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Abstract: Bolted flange joints are widely used in engineering structures. Sunk screw connection
structures commonly used in small rockets and missiles exhibit significant nonlinear characteristics
when subjected to forces. In this article, a study of the dynamic characteristics of sunk screw
connection is conducted. A 3-dof trilinear dynamic model is proposed, based on the study of the
stiffness characteristics of the connection structure and considering contact nonlinearities. The
connection surface is simplified as two axial trilinear springs and a lateral linear spring. The motion
of the system can be divided into nine regions by the turning point of the trilinear springs. So that
the motion of the system in each region can be completely resolved, the dynamic characteristics of
the 3-dof trilinear system under impulse load and simple harmonic load are studied by means of
semi-numerical analytical method. It is found that the response frequency of the system remains
unchanged under a small impulse load, and the response can be obtained by approximate analytical
expressions. When the impulse load is large, the response frequency is fluctuant, which reflects the
sensitivity of the nonlinear system to the magnitude of impulse load. Under the simple harmonic
excitation of bending moment, the response frequency curve of the system presents good single
peak characteristics when the excitation amplitude is small. When the amplitude is large, the
peak frequency of the system shifts, and the phenomenon of multi-peak resonance is shown in a
certain range.

Keywords: bolted joint; dynamic modeling; nonlinear system; dynamics characteristics

1. Introduction

The structure subsystem is an important part of the aircraft, which serves to connect the
subsystems, protect the internal equipment, and withstand the static and dynamic loads [1]
so that the rocket can maintain a good aerodynamic shape [2]. The increasing demand
for small satellites has led to the continuous development of small rocket technology. The
diameter of small rockets is small and the structure of the cabin is compact, so a sunk screw
structure with high space utilization is often used to connect different cabins [3]. It is even
the best choice for multi-segment connections where design space is limited [4].

Many scholars have studied the static properties of bolt joint structures [5,6]. For the
analysis of dynamic properties, the simplified models are connected by linear constraint
relations, such as multi-point coupling, rigid connection, or linear spring connection [7].
The values of stiffness parameters depend on experience or a large number of tests, which
makes it difficult to obtain accurate dynamic parameters in the scheme design stage and
increases the complexity of design iterations. The nonlinear characteristics of actual systems
are difficult to obtain from linear simplification [8–10]. In addition to the complexity of the
dynamics problem, the complex characteristics of the spacecraft flight environment, with
multiple conditions of random loading, causes the bolted surfaces to have a significant
impact on the dynamic characteristics of the spacecraft. Due to the large number of
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bolted connections in rockets and missiles, and their diverse forms and relatively complex
structures, there is no unified dynamics model for analysis. How to extract a simplified
dynamics model to simulate the dynamics characteristics of bolted flange connection
structures is an urgent problem for scholars to solve.

For nonlinear connection contact problems, scholars have proposed a series of consti-
tutive models to describe their nonlinear mechanical properties [11,12]. These constitutive
models can be used in kinetics simplification of complex systems, and the simplified models
can reflect the system’s stiffness properties and damping properties, to a certain extent.
These constitutive models include the Bouc-Wen model [13], the Valanis model [14], the
Jenkins element model [15], the Iwan model [16], the Dahl model [17], the LuGre model [18],
the shear layer model [19,20], and the bilinear model [21].

In addition to the above models, some researchers have proposed a shear-layer
model [22,23], which simplifies the joint surface into a thin layer that can withstand shear
forces. Cigeroglu [24,25] proposed a one- and two-dimensional slip-movement friction
model by replacing the rods in the shear-layer model with beams. Xiao [26] described
the energy dissipation characteristics of a flat plate lap joint by considering the residual
stiffness in the macroscopic slip phase based on the former two.

New simplified models of dynamics based on the force characteristics of the actual
connection structure have been well applied in engineering. Nagata [27] performed a
simplified modeling of the bolted flange connection structure by assuming the linearization
of the gasket stress-strain characteristics. It was found that the bolt flange structure had
different stiffness characteristics in tension and compression, and could be simplified as a
bilinear spring. On this basis, Lu [28] discussed the dynamics and coupling characteristics
of the system under different excitation. Kashani [29] proposed a bi-linear hysteretic model
to study dry friction in bolted and riveted mechanical joints.

This paper takes the sunk screw joint structure as the study subject and investigates
the dynamics of the joint structure through the finite element method. Based on the
stiffness characteristics of the sunk screw joint structure, a simplified dynamics model
of the structure is proposed, which is called a three-degree-of-freedom trilinear dynamic
model (subsequently referred to as 3-dof trilinear dynamic model), and the response of the
system is analytically calculated through the region division method to solve the equations
of motion in each motion region of the system. Based on this model, the system response
under the impact load in axial, lateral, and bending directions, as well as under the simple
harmonic excitation, is studied by the semi-numerical analytical method. The nonlinear
dynamic characteristics of the system are analyzed. This paper proposes an empirical
formula for stiffness calculation with a certain range of applicability, which can be used to
quickly calculate the joint surface stiffness at the early stage of rocket scheme design. Based
on the stiffness study, a 3-dof trilinear dynamic modeling model is proposed to study the
dynamics of the countersunk screw socket structure. Using the 3-dof trilinear dynamic
modeling technique, the movement of the system in each area can be fully resolved and
accurate joint structure dynamics can be obtained. Redundant or iterative designs due to
lack of model accuracy in the initial design phase can be avoided. It provides a basis for the
acquisition of dynamics modeling parameters and the design of the dynamic characteristics
at the early stage of the rocket scheme design.

2. Simplified Dynamics Modeling of the Connection Structure

Extracting the mechanical characteristics of the sunk screw connection structure is
beneficial for establishing a complete nonlinear rocket dynamics model.

2.1. Structural Stiffness of Sunk Screw Connection

A typical sunk screw connection structure is shown in Figure 1, including the outer
flange, the inner flange, and the sunk screws uniformly distributed along the circumference.
The dimensions of the connection structure in this section are shown in Table 1, defining
the X-axis as axial and the Y-axis as lateral. To avoid excessive restraint, there is usually
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an axial assembly gap ∆ between the inner and outer flanges after assembly, and the sunk
screw connection structure exhibits different pull-pressure characteristics when subjected
to axial (X-direction) pressure or tension. In the axial direction of the rocket, the sunk
screw connection structure can be simplified as a trilinear spring with different tensile
and compressive properties. Its tensile and clearance compressive stiffnesses are mainly
influenced by the screw stiffness, and gapless compressive stiffness is mainly influenced by
the stiffness of the flange barrel section.

