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Abstract: The knowledge of cracking mechanisms is significant for evaluating the healthy condi-
tion of aircraft structures and can be retrieved by moment tensor inversion based on the acoustic
emission (AE) phenomenon. For engineering applications, the inversion method cannot compute
accurate results because the waveforms recorded by sensors are commonly contaminated by noise.
Consequently, the correlation calculation of de-noising is introduced into the inversion and sufficient
correlation functions are needed. In this paper, the correlation function of raw waveforms is proposed
and based on the inherent similarity between the signals induced by one source and recorded by
different sensors. According to the synthetic tests, the error of the inversion method based on the
new correlation function is approximately 1/10 of that of the commonly used amplitude method. Al-
though the inversion accuracy is influenced by the phase differences and the ratio of noise frequency
to signal frequency, the influence is limited and the new correlation function is suitable for most
practical cases. The inversion method based on the new correlation function does not require the
knowledge of noise spectra or any complex calculation processes and provides a new way to improve
the inversion accuracy of cracking mechanisms with little additional computation consumption.

Keywords: moment tensor; crack; acoustic emission; correlation calculation; aircraft

1. Introduction

For the life-safety and economic purposes of aircraft structures, some form of structural
health monitoring (SHM) should be performed to evaluate the health conditions and predict
the remaining fatigue life. In the SHM, the cracking mechanisms, such as cracking types and
dislocation orientations, are fundamental and significant for further analysis of structural
health. Cracks in aircraft structures can be inspected by various technologies, such as visual
inspection, radiography [1], eddy current testing [2], and optical and ultrasonic methods [3].
However, there are still some problems when using these methods, such as requiring the
aircraft to be taken out of service and being time consuming [4]. Consequently, the acoustic
emission (AE) technology in the SHM has significant advantages when dealing with such
problems. The AE phenomenon is that the strain energy is released rapidly when a structure
undergoes crack formation and the elastic waves containing the information of cracks are
stimulated. At present, AE technology has been implemented for many structures, such as
wind turbine blades [5], steel bridges [6], and aircraft [7].

The commonly used AE technology can identify some general information about
cracks, such as the locations, initiation, and evolution stage of cracks [8,9]. However, it
cannot provide the exact mechanisms of cracks, such as source types and dislocation orien-
tations, which are rather useful for evaluating the healthy condition of structures because
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the transition between tensile and shear modes can be evident [10,11] and the propagation
criteria are different for different source types [12,13]. To retrieve accurate source mecha-
nisms of cracks, a new method of moment tensor inversion has been established. As early
as 1964, Burridge and Knopoff [14] proposed the equivalent concept of a dynamic response
between loads and dislocations and derived the body forces applied in the absence of a
dislocation. Then, Aki and Richards [15] provided adequate derivations of the moment
tensor formulas and established the inversion framework for source mechanisms. Based on
Green’s function, moment tensors can be calculated by the amplitude method [16,17], then
source types can be classified by the decomposition of moment tensors and dislocation
orientations can be calculated by the eigenvectors of moment tensors [18].

For the moment tensor inversion, the contamination of noise can hardly be avoided [19],
and the inversion results are inaccurate. To improve inversion accuracy, a channel selection
approach [20–22] can be implemented, where the waveforms with insufficient signal-to-
noise ratios (SNRs) are discarded to directly reduce the effect of noise on inversion accuracy.
The channel selection approach is efficient, but a large number of sensors are needed for
data recording. Except for this approach, the Fourier transform is commonly used for
de-noising, and noise can be filtered out from waveforms based on the characteristics of
spectra [23–25]. This method requires information about noise and signal spectra, but the
time-frequency analysis for noise spectra is quite difficult. Generally, although the above-
mentioned commonly used methods are effective for improving the inversion accuracy
of moment tensors, some complex calculation or analysis approaches are needed and are
computationally demanding. To simplify the calculation and improve the accuracy of
results, a simplified method of correlation calculation is introduced to the moment tensor
inversion [26]. In this method, wave amplitudes are replaced by the correlation coefficients,
which are calculated by the correlation calculation between waveforms and correlation
functions. The correlation coefficients are independent of noise, thus the inversion results
calculated by the correlation coefficients are accurate. Although this method is simpler than
the Fourier transform, the self-defined correlation function provided by Kong, et al. [26]
still requires time-frequency analysis. Consequently, to further simplify the data processing,
a more concise correlation function than the self-defined correlation function is needed.

