νr, ε̄, and θ̄, respectively.
Finally, the last step is to apply a rotation matrix to the auxiliary variables in order to obtain
the original modified orbital parameters for θ ≥ θr, viz.q1(θ)

q2(θ)
q3(θ)

 =

cos ωr − sin ωr 0
sin ωr cos ωr 0

0 0 1

q̄1(θ̄)
q̄2(θ̄)
q̄3(θ̄)

 for θ ≥ θr (29)

where ωr is given by the third of Equation (25).
The rectification procedure described here is illustrated in the block scheme of Figure 4.

The same procedure can be repeated during the numerical simulation to obtain a more
accurate spacecraft (deorbiting) trajectory with a more realistic estimation of the PB-induced
drag, as described in the next section. Even if a large number of rectifications tends to
increase the computation time, the latter remains two orders of magnitude smaller than
that required by a numerical integration of the nonlinear equations of motion.
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Figure 4. Block diagram of the rectification procedure scheme.

2.3. PB-Induced Drag Model

The mathematical method used for the trajectory analysis must be completed with
a thrust model for the PB-induced drag. According to Ref. [35], the magnitude of the
Coulomb drag Dc generated by a PB conducting tether can be written as

Dc = 3.864 Lt mi n v

√
ε0 Va

el n
exp

(
− mi v2

2 el Va

)
(30)
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where Lt is the tether length, mi is the ions mass, n is the plasma bulk number density, v is
the relative velocity of the ions relative to the spacecraft, el is the elementary charge, and ε0
is the vacuum permittivity. In Equation (30), the auxiliary voltage Va is defined as

Va ,
2 |Vt|

ln
(

ε0 |Vt|
el n0 bt rw

) (31)

where Vt is the tether voltage, which is assumed negative according to Refs. [21,35].
Note that Equation (30) is based on the following simplifying assumptions: (i) the

PB-induced drag force per unit of tether length is constant, (ii) the effects of the magnetic
field are neglected [22], and (iii) the PB conducting tether has a Heytether structure [39].
As sketched in Figure 5, a Heytether consists of a principal line with radius rw and multiple
interconnections introduced to increase the tether resistance against possible micromete-
oroid impacts. The whole arrangement makes the total conducting tether width equal
to bt.

2
w

r

t
b

Figure 5. Schematic representation of a four-wire Heytether.

In analogy with Ref. [31], the Coulomb drag magnitude Dc at a generic spacecraft
altitude can be written as a function of the value at a reference altitude as

Dc ' Dc0

√
n
n0

(
v
v0

)2
f1(v, v0) f2(n, n0, v, v0) f3(n, n0) (32)

where the subscript 0 indicates that the initial altitude is taken as a reference value. The ex-
plicit expressions of the auxiliary functions fi are reported in Ref. [31] and are here omitted
for the sake of conciseness. Equation (32) introduces a further assumption; that is, the ions’
mass is constant and equal to the atomic mass of the dominating species in LEO, the atomic
oxygen; that is, mi ' 16 u.

The work by Orsini et al. [31] also makes an analysis of the order of magnitudes of the
terms involved in Equation (32), from which it is shown that a conservative approximation
in the LEO range is to assume f1 f2 f3 ' 1. When the relative velocity v is approximated
with the local circular velocity (thus neglecting the thermal oscillations of ions and the
orbital eccentricity), it is possible to assume that the variation of the velocity modulus
in the LEO range is small; that is, (v/v0)

2 ' 1. Enforcing these approximations into
Equation (32) yields

Dc ' Dc0

√
n
n0

(33)

Assuming that the plasma temperature T is constant and estimating the plasma density
with the geopotential ionosphere model, Equation (33) can be rewritten as

Dc ' Dc0 exp
{
− mi µ⊕

4 kB T

[
h

(R⊕ + h)2 −
h0

(R⊕ + h0)2

]}
(34)

where h is the spacecraft altitude, and kB is the Boltzmann constant. The latter equation
gives the variation of the PB-induced force with respect to the reference value Dc0 as a
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function of the spacecraft altitude, which can be calculated at every rectification point by
means of Equation (26). Recall that Dc0 may be calculated with Equation (30). Figure 6
shows the variation of Dc as a function of the spacecraft altitude under the assumption
of a mean solar activity. The value of Dc calculated at each rectification point can be
substituted into Equation (6) to update the “perturbative” parameter ε and simulate a
piecewise constant Coulomb drag acceleration. The procedure is illustrated in Figure 4.