Figure 1. Cross section diagram of sunk screw connection structure and joint.

Table 1. Typical size of sunk screw connection structure.

Parameter d H h1 h2 L1 L2 L3 L4 ∆

size/mm 8 16 6 11 30 20 20 30 0.2

The axial stiffness of the sunk screw connection structure can be divided into three stages:

k∗s =


ks+ , δ ≥ 0

ks0 , ∆ < δ < 0
ks− , δ ≤ ∆

(1)

The tensile stiffness is ks+, the compression stiffness with clearance is ks0, and the
compression stiffness without clearance is ks−. δ is the deformation, δ ≥ 0 means the
connection structure is in tension, while ∆ < δ < 0 means the connection structure is in
compression and the displacement is less than the assembly gap. When the structure is in
compression and the displacement is greater than the assembly gap, δ ≤ ∆, here ∆ is the
negative number, which means opposite to the X direction, and its absolute value is the
actual gap width.

The stiffness values of each linear segment can be obtained by FEA or experimental
load-displacement curve fitting, but the stiffness values satisfying the accuracy require-
ments can also be obtained by simplified analytical algorithms at the early stage of the
design of the rocket structure. For a single sunk screw joint, the main source of deformation
in the tensile and gap-compression sections is the bending of the screw, and the main
generator of the gap-less compression deformation is the compression of the cylindrical
section of the inner and outer flange. The tensile section and the gapless compression
section have different stiffness due to the different force states of the inner and outer flanges
and the inconsistent thickness of the compressed end of the flange.

The sunk screw structure studied in this chapter consists of 24 countersunk screw joints
(Figure 1), and a single countersunk screw joint is a substructure of the socket structure.
The thickness of the body of cabin 1 is 2 mm, the thickness of the joint section is 6 mm, and
the length is 304 mm. The thickness of cabin 2 is 11 mm, and the length is 100 mm. The
diameter of the countersunk screw is 8 mm, and the length is 16 mm.

The 3D finite element modeling of the countersunk screw socket structure was per-
formed by a commercial software, Hypermesh. Figure 2 shows the finite element model of
the countersunk screw socket structure using eight-node hexahedron elements (HEX8). In
order to reduce the computational scale, only half of the sunk screw structure was modeled
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by imposing symmetry conditions, and only half of the corresponding loads were applied.
The cantilever beam was modeled by a rigid element with one end connected to all nodes
at the right end of cabin-2. Contact interface 1 was set between cabin-1 and sunk screw.
Interface 2 was set between cabin-1 and cabin-2. Interface 3 was set between cabin-2 and
sunk screw. Interface 1 and interface 2 were both in standard contact mode (contactable,
separable), which set sliding friction coefficient as 0.2; interface 3 was bound contact. The
material of each part was set to 30CrMnSi. More details and verification can be seen in the
reference [30].

Figure 2. FE model of whole model (a) and substructure (b) of sunk screw connection.

2.1.1. Axial Tensile Stiffness

The static finite element analysis of the joint structure was carried out in ANSYS. The
X-directional tension was loaded on cabin 1, and the three load conditions were 60 kN,
80 kN, and 120 kN. The deformation state of the joint section in the tensile state is shown in
Figure 3. It can be seen that the inner and outer flanges basically generated displacement in
the X-direction together, which means that the deformation of the flange itself was small.

Figure 3. X-displacement of joint cross-section under tensile load (unit: mm).

From the displacement vector diagram of the sunk screw in the X direction in Figure 3,
it can be seen that the sunk screw bends under the load, and the left part of the sunk head
produces positive displacement in the X direction and the Y direction, and the displacement
in the two directions is approximately equal in size in this example. The displacement in the
X direction of the sunk part causes the outer flange moving in the X direction to follow the
sunk screw; the displacement in the Y direction makes the left side of the sunk hole of the
outer flange closer to the sunk screw, and also causes the displacement in the X direction.
The combined effect of the two displacements is the deformation of the connection structure
in the X direction.

As the sunk screw force and deformation state is similar to the cantilever beam, in
the calculation of sunk screw deformation, we can refer to the cantilever beam deflection
formula, with additional correction factors. The deformation of sunk screw in X direction is:

δsX = asX
FL3

3nEI
= asX

64FL3

3πnEd4 (2)
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The cantilever length L is equal to the thickness of the outer flange, E is taken as
200 GPa, d is the screw diameter, the value of correction factor asX is based on the finite
element calculation results, n is the number of sunk screws.

The deformation of sunk screws in the Y direction is linearly related to the X direction:

δsY = asYδsX (3)

The deformations and correction factors of sunk screws under different tensile loads
are shown in Table 2. The axial load in the table is the load on the connection structure, and
the subscript F of deformation indicates the finite element calculation result.

Table 2. Sunk screw displacement and correction factor (mm).

Axial Load F δsX−F δsY−F asX δsX asY δsY

60 kN 0.01334 0.01323 3 0.01343 0.98 0.01316
120 kN 0.02651 0.02591 3 0.02686 0.98 0.02632
180 kN 0.03972 0.03870 3 0.04029 0.98 0.03948

Under the axial tensile load, the outer flange and the inner flange are locally com-
pressed, and most of the area is in tension. In order to facilitate the analytical calculation,
it can be assumed that the inner and outer flanges are uniformly stretched, and its actual
deformation is obtained by multiplying the correction factor; therefore, the deformation of
the inner and outer flanges in the X direction is:

δ f w = a f w
4F(L1 + L2)

πE f (D2
1 − D2

2)
(4)

δ f n = a f n
4F(L3 + L4)

πE f (D2
2 − D2

3)
(5)

a f w and a f n are the deformation correction coefficients of the outer and inner flanges,
respectively; elastic modulus of the flange material E f is taken as 200 GPa in this case; D1,
D2 and D3 are the outer flange outer diameter of 336 mm, inner diameter of 324 mm, and
inner flange inner diameter of 302 mm, respectively; L1, L2, L3 and L4 are shown in Table 1.

The deformation and correction coefficients of the inner and outer flange in the X
direction under different tensile loads are shown in Table 3; the subscript F of deformation
indicates the finite element calculation result.

Table 3. X direction deformation of internal and external flange and correction coefficient.