In this article, we introduced the new correlation function of raw waveforms into
the correlation calculation of the moment tensor inversion. The inversion method of
the new correlation function can work efficiently to improve the inversion accuracy of
source mechanisms without knowledge of noise and signal spectra. This idea is based on
the inherent similarity between signals induced by one source and recorded by different
sensors, and no complex mathematical calculation approaches are needed. The rest of
the paper is organized as follows: In Section 2, the standard moment tensor inversion is
briefly reviewed, and the inversion method of the new correlation function is proposed.
In Section 3, synthetic tests are carried out to verify the efficiency of the new correlation
function. The effect of the two factors on the performance of the new correlation function is
discussed in Section 4, and the conclusions are given in Section 5.

2. Formulas
2.1. Review of Standard Moment Tensor Inversion

Based on the moment tensor theory, a crack can be converted to a group of force
couples acting at the position of the source, and the force couples can be mathematically
integrated into a tensor, which is called the moment tensor. In isotropic and homogeneous
media, the moment tensor components can be expressed as follows [15]:

Mpq =
(
λlknkδpq + µlpnq + µlqnp

)
Sf (1)

where p = 1, 2, 3 and q = 1, 2, 3 represent X, Y, and Z directions, λ and µ are the Lame
constants, δpq is 1m while p = q, otherwise it is 0. lq represents the components of the slip
vector at crack surfaces, and np represents the components of the normal vector to crack
surfaces. Sf is the crack size. Moment tensors are symmetric, and 6 of the 9 components are
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independent of each other. According to Equation (1), each crack has a unique moment
tensor, thus the mechanism of a cracking source can be extracted from the moment tensor.

The moment tensor of a cracking source can be retrieved by AE waves, which can be
explicitly expressed in terms of moment tensors. For engineering applications, compres-
sional waves (P wave) are commonly used for the inversion, because P wave velocity is
higher than shear wave (S wave) velocity. Then, the first-arrival waves are pure P waves
and the inversion formulas can be simplified. According to the point-source and far-field
approximations [27], the P waves generated by a fracturing source can be expressed as:

uk(t) =
1

4πρα3
rk
R
(
r1 r2 r3

)M11 M12 M13
M12 M22 M23
M13 M23 M33

r1
r2
r3

 .
S
(

t − R
α

)
(2)

where uk(t) is the displacement in the kth direction (k = 1, 2, 3), r1, r2, and r3 are the direction
cosines from the source to the sensor. t is the time. ρ is the density of media and α is the
P wave velocity. R is the source-sensor distance. S(t) is the source-time function, which
describes the time-dependent opening state of crack surfaces. It should be noted that the
inversion equation of Equation (2) is only suitable for isotropic metallic materials. In the
cases of composite or hybrid materials, wave velocities can be varied, and the inversion
equation cannot be applied to those materials.

According to the amplitude inversion approach, source-time functions are commonly
assumed as step functions, and the time dependence of the moment tensor inversion is
ignored. Then, the inversion formula for moment tensors can be further simplified as [28]:

uk = Cs
rk
R
(
r1 r2 r3

)M11 M12 M13
M12 M22 M23
M13 M23 M33

r1
r2
r3

 (3)

where uk is the amplitude of the first motion, which is the slice of the signal between the
time to leave the balance position for the first time and return to the balance position again.
Cs is the calibration coefficient of sensor sensitivity and material constants. According to
Equation (3), although the wave velocity is involved in Equation (2), the velocity is not
required in the practical cases of the moment tensor inversion. For engineering applications,
the velocity and other constants are integrated into the calibration coefficient Cs, which can
be obtained by the pencil-lead break experiment [28].