300 400 500 600 700 800 900 1000

h [km]

0

2.5

5

7.5

Figure 6. Approximate variation of the PB-induced Coulomb drag magnitude Dc as a function of the
spacecraft altitude h. A mean solar activity is assumed.

3. Case Study

The approximate method is used to estimate the deorbiting profile of a set of small
satellites, initially placed in a typical LEO. The initial (reference) altitude is set equal to
h0 = 1000 km, the middle of the LEO orbital range [1], with a corresponding local circular
velocity v0 =

√
µ⊕/(R⊕ + h0). A mean solar activity is considered, which corresponds to a

plasma temperature of T = 1011.5 K in the upper stages of the Earth’s atmosphere. The ion
number density at the reference altitude is estimated as n0 = 3× 1010 m−3, which is in
good accordance with the international reference ionosphere (IRI) [40,41] for a mean solar
activity. The spacecraft parameters used in the simulations have been selected in analogy
with the actual values of the PB-equipped missions and in accordance with the current or
near-term technology level for nanosatellites, as reported in Table 1.

Table 1. Characteristics of the PB-based small satellites in the deorbiting simulations.

Configuration m [kg] Lt [m] |Vt| [V]

spacecraft ¬ 1 25 500

spacecraft  4 100 1000

spacecraft ® 10 300 1000

The variations of the orbital mean altitude are presented in Figure 7, where the
outputs of the approximate method (with 100 rectifications per year) are compared with
those from an orbital propagator that numerically integrates the equations of motion and
updates the PB-induced drag acceleration magnitude at each time step. In this comparison,
the spacecraft nonlinear equations of motion have been numerically integrated with a
variable order Adams–Bashforth–Moulton PECE solver [42,43], with absolute and relative
errors equal to 10−10.

The results from the two methods are so similar that the different lines are nearly
coincident, although the computational cost of the approximation is about two orders of
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magnitude smaller than the numerical integration. Note that the decay rate is slower at
higher altitudes when the plasma density is smaller and is steeper in the final part. Since the
atmospheric drag is neglected in this analysis and its effects are significant for h ≤ 500 km,
it is reasonable to conclude that this effect should be even more evident in real cases.
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(c) Spacecraft ®

Figure 7. Deorbiting profiles from 1000 km to 300 km of three different spacecrafts, see Table 1 (solid
black line = numerical integration; dashed red line = approximate results).
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Finally, Table 2 shows the times required for the spacecraft to lower its altitude below
300 km. Note that the decay time is estimated by the approximate method with high
accuracy when compared with the numerical results. It is evident that the PB is capable of
deorbiting a nanosatellite in a LEO range and to comply with the international guidelines,
even if the contribution of the atmospheric drag is (conservatively) neglected. Unluckily,
the procedure discussed here is not capable of providing a quick estimate of the required PB
characteristics, given the desired decay time. However, the interested reader may refer to
Ref. [44], where an estimate of the deorbiting time of a PB-equipped spacecraft is obtained
with a different approach.

Table 2. Decay time from 1000 km to 300 km estimated with an orbital propagator and the approxi-
mate method. A mean solar activity is assumed.

Configuration Numerical Approximate Percentage Error

spacecraft ¬ 1317 days 1320 days 0.26%

spacecraft  924 days 928 days 0.38%

spacecraft ® 770 days 774 days 0.45%

4. Conclusions

An approximate method for the trajectory analysis of a spacecraft deorbiting from a
LEO is presented. The analytical approximation uses a perturbative approach to estimate
the evolution of the spacecraft osculating orbit parameters based on the small magnitude
of the Coulomb drag acceleration. The latter is evaluated by means of a simplified mathe-
matical model that relates the drag force magnitude to the spacecraft altitude. A number of
rectifications are included in the proposed model, and the value of the PB-induced drag
acceleration is updated at each rectification point and maintained constant between two
successive rectifications.

The proposed procedure allows a very accurate estimation of the deorbiting profile to
be obtained along with the decay time of a small spacecraft orbiting in LEO. A preliminary
estimation of the PB performance is also possible in an efficient way, as the computation time
required by the proposed approach is about two orders of magnitude smaller than those
associated to a numerical integration of the equations of motion with an orbital propagator.
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