Axial Load F δfw−F/mm δfn−F/mm afw δfw/mm afn δfn/mm

60 kN 0.00315 0.00202 1.3 0.00313 1.5 0.00208
120 kN 0.00626 0.00410 1.3 0.00627 1.5 0.00416
180 kN 0.00937 0.00618 1.3 0.00940 1.5 0.00624

Considering the deformation of sunk screws, external flange, and internal flange de-
formation, we can determine the deformation and tensile stiffness of sunk screw connection
structure as:

δ = as(δsX + δsY) + δ f w + δ f n (6)

ks+ =
F
δ
=

1

asasX
64L3

3πnEd4 (1 + asY) + a f w
4(L1+L2)

πE f (D2
1−D2

2)
+ a f n

4(L3+L4)

πE f (D2
2−D2

3)

(7)

where the correction factor of sunk screw deformation is 0.715, asX = 3, asY = 0.98,
a f w = 1.3, a f n = 1.5. According to Equation (7), the tensile stiffness of the sunk screw
connection structure can be obtained.
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Under different tensile loads, the deformation and tensile stiffness of the sunk screw
connection structure are shown in Table 4. It can be seen that in the tensile state, the
deformation of the sunk screw connection structure is linearly related to the axial load.

Table 4. Deformation and stiffness of sunk screw connection structure.

Axial Load F δF/mm ks+F/N·m−1 δ/mm ks+/N·m−1

60 kN 0.02435 2.464 × 109 0.02422 2.477 × 109

120 kN 0.04835 2.482 × 109 0.04845 2.477 × 109

180 kN 0.07238 2.487 × 109 0.07268 2.477 × 109

2.1.2. Gapped Compression Stiffness

In the gapped compression section, the stress state of the sunk screw is similar to the
tensile section, though in the opposite direction. Compared with Figure 4, the displace-
ment of the screw bottom in Y direction (Figure 5) is basically zero, indicating that under
compression load, the inner flange is a stronger constraint, and the force state of the sunk
screw is similar to that of the cantilever beam. The internal and external flange force state
under compression is different from that under tensile load; in the gapped compression
section, the internal and external flanges are compressed on one side only, and the free end
is almost unstressed, where deformation on the stiffness of the connection structure is very
small and can be ignored.

Figure 4. Displacement vector of screw cross-section in X and Y directions under tensile load
(unit: mm).

Figure 5. Sunk screw cross-section displacement vector diagram under compression load (unit: mm).

Under the compressive load, the X and Y direction deformation of sunk screws and
the internal and external flange deformation are:

δsX = asX0
FL3

3nEI
= asX0

64FL3

3πnEd4 (8)

δsY = asY0δsX (9)

δs = as0(δsX + δsY) (10)
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δ f w = a f w0
4FL1

πE f (D2
1 − D2

2)
(11)

δ f n = a f n0
4FL4

πE f (D2
2 − D2

3)
(12)

δ = δs + δ f w + δ f n (13)

Then, the structural stiffness of the sunk screw connection in the gapped compression
section can be expressed as:

ks0 =
F
δ
=

1

as0asX0
64FL3

3πnEd4 (1+ asY0)+a f w0
4FL1

πE f (D2
1−D2

2)
+ a f n0

4FL4
πE f (D2

2−D2
3)

(14)

In the gapped compression section, the pressure load is 120 kN. The results of the
finite element calculation of the deformation of each part, and the values of the correction
factors, are shown in Table A1.

2.1.3. Gapless Compression Stiffness

When the axial pressure load causes the compression of the connection structure to
be greater than the assembly gap, the two cabins are in contact with each other; then,
the compression stiffness should be the gap-free compression stiffness plus the cylinder
section stiffness.

ks− = ks0 +
E f π(D2

1 − D2
2)

4(L1 + L4)
(15)

Substitute the parameters of the connection structure in it, we can get ks− = 2.357×
1010 N/m.

2.1.4. Lateral Stiffness

When the sunk screw connection structure is subjected to lateral (along the Y-axis)
load, its displacement is shown in Figure 6, and the connection structure is tightly connected
under the action of sunk screw. The force state is similar to a cantilever beam, with an
approximate non-equal-thickness circular cross-section, as shown in the structure in the
red wireframe in Figure 6. The circular thickness is, in sequence, the thickness of the inner
flange h2, the sum of the thickness of the inner and outer flange h1 + h2, and the thickness
of the outer flange h1.

Figure 6. Displacement contour of sunk screw connection structure under lateral load.

According to the cantilever beam deflection formula, the lateral deformation of the
connection structure is calculated as follows:

δr1 =
F(L1 − L3)

3

3E f Iw
+

F(L1 − L3)L2
3

2E f Inw
+

FL3
3

3E f Inw
+

FL1L2
4

2E f In
+

FL3
4

3E f In
(16)

The cross-sectional moment of inertia of the outer flange, the inner flange, and the
combined inner and outer flange are in the following order:
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Iw =
π(D4

1 − D4
2)

64
(17)

In =
π(D4

2 − D4
3)

64
(18)

Inw =
π(D4

1 − D4
3)

64
(19)

As the connection part is a short and thick-type structure, the shear effect needs to be
considered, and the lateral deformation under shear force is:

δr2 =
4FL1

πG f (D2
1 − D2

2)
+

4FL4

πG f (D2
2 − D2

3)
(20)

Total deformation is:
δr = δr1 + δr2 (21)

Adopting the correction factor, the lateral stiffness can be expressed as:

kr =
F

arδr
(22)

The lateral stiffness can be obtained by finite element calculation kr = 1.95× 109N/m,
the correction factor calculated from this result is ar = 4.

2.2. Simplified Dynamic Model of Sunk Screw Connection Structure

By the study of the stiffness of the sunk screw connection structure, it is found that
axial stiffness can be divided into three stages according to the installing gap between
cabins, and the stiffness is linear in each region. Therefore, its axial stiffness can be equated
to a trilinear spring (Equation (1)). Since the structure of the joint is tightly connected when
laterally loaded under the action of sunk screws, its lateral stiffness can be equated to a
linear spring. Based on this, the sunk screw connection structure can be simplified and a
3-dof trilinear dynamic model can be established to study the dynamics of the connection
structure, and to lay the foundation for modeling the dynamics of the rocket.

2.2.1. 3-Dof Trilinear Dynamic Model

A simplified model of the dynamics of a typical sunk screw connection structure is
shown in Figure 7, in which the axial (X-axis) spring is a trilinear spring with stiffness
in the form shown in Equation (1), and the lateral (Y-axis) spring is a linear spring. The
rectangular part represents the cabin structure, which has three directional degrees of
freedom; the translational degrees of freedom in the X and Y directions (u, v) and the
rotational degrees of freedom θ around Oc. The mass and rotational inertia of the cabin
structure are m and J.