For one sensor, Equation (2) containing the 6 unknown moment tensor components
can be obtained. Six independent components require at least 6 sensors in the inversion for
one source. The linear algorithm of m (m ≥ 6) sensors used to solve the unknown moment
tensor components can be expressed in matrix form as:


G11 G12 G13 G14 G15 G16
G21 G22 G23 G24 G25 G26

...
...

...
...

...
...

Gm1 Gm2 Gm3 Gm4 Gm5 Gm6




M11
M12
M13
M22
M23
M33

 =


u1
u2
...

um

 (4)

where Gij(i = 1,2, . . . , m; j = 1, 2, . . . , 6) can be calculated by Equation (3). u1, u2, . . . , um are
the amplitudes of first motions recorded by different sensors. For simplicity, Equation (4)
can be rewritten as Equation (5).

GMc = u (5)

where u is the column vector containing the measured wave amplitudes. G is the dynamic
response matrix and is determined by the relative positions between sources and sensors.
Mc contains the unknown moment tensor components in the form of a column vector.
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Based on Equation (5), the moment tensors of cracking sources can be retrieved by
recorded signals, and the source mechanisms can then be extracted by the decomposition
of moment tensors into three basic components, which are usually isotropic (ISO), double-
couple (DC), and the compensated linear vector dipole (CLVD) [18]. According to the
decomposition theory [18], a retrieved moment tensor can be written as an orthonormal
form as follows:

Mt =

M1 0 0
0 M2 0
0 0 M3

 (6)

where M1 ≥ M2 ≥ M3 are the eigenvalues of M. Then the moment tensor Mt can be written
as a linear combination of the three basic components:

M = MISOEISO + MDCEDC + MCLVDECLVD (7)

where EISO, EDC, and ECLVD are the ISO, DC, and CLVD elementary tensors. Then the
relative scale factors CISO, CDC, and CCLVD are defined as: CISO

CDC
CCLVD

 =
1
M

 MISO
MDC

MCLVD

 (8)

where M = |MISO| + |MDC| + |MCLVD|. The source types can be determined by the pro-
portions of the three components in moment tensors and illustrated by the source-type plots.

2.2. Correlation Function of Raw Waveform

For the moment tensor inversion, as the waveforms recorded by sensors are always
contaminated by noise and the accurate amplitudes of first motions cannot be picked, the
retrieved moment tensors are inaccurate. To solve this question, some time-frequency
analysis methods can be used, and the signals of specific frequency spectra can be extracted
from contaminated waveforms. According to Kong, et al. [26], for the time-frequency
analysis used in the moment tensor inversion, the inversion transformation is not needed
to reconstruct signals, and the correlation coefficients defined by Equation (9) can directly
replace wave amplitudes to invert moment tensors.

a = C(τ, u, fc)

=
n
∑

i=1
u(ti) fc(ti − τ)

(9)

where a is the correlation coefficient. C is the correlation operator. u(ti) is the waveform
recorded by sensors and f c(ti) is the correlation function. ti is the time. τ is the time delay
between the first motions of waveforms and correlation functions.

According to the correlation coefficient defined by Equation (9), the inversion equation
for moment tensors can be rewritten as follows:

GM∗
c = a (10)

where a is the column vector of correlation coefficients a, and G is the dynamic response
matrix in Equation (5). Importantly, in the moment tensor inversion for a specific source,
the correlation function is the same for all the correlation coefficients in vector a.

Moment tensors can be inverted in the frequency domain and noise can be filtered by
the Fourier transform (FT). For the FT, the correlation function of trigonometric functions
is used for de-noising. The correlation functions can also be defined manually and a self-
defined correlation function is provided by Kong, et al. [26]. This self-defined function can
simplify the inversion process, but the inversion accuracy is the same as that of the FT. In
addition, the parameters of the self-defined function should be carefully selected.
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In this study, it is proposed that the raw waveforms recorded by sensors can also be
used as correlation functions to further improve the inversion accuracy. The new correlation
function of raw waveforms does not require the time-frequency analysis of waveforms and
no parameters need to be selected. Moreover, the inversion accuracy of the new correlation
function is much better than those of the commonly used inversion methods, which can be
proven by the synthetic tests in Section 3.

For comparison, the correlation function of trigonometric functions for the FT, the
self-defined correlation function in Kong, et al. [26], and the correlation function of raw
waveforms in this study are plotted in Figure 1.
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Figure 1. Comparison of correlation functions: (a) Simulated waveform; (b) raw waveform as
correlation function in this study; (c) self-defined correlation function proposed by Kong, et al. [26];
(d) trigonometric function for FT.

The mechanism of the correlation function of raw waveforms for de-noising is ex-
plained in Section 2.3.

2.3. Mechanism of New Correlation Function for De-Noising

Generally, the waveforms recorded by two sensors can be expressed as follows:{
u1(t) = u1

s(t) + u1
n(t)

u2(t) = u2
s(t) + u2

n(t)
(11)

where u1(t) and u2(t) are the recorded waveforms, u1
s (t) and u2

s (t) are the signals, and u1
n(t)

and u2
n(t) are the noise. It is logical that noise levels are different for different sensors, and

the recorded waveform with an optimal signal-to-noise ratio can be chosen and regarded
as the correlation function. In Equation (11), it is assumed that u2(t) is the waveform with
the optimal signal-to-noise ratio and u2

n(t) can be ignored. Then u2(t) is regarded as the
correlation function. The two waveforms can be rewritten as:
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{
u1(t) = u1

s(t) + u1
n(t)

fc(t) = u2(t) = u2
s(t)

(12)

For comparison, the two waveforms are plotted in Figure 2.
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optimal signal-to-noise ratio is regarded as the correlation function.

The correlation coefficient can be calculated by waveform 1 and the correlation function
(waveform 2) according to Equation (9) as:

a = C(τ, u1(t), fc(t))
= C(τ, u1

s(t), u2
s(t)) + C(τ, u1

n(t), u2
s(t))

(13)

To reduce computation consumption, we can only pick the effective waveform slice
for the correlation calculation. The effective waveform slice is the slice containing signals
(as shown in Figure 2).

According to Equation (2), the spectra of AE waves are dependent on the source-time
function S(t), and the other parameters (e.g., sensor locations and media) only affect the
amplitudes of signals. For one source of the unique source-time function, the spectra of
the signals recorded by different sensors are the same and the amplitudes are different for
different sensors (as shown in Figure 3).

Obviously, C(τ, u1
n(t), u2

s (t)) is dependent on the signal-to-noise ratio (SNR). For a high
SNR, u1

n(t) is relatively small and C(τ, u1
n(t), u2

s (t)) can also be very small. For a low SNR,
C(τ, u1

n(t), u2
s (t)) can also be ignored. Besides SNR, C(τ, u1

n(t), u2
s (t)) is also dependent on

the spectrum difference between signals and noise. For engineering applications, noise can
be generated by various factors, and its frequency spectrum is significantly different from
signals, which means the correlation between signals and noise is very small. Then, C(τ,
u1

n(t), u2
s (t)) in Equation (13) is relatively small and can be ignored. The above analysis can

be proven by the synthetic results in Section 4.2, when the spectrum of noise is different
from that of signals. In this circumstance, the correlation coefficient of Equation (13) can be
simplified as:

a = C(τ, u1(t), u2(t))
≈ C(τ, u1

s(t), u2
s(t))

(14)

As shown in Equation (14), the correlation coefficient is dependent on signals and
almost unaffected by noise, and the moment tensors inverted by the correlation coefficient
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a are not affected by noise. Furthermore, the calculation process of Equations (13) and
(14) does not require the knowledge of noise spectra, which is the advantage of the new
correlation function.
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If the correlation function of f c(t) is replaced by trigonometric functions or some other
functions, the value of C(τ, u1

s (t), f c(t)) decreases because of the difference in frequency
spectra between the singles and correlation functions. Then, the performance of de-noising
decreases and the inversion error increases.