Figure 7. Initial and deformation state of 3-dof trilinear spring system.
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Here, by decomposing the overall stiffness of the connection structure into two trilinear
springs, the stiffness of each trilinear spring is half of the overall stiffness, and the dimension
b is not equal to the outside diameter of the pod, but

√
2/2 times that of the outside

diameter. Assuming that the cabin segment of diameter d is connected by N uniformly
distributed screws, and that the local stiffness of each screw joint is k, the overall stiffness
of the connected structure is Nk. Simplifying this connected section to two springs of
stiffness k0, the springs are symmetrically distributed with a spacing b. To ensure that the
equivalent model has the same effect as the original model under axial tension, it should be
ensured that:

k0 = Nk/2 (23)

At the same time, it should be ensured that the effect of the moment load is the same.
When the bending moment is M, the angle of rotation is θ. M= 2k0 · bθ

2 ·
b
2 = k0θb2

2

M =
n
∑
1

k · sin(2 n
N π)dθ
2 · sin(2 n

N π)d
2 = Nkθd2

8
(24)

Combining Equation (23) and Equation (24) yields

b =

√
2

2
d (25)

In order to solve the equations of motion of the module, let the displacement of the
center of the bottom of the cabin be x = (u, v, θ)T , and the displacement of the midpoint of
the bottom of the cabin and the center of mass of the cabin are as follows:

uoc = u− r sin θ
voc = v + r cos θ

θoc = θ
(26)

where r is the height of the center of mass of the cabin, the velocity relation is obtained after
differentiation, with the assumption of small deformation applied:

.
uoc =

.
u− r

.
θ cos θ =

.
u− r

.
θ

.
voc =

.
v + r

.
θ sin θ =

.
v

.
θoc =

.
θ

(27)

The system kinetic energy is:

T =
1
2

m
.
u2

oc +
1
2

m
.
v2

oc +
1
2

J
.
θ

2
oc (28)

Substituting into the velocity relationship, Equation (27) yields:

T =
1
2

m
( .

u− r
.
θ
)2

+
1
2

m
.
v2

+
1
2

J
.
θ

2
(29)

The expression for the deformation of the spring is:
δ1 = v− b

2 sin θ

δ2 = v + b
2 sin θ

δ3 = u
(30)

δ1 is the deformation of left axial spring, δ2 and δ3 are the deformation of right axial
and radial spring. Since the axial spring is a trilinear spring, its elastic potential energy
should be expressed in the following terms:
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U∗s (δ) =


1
2 ks+δ2, δ > 0

1
2 ks0δ2, ∆ < δ ≤ 0

1
2 ks0∆2 + 1

2 ks−(δ− ∆)2, δ ≤ ∆
(31)

where δ is the deformation of the trilinear spring, which can be δ1 or δ2, and ∆ is the
assembly gap of the connection structure. The elastic potential energy of the system is:

U = U∗s (δ1) + U∗s (δ2) +
1
2

kru2 (32)

The expression for the elastic potential energy of the system should be expressed in
segments with 0 and ∆ as the dividing point, in order to build a specific expression for the
equation of motion of the system based on the Lagrange Equation.

2.2.2. Equations of Motion of the System in Each Region

In different regions, the springs are in different states of tension and compression,
resulting in different stiffness matrices of the system. The system is divided into nine
regions according to the tension and compression states of the springs on the left and right
sides, as shown in Figure 8, and the motion of the system in each region can be determined.

Figure 8. Partition diagram of 3-dof trilinear system.

(1) Region 1
When the system is moving in region 1, δ1 > 0 and δ2 > 0, both left and right springs,

are stretched and the stiffness value is ks+, then the elastic potential energy of the system
can be expressed as:

U = U∗s (δ1) + U∗s (δ2) +
1
2

kru2 =
1
2

ks+δ2
1 +

1
2

ks+δ2
2 +

1
2

kru2 (33)

The Lagrangian Equation of the system is:

d
dt

(
∂T
∂

.
qi

)
− ∂T

∂qi
+

∂U
∂qi

= 0 (34)

Substituting Equations (29) and (33) into Equation (34), and taking the generalized
coordinates as (u, v, θ), the undamped free vibration equation of the system in region 1 is: m 0 −mr

0 m 0
−mr 0 J + mr2




..
u
..
v
..
θ

+

kr 0 0
0 2ks+ 0
0 0 b2

2 ks+

u
v
θ

 = 0 (35)

The characteristic equation of the system in region 1 is:∣∣∣∣∣∣
kr 0 0

0 2ks+ 0
0 0 b2

2 ks+

−ω2

 m 0 −mr
0 m 0
−mr 0 J + mr2

∣∣∣∣∣∣ = 0 (36)

(2) Region 2
When moving in region 2, the equation of motion of the system is:
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 m 0 −mr
0 m 0
−mr 0 J + mr2




..
u
..
v
..
θ

+

kr 0 0
0 ks+ + ks0

b
2 (ks0 − ks+)

0 b
2 (ks0 − ks+)

b2

4 (ks+ + ks0)


u

v
θ

 = 0 (37)

The characteristic equation of the system in region 2 is:∣∣∣∣∣∣∣
kr 0 0

0 ks+ + ks0
b
2 (ks0 − ks+)

0 b
2 (ks0 − ks+)

b2

4 (ks+ + ks0)

−ω2

 m 0 −mr
0 m 0
−mr 0 J + mr2


∣∣∣∣∣∣∣ = 0 (38)

(3) Region 3
When moving in region 3, δ1 > 0 and δ2 < ∆, the left spring is in tension with a

stiffness value of ks+, and the right spring is in gapless compression with a stiffness value
of ks−, then the elastic potential energy of the system can be expressed as:

U = U∗s (δ1) + U∗s (δ2) +
1
2

kru2 =
1
2

ks+δ2
1 +

1
2

ks0∆2 +
1
2

ks−(δ2 − ∆)2 +
1
2

kru2 (39)

Substituting the kinetic and potential energies of the system, Equations (29) and (39),
into Equation (34) and taking the generalized coordinates as (u, v, θ), the equation of motion
of the system in region 3 is: m 0 −mr

0 m 0
−mr 0 J + mr2




..
u
..
v
..
θ

+

kr 0 0
0 ks+ + ks−

b
2 (ks− − ks+)

0 b
2 (ks− − ks+)

b2

4 (ks+ + ks−)


u

v
θ

 =

 0
∆(ks− − ks0)
b
2 ∆(ks− − ks0)

 (40)

It can be seen that, although the system is not subject to external forces, the equation
of motion is in the form of forced vibration due to the segmented linearity of the spring,
which causes the system to enter the gapless compression state motion with additional
external force effects. The equation of motion is in the form of forced vibration.