Obviously, M∗
c in Equation (10) is different from Mc in Equation (5), but M∗

c can still be
used for interpreting source mechanisms. Compared with the standard inversion equation
of Equation (5), the inversion equation of Equation (10) based on the new correlation
coefficients can be rewritten as Equation (15), because the correlation function is the same
for all correlation coefficients in the inversion for one source.

GM∗
c = βu (15)

where β is a constant for specific inversion.
Obviously, the moment tensor solution M∗

c calculated by Equation (15) is different
from Mc calculated by Equation (5). The values of M∗

c are inaccurate, but the relative
magnitudes between the components of M∗

c are the same as those of Mc. The relationship
of M∗

c = βMc can be obtained. For interpreting source mechanisms, the retrieved moment
tensors are decomposed into three basic tensors and the source types are identified by the
proportions of the three tensors (as shown in Equations (7) and (8)). Specifically, the source
types are determined by the relative magnitudes between moment tensor components.
Consequently, the source types interpreted by the decomposition of M∗

c are the same as
those of Mc, which can also be proven by the synthetic tests in Section 3.
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3. Synthetic Tests

To evaluate the performance of the inversion method based on the new correlation
function of raw waveforms, synthetic tests were carried out. The AE signals are calculated
by the finite element method (FEM) and the distortion of complex factors on recorded
signals is represented by random white noise. Moment tensors can be calculated by
distorted waveforms. The inversion errors are quantitatively illustrated by the errors
of double-couple (DC) proportions and source-type plots, which are calculated by the
decomposition of moment tensors according to Equations (6)–(8).

For synthetic tests, a numerical model of a thin plate is established, because thin plates
are commonly used in aircraft structures. Cracks penetrate the plate thickness. Then, the
moment tensor inversion can be further simplified according to Kong, et al. [29]:

M =

M11 M12 0
M12 M22 0

0 0 0

 (16)

where only three unknown moment-tensor elements need to be solved and at least three
one-channel sensors are required by the inversion for one source. The inversion equation
and decomposition of moment tensors in thin plates have been expressed in detail.

In the moment tensor inversion for any cracks, multiple sensors are required to record
signals, and then the inversion based on the new correlation function of raw waveforms
can always be achievable. In addition, the performance of the new inversion methodology
is independent of sensor arrays, source types, or model shapes, because those factors
are not involved in the theoretical analysis of the new methodology (Equations (9)–(15)).
Consequently, a penetrated crack in a thin plate with an array of four sensors is sufficient
for validating the performance of the new methodology.

3.1. Model Parameters

The plate is aluminum alloy. The material parameters are selected according to the
data in references [30–32] and are listed in Table 1. The length of plate L is 2 m (as shown in
Figure 4) and the thickness is 0.01 m.

Table 1. Material parameters.

Parameter Elastic Module Poisson’s Ratio Density

Value 7.2 × 1010 Pa 0.3 2780 kg/m3

In the synthetic tests, four sensors are arranged as shown in Figure 4. An AE source (a
crack of the length of 0.01 m) is located at the center of the plate, and the source–sensor
distance R is 0.7 m.
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To stimulate the cracking process and calculate the AE signals, the AE source of
precast cracks is used and its reliability has been proven [29]. For the precast crack in the FE
model, the dislocation of crack surfaces is simulated by enforced displacement. Although
the enforced displacement of crack surfaces is different from the true mechanism of the
dislocation of crack surfaces, the stimulated AE waves are the same because the AE waves
are dependent on the displacement of crack surfaces [15]. As long as the displacement of
crack surfaces is the same, the stimulated AE waves are the same. In the synthetic tests, the
calibration coefficient Cs is calculated by the precast crack of unit-enforced displacement.

To quantify the enforced displacement of the crack surfaces, a representative source-
time function is expressed according to Ohtsu [33] as follows:

S(t) =

{
t

Tr
− 2

3π sin
(

2πt
Tr

)
+ 1

12π sin
(

4πt
Tr

)
t < Tr

1 t ≥ Tr
(17)

where Tr is the rise time. In the synthetic tests, the value of Tr is 5.0 × 10−5 s, which is
based on the data in the reference [34]. It has been proven that the waveforms calculated
by Equation (17) are in good agreement with those recorded in the practical experiments.

For the FE analysis, the model is meshed by hexahedron elements. For the reliability
of the FE model, the time step is required to be less than the time taken for the wave to pass
through an element [35]. The time step is 2.0 × 10−7 s and the shortest time for P waves
to pass through an element is approximately 1.7 × 10−6 s. In addition, to suppress the
effect of numerical dispersion caused by spatial discretization, 11 elements are contained
within one wavelength. It should be noted that the wavelength in this study is calculated
by Tr × α, which is different from the common concept. For AE signals, the spectrum of
the waves is wide and the period is replaced by the rise time of the source-time function
for simplicity.

Generally, the inversion accuracy is affected by various factors, such as an inaccurate
velocity model, source location, measurement error, etc. Obviously, the study of those
factors is complex. For simplicity, the effect of those factors is commonly represented by
random white noise [27,36,37]. Thus, in the synthetic tests, the numerical model is kept as
simple as possible and the influence of complex factors is represented by the random white
noise with a uniform distribution. The noise is superimposed on the AE signals calculated
by the FEM.

The pure tensile and shear source types are used in the synthetic tests, because any
cracks can be the combination of those two source types. The noise levels are defined as the
ratios between the amplitudes of noise and signals, and the ratios used in the tests are 0%,
10%, 20%, and 30%. The waveforms recorded by sensors No. 1, 2, and 3 are contaminated
by random white noise and the waveform recorded by sensor No. 4 is pure. Then the
waveform recorded by sensor No.4 is regarded as the correlation function.

The inversion errors are quantitatively represented by the DC proportions of the
retrieved moment tensors, because the DC proportion is of great interest for engineering ap-
plications. The inversion errors of the solutions calculated by the amplitude and frequency
methods are also provided for comparison. For the frequency method, the dominant fre-
quency components of waveforms are used for the inversion. According to Kong, et al. [26],
the inversion accuracy of the correlation-based method of self-defined correlation functions
is similar to that of the frequency method. In this study, only the inversion results of the
frequency method are provided. For each noise level, 100 inversions are repeated to avoid
accidental errors. The average values and standard deviations of the 100 DC proportion
errors are plotted to quantitatively illustrate the inversion accuracy. The source-type plots
of the 10 randomly selected inversions among the 100 repeated results are provided for
comparison. The source-type plot used for illustration was introduced by Vavryčuk [18].
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3.2. Inversion Results

For pure tensile cracks, the inversion results calculated by the three methods are
plotted in Figure 5 and the source-type plots are provided in Figure 6. The error of DC
proportions in Figure 5 is the difference between the inversion and true values. In Figure 6,
the source types are determined by the locations of the symbols, and the symbols of
different shapes represent four noise levels. For simplicity, the inversion method based on
the new correlation function of raw waveforms is denoted as the autocorrelation method.
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the results of the three inversion methods: Amplitude, frequency, and autocorrelation methods. The
autocorrelation method represents the inversion method based on the new correlation function of
raw waveforms for simplicity.
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Figure 6. The source-type plots of the inversion results for the three methods for pure tensile cracks.
The symbols of different shapes represent the results of different noise levels. The locations of symbols
are determined by the proportions of three basic tensors (ISO, DC and CLVD) and the proportions
are calculated by the decomposition of moment tensors.