The characteristic equation of motion of the system in region 3 is:∣∣∣∣∣∣∣
kr 0 0

0 ks+ + ks−
b
2 (ks− − ks+)

0 b
2 (ks− − ks+)

b2

4 (ks+ + ks−)

−ω2

 m 0 −mr
0 m 0
−mr 0 J + mr2


∣∣∣∣∣∣∣ = 0 (41)

(4) Region 4–9
Similarly, the characteristic equations of motion of the system in other regions can

be obtained.
At this point, the motion of the system in each region is completely determined, and

the equations of motion in each region can be unified and expressed as: m 0 −mr
0 m 0
−mr 0 J + mr2




..
u
..
v
..
θ

+

k11 0 0
0 k22 k23
0 k32 k33

u
v
θ

 = Q∗ (42)


k11 = kr

k22 = k∗s1 + k∗s2
k33 = b2

4
(
k∗s1 + k∗s2

)
k23 = k32 = b

2
(
k∗s2 − k∗s1

) (43)

k∗s1 and k∗s2 are the stiffnesses of the left and right springs, whose values are determined
by the partition in which the system is located; Q∗ is the additional generalized external
forces on the system when the left or right spring is in the gapless compression section, the
value of which is also determined by the partition in which the system is located. Let

K23 =

[
k22 k23
k32 k33

]
(44)
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The spring states, the stiffness matrix, and the additional generalized external forces
in each region are shown in Table A2.

2.2.3. Response Analysis of the System within Each Region

(1) Free vibration region
When the motion of the 3-dof trilinear system is located in regions 1, 2, 4, and 5, the

system moves as an undamped free vibration, shown below:

M
..
x + Kx = 0 (45)

The solution of the equation of motion within the region is (the derivation is shown in
the Appendix A):

x(t) =
n

∑
i=1

A(i)(
A(i)TMx(0)

Mi
cos ωit +

A(i)TM
.
x(0)

ωi Mi
sinωit) (46)

According to the equations of motion and characteristic equation of each zone, the
response of the system can be obtained by combining Equations (45) and (46) after substi-
tuting the initial conditions of the system.

(2) Forced vibration region
When the 3-dof trilinear system is located in regions 3, 6, 7, 8, and 9, the system is not

subject to external forces, but, due to the nonlinearity of the system, the effect of additional
external forces is produced; considering the damping of the classical system, the equation
of motion is:

M
..
x+C

.
x+Kx=Q (47)

After solving the matrix of the vibration modes of the undamped free vibration
system, the displacement is expressed in the form of n orthogonal principal vibration
modes, according to the expansion theorem:

x(t) =
n

∑
i=1

A(i)yi(t) = Φy(t) (48)

Substituting Equation (47) into Equation (46) and multiplying the left side of ΦT on
both sides of the equation:

ΦTMΦ
..
y(t) + ΦTCΦ

.
y(t) + ΦTKΦy(t) = ΦTQ (49)


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn

 ..
y(t) +


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cn

 .
y(t) +


K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Kn

y(t) =


Q∗1
Q∗2
...

Q∗n

 (50)

It can be seen that the response solution problem for a multi-degree-of-freedom system
has been converted into a response solution problem for a system with n single degrees
of freedom:

..
yi(t) + 2ξiωi

.
yi(t) + ω2

i yi(t) =
Q∗i
Mi

(i =1, 2, · · · , n) (51)

ξi =
Ci

2ωi Mi
(52)

ωi =

√
Ki
Mi

(53)

Based on the Duhamel integral, solving for the viscous damped-forced vibration of a
1-dof system under arbitrary excitation yields:
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yi(t) = e−ξiωit

[
yi(0) cos ωDit +

.
yi(0) + ξiωiyi(0)

ωDi
sin ωDit

]
+

1
MiωDi

∫ t

0
Q∗i e−ξiωi(t−τ) sin ωDi(t− τ)dτ (54)

ωDi = ωi

√
1− ξ2

i (55)

Let t = 0 in Equation (48) and left multiply on both sides of the Equation by A(i)TM
to obtain

A(i)TMx(0) = A(i)TM
n

∑
j=1

A(j)yj(0) (56)

According to the orthogonality of the vibration pattern, it yields:

yi(0) =
A(i)TMx(0)

Mi
(57)

Similarly, taking the derivative of both sides of Equation (48) and left multiplying
A(i)TM gives:

.
yi(0) =

A(i)TM
.
x(0)

Mi
(58)

The response of a multi-degree-of-freedom system to forced vibration under classical
damping conditions can be obtained by substituting Equation (54) into Equation (48).

3. Dynamic Characteristics of the Cabin Connection Structure

Based on the 3-dof trilinear dynamic equivalent model, the dynamic response and
coupling characteristics of the sunk screw connection structure under different excitations
are studied.

3.1. Half-Numerical Analysis Method

The 3-dof trilinear system is a nonlinear system, and its response is difficult to com-
pletely resolve. However, according to the tensile and compressive characteristics of the
trilinear spring, the system can be divided into nine motion regions. In each region, the
system response can be completely resolved, and the analysis results of the system response
in each region have been given in the previous section. Therefore, during the motion of the
system, it is only necessary to judge the motion partition in which the system is located, and
calculate the moments of entering and leaving the partition to obtain the complete response
process of the system. In this calculation process, the motion in the partition is obtained
by analytic calculation, and the moments at the boundary of the partition are obtained by
numerical iterative calculation; therefore, it is called the half-numerical analysis method.

The main calculation process of the half-numerical analysis method can be briefly
described as follows.

1. Obtaining the analytical solution of the system response in each partition according
to the system parameters, and inputting the external excitation and initial conditions
of the system.

2. Determining the subzone in which the system is located and applying the analytical
formula for that subzone to calculate the system state at the next time step and
recording it.

3. After completing the calculation of each time step, determine whether the system
crosses the region, and repeat the calculation in step 2 if it does not, or return to the
previous time step if it does.

4. Calculate the cross-zone moment using the dichotomous method, and use the analyti-
cal formula to calculate the system state at that moment.

5. Repeat steps 2–4 until the solution time is reached.
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3.2. Verification of Half-Numerical Analysis Method

In order to verify the accuracy of the semi-numerical analysis method, a corresponding
finite element model was built in ANSYS-APDL to compare the system response obtained
from both. The parameters of the validation model are shown in Table 5.

Table 5. System parameters of the verification model.