As shown in Figure 5, for a noise level of 0, the errors of the retrieved DC proportions
calculated by the three methods are all 0, which indicates that all three inversion methods
are suitable in cases of no noise. As the noise level increases, the errors of the inversion re-
sults increase for the three methods. However, the average values of the repeated inversion



Aerospace 2022, 9, 654 11 of 16

errors calculated by the autocorrelation method are more accurate than those calculated by
the frequency and amplitude methods. The inversion errors of the autocorrelation method
are reduced by 80% compared with the frequency method. Compared with the amplitude
method, the errors of the autocorrelation method are reduced by more than 90%. The stan-
dard deviation, which indicates the stability of the repeated inversion results, also visibly
improves. The standard deviation of the results calculated by the autocorrelation method is
the smallest. The same phenomenon can also be observed in Figure 6, in which the symbols
of the inversion results calculated by the autocorrelation method are more concentrated and
closer to the true position, which indicates that the results of the autocorrelation method
are more accurate and stable than those of the other two methods.

Similar conclusions can also be drawn in the inversion for shear cracks, and the
inversion errors of DC proportions and the corresponding source-type plots are plotted in
Figures 7 and 8, respectively.
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Figure 7. The errors of the retrieved DC proportions for the inversion of shear cracks calculated by
the three methods.
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As shown in Figures 7 and 8, for shear cracks, the inversion errors of the DC pro-
portions retrieved by the autocorrelation method are smaller than those of the amplitude
and frequency methods. In addition, for the source-type plots, the results obtained by the
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autocorrelation method are more concentrated and closer to the true values than those of
the other two methods.

In Figures 5 and 7, an unusual phenomenon can be observed in which the standard
deviation is of the same order of magnitude as the mean. This phenomenon can also be ob-
served in some other references [23,26,37]. At present, the mechanism of this phenomenon
is still unclear and needs further study.

Theoretically, any cracks can be a combination of pure tensile and shear cracks. Conse-
quently, the feasibility of the inversion method based on the new correlation function of
raw waveforms to any cracks can be proven by the above synthetic tests.

4. Discussion

According to the synthetic tests in Section 3, the performance of the inversion based
on the new correlation function has been validated, and information on the noise or signal
spectra is not required by the inversion process. However, according to the theoretical
analysis in Section 2, two parameters may have an influence on the inversion accuracy and
need further analysis. The parameters are the time shifts between correlation functions and
signals and the difference in spectra between signals and noise. In this section, the effect of
those two parameters on inversion accuracy is analyzed, and the applicative conditions of
the new methodology are provided.

4.1. Time Shift

According to the theoretical analysis in Section 2.3, the best inversion accuracy can be
achieved when the time shifts between correlation functions and signals are zero (as shown
in Figure 9a). Although accurate source locations are helpful for extracting the slice of
signals for calculation, noise contamination is inevitable. In this circumstance, the arriving
and end signals are submerged in noise, and the first motions of waveforms cannot be
picked precisely. Then, the time shifts between correlation functions and signals (as shown
in Figure 9b) cannot be avoided, and the inversion accuracy is influenced. In this section,
the influence of time shifts on inversion accuracy is analyzed. It should be noted that the
time shift is different from the time delay in Equation (9). The time delay is the difference
between the arrival time of the first motions and is caused by different source–sensor
distances. The time shift is the picking error of the first motions and is caused by noise. The
time delay does not cause inversion errors, but the time shift does.
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For generality, a new parameter of phase differences is defined as the ratio between
time shifts and rise times.

The inversion results for various phase differences are plotted in Figure 10.
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Figure 10. Inversion results for phase differences between correlation functions of raw waveforms
and signals. For generality, the phase differences are defined as the ratios between time shifts
and rise times. Line types represent four noise levels defined as the ratios between noise and
signal amplitudes.

As shown in Figure 10, the inversion errors increase with the increase in the phase
difference. If the effective slice of correlation functions cannot be picked precisely, the
frequency spectrum of the slice (correlation function) is different from those of signals,
and then the correlation calculation cannot efficiently amplify signals and suppress the
effect of noise. Specifically, C(τ, u1

s (t), u2
s (t)) in Equation (13) decreases and the correlation

coefficient is more dependent on C(τ, u1
n(t), u2

s (t)), which is related to noise. Then, the
inversion results calculated by the correlation coefficient are inaccurate. Consequently,
picking the first motions precisely is significant for the correlation calculation, and a time
shift of 0 is recommended.

For engineering applications, a time shift of 0 is difficult to achieve, because the
recorded signals are always contaminated by noise. Then, the inversion errors generated by
the time shift are inevitable. However, according to Figure 10, the maximum inversion error
is less than 7%, which is acceptable for most engineering applications. Thus, although a
time shift of 0 can hardly be obtained, the new methodology can still provide the inversion
results of acceptable accuracy.

4.2. Spectrum Difference

According to the theoretical analysis in Section 2.3, the spectra of signals are supposed
to be different from that of noise. For engineering applications, the difference in spectra
between the signals and noise is dependent on real conditions and may not be measurable
for de-noising. Consequently, in this section, the dependence of the inversion accuracy on
the spectrum difference between signals and noise is analyzed.

To quantify the spectrum difference, random white noise is replaced by sinusoidal
noise to be added to the AE waveforms, and the frequency of noise is denoted as f n. AE
signals are pulse-like functions with broad spectra, thus the dominant frequency f s (=1/Tr)
is used for quantifying the spectra of AE signals. For generality, we define lg(f n/f s) to
quantify the spectrum difference between signals and noise. The inversion errors of DC
proportions for different lg(f n/f s) are plotted in Figure 11.
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As shown in Figure 11, when the spectrum difference is small, the inversion errors
are significant, which indicates that the correlation calculation based on the correlation
function of raw waveforms cannot filter out noise efficiently. When the spectrum difference
between signals and noise is large enough (lg(f n/f s) > 0.5 or f n/f s > 3.2), the inversion
errors are approximately zero, which indicates that the noise is completely filtered out
by the correlation calculation. Thus, the inversion method based on the new correlation
function is effective when the frequency of noise is 3.2 times the dominant frequency of
signals, and the optimal performance of de-noising can be achieved.

According to Figure 11, the inversion errors can be significant, when the spectrum
of noise is similar to that of signals. However, for engineering applications, the spectrum
of noise is commonly greater than that of signals by at least one order of magnitude.
In this circumstance, the inversion error is less than 5%, which is acceptable. Conse-
quently, the inversion method based on the new correlation function is suitable for most
engineering applications.

5. Conclusions

In this study, a new correlation function of raw waveforms is proposed. The inversion
method based on the new correlation function can improve the inversion accuracy with
little additional computation consumption and does not require knowledge of the noise
or signal spectra. This idea is based on the inherent similarity between the signals, which
are generated by one source and recorded by different sensors. The spectrum of the new
correlation function is identical to those of signals and the optimal performance of de-
noising can be achieved by the correlation calculation, and then the accuracy of the moment
tensors inverted by the correlation coefficients improves. Compared with other methods,
the errors of the inversion method based on the new correlation function can be reduced
up to 90%.

The new correlation function is suitable for all source types, such as tensile, shear,
and mixed cracks. The performance of the new correlation function is influenced by the
time shifts between correlation functions and signals and the spectrum difference between
signals and noise. In normal circumstances, the inversion errors caused by those two factors
are relatively small and the new correlation function can be applied to most cases.
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