Parameter M/kg J/kg·m2 b/m r/m ∆/m

Value 1000 338.4 2 1 0.0002
Parameter ks+/N ·m−1 ks0/N ·m−1 ks−/N ·m−1 kr/N ·m−1

Value 106 1.2 × 106 2 × 107 107

In the half-numerical analysis method, the calculation time is chosen to be 0.5 s, the
fixed time step is 10−3 s, and the calculation accuracy is 10−15 s. Since the cross-sectional
area of the cabin segment is much larger than the screw, the stress and strain of the cabin
segment can be negligible compared with the screw under the action of external forces,
so the cabin is considered as a rigid body in the semi-numerical model to improve the
calculation efficiency.

In the finite element model, the fixed time step is 10−4 s, and the numerical calculation
attenuation factor is taken to be 0, which means no attenuation. In the Matlab calculation,
the cabin section is assumed to be a rigid body, and in order to reduce the model error of
the two calculation methods, the elastic modulus of the cabin material in the FE model is
enlarged to one thousand times the normal value. Then, the system response obtained by
the two methods is shown in Figure 9.

Figure 9. Comparison chart of system displacement (a) and velocity (b) response.
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In Figure 9, the symbol “mat” represents the response obtained by the half-numerical
analysis method, and the symbol “ansys” represents the finite element result. It can be
seen that the displacement and velocity responses of the system obtained by the two
methods are almost identical, which proves that the half-numerical analysis method can
calculate the three-degree-of-freedom trilinear dynamical system with accurate results.
Since the semi-numerical analytical calculation method is fully resolved in the partitioned
motion response, its calculation is fast and accurate, and there is no convergence problem.
Compared with the finite element method, the system response can be solved faster and
more accurately when the equations of motion have been established, so it is suitable for
studying the dynamics of the countersunk screw socket structure.

3.3. Response under Impact Loading of Sunk Screw Connection Structure

A typical sunk screw connection system is simplified to a 3-dof trilinear system, as
shown in Table A3, and its dynamic characteristics are studied under different excitation
forms and intensities. The response frequencies and vibration patterns in each division of
the system are shown in Table A4.

3.3.1. Response under Axial Impact Loading

For a 3-dof trilinear system, the system generates an initial velocity along the axial
direction under an axial shock, ignoring the time effect of the shock load, and directly
assigning the system initial conditions x(0) = (0, 0, 0),

.
x(0) = (0,

.
v, 0), where

.
v 6= 0, and

the system response is calculated by the half-numerical analysis method.
Take

.
v = 0.2 ∼ 1 m/s, the system only vibrates along the axial direction. Its axial

displacement curve is shown in Figure 10, and dv is the axial initial velocity in the legend.
The 0.1 s response time of the system is intercepted, and the motion time of each region of
the system is counted, as shown in Table 6. Under the condition that the initial displacement
of the system is zero, when the system is subjected to a small axial shock, the system only
moves in region 1 and region 5, and the axial response frequency of the system is fixed.
When the system is subjected to a large axial shock, the system moves in regions 1, 5, and 9,
and the axial response frequency of the system increases with the increase in the shock load.

Figure 10. System displacement response under axial impact.

Table 6. Movement time of the system in different partitions under axial impact.

.
v/m·s−1 t1/s t5/s t9/s

0.2 0.0511 0.0489 0
0.5 0.0511 0.0489 0
0.8 0.0607 0.0289 0.0104
1.0 0.0648 0.0236 0.0116

Notes: The subscript of t is the region number.

The first-order response frequency of the system is shown in Figure 11, conducting
the fast Fourier transform. Under the condition that the initial displacement is zero, the
axial response frequency of the system is 441 Hz when the initial axial velocity satisfies
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.
v ≤ 0.7 m/s. Combined with Figure 10 and Table 6, it can be seen that the system only
moves in regions 1 and 5 at this time, and its axial response frequency is independent of the
magnitude of the impact load. With initial axial velocity

.
v ≥ 0.8 m/s, the axial response

frequency of the system increases with the increase of the impact load magnitude, which is
due to the fact that the system starts to move in region 9.

Figure 11. First-order response frequency of the system under axial shock.

In fact, by substituting the frequencies and vibration shapes of the system in Table A4
into Equations (46) and (48), we can learn that the system has only axial displacement
response in region 1, region 5, and region 9, and its response frequencies are f(1) = 432.2 Hz,
f(5) = 450.2 Hz and f(9) = 2179.3 Hz. When the axial impact load is small, the system
moves only in regions 1 and 5, and within one vibration cycle, the system moves in
region 1 with time of 1/(2 f(1)) and in region 5 with time of 1/(2 f(5)). Let the system’s
motion frequency be f and period 1/f, and then, the theoretical response frequency of the
system satisfies:

1
f
=

1
2
(

1
f(1)

+
1

f(5)
) (59)

Calculation by substitution gives f = 441 Hz, which is consistent with the fast Fourier
transform results.

When the axial shock load is large, the system moves in regions 1, 5, and 9. Region 5 is
the region formed by the assembly gap; when the axial shock is large enough, the system
moves in region 5 for a short time, and this part of time can be ignored in the limit state,
when the theoretical response frequency of the system satisfies:

1
f
=

1
2
(

1
f(1)

+
1

f(9)
) (60)

Then, we can get f = 722.3 Hz.
Since the actual shock load cannot be very large, region 5 still affects the response

frequency of the system, the magnitude of which depends on the magnitude of the shock
load, and the response frequency should be between 441 and 722.3 Hz. The system response
is highly sensitive to the magnitude of the load, which is one of the typical characteristics
of nonlinear systems.

3.3.2. Response under Lateral Impact Loading

Similar to the axial shock, for a 3-dof trilinear system, the system generates an initial
velocity along the lateral direction under the lateral shock, neglecting the time effect of
the shock load, and directly assigning the system initial conditions x(0) = (0, 0, 0),

.
x(0) =

(
.
u, 0, 0), where

.
u 6= 0; the system response is calculated by the half-numerical analy-

sis method.
The displacement response of the system is shown in Figure 12, by taking

.
u = 0.5 m/s

and
.
u = 2 m/s, respectively. When the initial displacement of the system is zero, the

system will produce axial displacement and turning angle in bending direction under the
lateral impact load, and the three directions of system motion are completely coupled.
When the lateral impact load is small (e.g.,

.
u = 0.5 m/s), the axial displacement of the

system is not significant, and the main motion is rotation and translation along the lateral
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direction; when the lateral impact load is large (e.g.,
.
u = 2 m/s), it will produce a large

axial displacement response, of which the magnitude is close to the lateral displacement.

Figure 12. Displacement response with
.
u = 0.5 m/s (a) and

.
u = 2 m/s (b).

The displacement response of the system was intercepted within 1 s, and the motion
time of the system in each division was counted, as shown in Table 7. The response is very
sensitive to the magnitude of the impact load, and the first-order response frequencies of
the system in each degree of freedom under different lateral impact conditions are shown
in Figure 13, by performing the fast Fourier transform. It can be seen that the first-order
response frequencies in the lateral and bending directions under the impact conditions are
identical, while the first-order response frequency in the axial direction is twice as high as
that in the lateral and bending directions in most cases. Due to the nonlinear characteristics
of the system, the axial direction produces a higher first-order response frequency under
certain impact conditions.

Table 7. Movement time of the system in each partition under lateral impact load.

.
u/m·s−1 t1/s t2/s t3/s t4/s t5/s t6/s t7/s t8/s t9/s

0.3 0.0002 0.4987 0 0.4976 0.0035 0 0 0 0
0.5 0.0002 0.4987 0 0.4976 0.0035 0 0 0 0
0.6 0.0014 0.4969 0.0007 0.4963 0.0041 0 0.0006 0 0
0.8 0.0631 0.3637 0.0611 0.3659 0.0840 0.0007 0.0607 0.0007 0
1.0 0.0589 0.3431 0.0874 0.3359 0.0782 0.0034 0.0902 0.0028 0
1.5 0.2170 0.2534 0.1071 0.2449 0.0460 0.0123 0.1035 0.0144 0.0015
2.0 0.5599 0.1093 0.0460 0.0897 0.0535 0.0410 0.0448 0.0353 0.0206

Figure 13. First-order response frequency of the system under lateral impact loading.

(1) System response under small lateral impact loads.
When the lateral impact load is small, the first-order response frequencies of the system

in the lateral, axial, and corner directions are approximately 94 Hz, 188 Hz, and 94 Hz,
respectively, and remain constant. Table 7 shows that the main motion regions of the system
at this time are regions 2 and 4, and the spring states on the left and right sides are tensile on
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one side and compressive on the other side, and the compression is less than the assembly
gap ∆. The tensile stiffness of the tri-linear spring is ks+ = 2.95 × 108 N/m, and the
compression stiffness with clearance is ks0 = 3.2× 108 N/m; the stiffness values are close to
each other, so the symmetry of the system motion is good. Considering only the motion of
the system in regions 2 and 4, and substituting the frequencies and vibration patterns of the
two regions and the initial conditions of the system into Equation (46), the system response
can be approximately resolved. With initial conditions of x(0) = (0, 0, 0), x .(0) = (

.
u, 0, 0),

the system response in region 2 is:

x2(t) =
.
u

 [0.6336 sin(2π × 94.1t) + 0.00044 sin(2π × 441.3t) + 1.7983 sin(2π × 849.4t)]× 10−4

[1.32 sin(2π × 94.1t)− 0.3801 sin(2π × 441.3t) + 0.0492 sin(2π × 849.4t)]× 10−5

[−2.6 sin(2π × 94.1t) + 0.0000068 sin(2π × 441.3t) + 0.28692 sin(2π × 849.4t)]× 10−3

 (61)

When the system enters region 4 from region 2, the initial condition is approximated
as x(0) = (0, 0, 0),

.
x(0) = (− .

u, 0, 0); then, the response in region 4 is:

x4(t) = −
.
u

 [0.6336 sin(2π × 94.1t) + 0.00044 sin(2π × 441.3t) + 1.7983 sin(2π × 849.4t)]× 10−4

[−1.32 sin(2π × 94.1t) + 0.3801 sin(2π × 441.3t)− 0.0492 sin(2π × 849.4t)]× 10−5

[−2.6 sin(2π × 94.1t) + 0.0000068 sin(2π × 441.3t) + 0.28692 sin(2π × 849.4t)]× 10−3

 (62)

Combining Equation (61) and Equation (62) yields an approximate analytical expres-
sion for the displacement response of the system as:

x(t) =
.
u

 [0.6336 sin(2π × 94.1t) + 0.00044 sin(2π × 441.3t) + 1.7983 sin(2π × 849.4t)]× 10−4

[|1.32 sin(2π × 94.1t)| − |0.3801 sin(2π × 441.3t)|+ |0.0492 sin(2π × 849.4t)|]× 10−5

[−2.6 sin(2π × 94.1t) + 0.0000068 sin(2π × 441.3t) + 0.28692 sin(2π × 849.4t)]× 10−3

 (63)

When
.
u = 0.5 m/s, the displacement response of the system obtained by the half-

value analytical calculation method and the approximate analytical expression is shown
in Figure 14; “-ana” represents the result of the approximate analytical expression, and
the lateral displacement and rotation angle of both are basically the same. The two axial
displacements are basically the same in magnitude, but the specific values are slightly
different, which is due to the fact that when the system enters region 4 from region 2 during
the approximate analytical calculation, the system state is assumed to be x = (0, 0, 0),

.
x =

(− .
u, 0, 0), which is different from the actual situation.

Figure 14. Displacement response (left) and amplitude frequency (right) comparison chart when
.
u = 0.5 m/s.

The amplitude frequency curves obtained from the displacement responses of the two
methods are shown in Figure 14. It can be seen that the displacement response frequencies
of the lateral and bending directions of the system obtained by the two methods are basically
the same, both being 94.1 Hz and 849.4 Hz, and the magnitude of the displacement response
of 441.3 Hz in Equation (63) is very small and can be ignored. The first-order response
frequencies of axial displacements are consistent, both being 188 Hz, but the response
frequencies of higher orders are significantly different.
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In summary, when the lateral impact load is small, the lateral and bending direc-
tion displacement response of the system can be solved by Equation (63), and its axial
displacement response is small in magnitude and can be neglected.

(2) System response under large lateral impact loads
When the lateral impact load is large (as the resulting lateral initial velocity

.
u ≥ 0.8 m/s),

as can be seen from Table 7, the motion time of the system in region 2 and region 4 is
significantly reduced. When the lateral impact is large enough, its motion trajectory is
spread over all nine regions, and the response is more complex and difficult to analytically
calculate, which can only be solved by the semi-numerical analytical calculation method.

The amplitude frequencies of the system are shown in Figure 15, taking
.
u = 1 m/s and

.
u = 2 m/s. Compared with the small impact load condition, the amplitude spectrum under
a large impact load has more local peaks, and the amplitude spectrum will change with
the impact load. When

.
u = 1 m/s, the first-order response frequency of the system in both

lateral and bending directions is 106 Hz, the higher-order response frequency amplitude
is smaller, and the axial first-order response frequency is 212 Hz, which is twice that of
the lateral and bending directions. When

.
u = 2 m/s, the first-order response frequency

of the system in both lateral and bending directions is 133 Hz, the higher-order response
frequency amplitude is significantly higher, and the axial first-order response frequency
is about 627 Hz, which is no longer two times that of the lateral and bending directions.
Therefore, in the design of the connection structure, attention should be paid to the change
in response frequency due to structural nonlinearity to avoid frequency peaks.

Figure 15. Amplitude frequency graph when
.
u = 1 m/s (a) and

.
u = 2 m/s (b).

In fact, in the axial response plot in Figure 15b, there is also a local peak near 212 Hz.
However, due to its small amplitude, the response characteristics are not obvious, defining
the more pronounced peak at 627 Hz as the axial first-order frequency. This is also the
reason for the jump in the axial first-order frequency in Figure 13.

3.3.3. System Response under Bending Moment Impact Loading

For a 3-dof trilinear system, the system generates angular velocity under the bending
moment impact load, neglecting the time effect of the impact load, and directly assigning
the system initial conditions x(0) = (0, 0, 0),

.
x(0) = (0, 0,

.
θ), where

.
θ 6= 0; the system

response is calculated by the semi-numerical value resolution method.
The displacement response of the system was intercepted within 1 s, and the motion

duration of the system in each division was counted, as shown in Table A5. The system
response was very sensitive to the magnitude of the impact load, and the first-order
response frequencies of each degree of freedom of the system under different lateral impact
conditions were obtained by doing the fast Fourier transform on the system response, as
shown in Figure 16.
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Figure 16. First-order response frequency of the system under bending moment impact load.

Since the top side of the cabin is the free end and the bottom side of the cabin is the
bound end, the lateral motion of the bottom side always causes the cabin to rotate, and
the first-order response frequencies of the system in the lateral and bending directions are
exactly the same. Due to the symmetry of the motion, the first-order response frequency in
the axial direction is twice as high as that in the lateral direction. However, in specific cases,
the amplitude of this multiplier frequency in the axial direction is small, and its first-order
frequency migrates to high frequencies. Under small impact loads (i.e., the angular velocity
generated is less than or equal to 1 rad/s), the displacement response frequency of the
system does not vary with the load, and the first-order displacement response frequencies
in the lateral, axial, and bending directions remain at 94 Hz, 188 Hz, and 94 Hz, respectively.

From Table A5, it can be seen that the system mainly moves in regions 2 and 4 under
small impact loads, and the motion time in region 5 is short and can be neglected in the
approximate analytical calculation. Substituting the vibration type, frequency, and initial
conditions of the system into Equation (46), the response of the system in region 4 is:

x4(t) = −
.
u

[−3.948 sin(2π × 94.1t)− 0.002 sin(2π × 441.3t) + 0.438 sin(2π × 849.4t)]× 10−5

[8.237 sin(2π × 94.1t)− 1.732 sin(2π × 441.3t)− 0.012 sin(2π × 849.4t)]× 10−6

[1.6 sin(2π × 94.1t)− 0.000003 sin(2π × 441.3t) + 0.007 sin(2π × 849.4t)]× 10−3

 (64)

When the system enters region 2 from region 4, the initial condition is approximated
by x(0) = (0, 0, 0),

.
x(0) = (0, 0,−

.
θ), then the response in region 2 is:

x2(t) =
.
u

[−3.948 sin(2π × 94.1t)− 0.002 sin(2π × 441.3t) + 0.438 sin(2π × 849.4t)]× 10−5

[−8.237 sin(2π × 94.1t) + 1.732 sin(2π × 441.3t) + 0.012 sin(2π × 849.4t)]× 10−6

[1.6 sin(2π × 94.1t)− 0.000003 sin(2π × 441.3t) + 0.007 sin(2π × 849.4t)]× 10−3

 (65)

Combining Equations (64) and (65) yields an approximate analytical expression for
the displacement response of the system as:

x(t) =
.
u

[−3.948 sin(2π × 94.1t)− 0.002 sin(2π × 441.3t) + 0.438 sin(2π × 849.4t)]× 10−5

|−8.237 sin(2π × 94.1t) + 1.732 sin(2π × 441.3t) + 0.012 sin(2π × 849.4t)| × 10−6

[1.6 sin(2π × 94.1t)− 0.000003 sin(2π × 441.3t) + 0.007 sin(2π × 849.4t)]× 10−3

 (66)

The displacement responses and amplitude frequencies of the half-value semi-analytic
calculation method and the approximate analytical method are shown in Figure 17. It can
be seen that the displacement responses and amplitude frequencies of the system in the
lateral and bending directions obtained by the two methods are basically the same. The
axial displacement response is consistent in the initial stage, but when the system enters
region 2 from region 4, the approximate analytical method ignores the small amount of
system displacement and velocity, which leads to the difference in the later stage.
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Figure 17. Displacement response (left) and amplitude frequency (right) comparison chart when
.
θ = 0.5 rad/s.

When the bending impact load is large (i.e., the resulting angular velocity is greater
than or equal to 1.1 rad/s), the system motion is no longer confined to regions 2 and 4, and
it is difficult to analytically calculate the system response because the motion state of the
system cannot be judged when the motion region changes. The displacement response
and the amplitude frequency of the system at the initial angular velocity are shown in
Figure 18. It can be seen that the response frequency of the system changes slightly
under different impact loads, especially the axial displacement response, whose first-order
response frequency corresponds to a significant decrease in amplitude under a specific
impact load. Due to the nonlinearity of the system, the influence of load magnitude should
be considered when analyzing its dynamic characteristics.

Figure 18. Displacement response and amplitude frequency diagram of the system. (a)
.
θ = 2 rad/s,

(b)
.
θ = 3.5 rad/s.

3.4. Response under Simple Harmonic Excitation of Sunk Screw Connection Structure

The parameters of the simplified 3-dof trilinear dynamical system with sunk screw
connection structure are shown in Table A3. The response of the system under simple
harmonic excitation was analyzed. A simple harmonic excitation in the bending direction
can be described as:

M = M0 sin(2π f t) (67)
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where M0 is the simple harmonic excitation amplitude, f is the simple harmonic excitation
frequency, and the unit of M is N·m.

Taking M0 as equal to 1000 N·m and 5000 N·m, respectively, the maximum value of
mechanical energy of the system under different bending moment excitation frequencies
was obtained by using the half-value analytical calculation method, as shown in Figure 19.

Figure 19. Maximum mechanical energy of the system at different excitation frequencies. (a) M0 =

1000 N ·m, (b) M0 = 5000 N ·m.

It can be found that when the excitation load amplitude is small, the system energy
peaks at the excitation frequency of 95 Hz and 848 Hz; when the excitation load amplitude
is large, the peak frequency of the system mechanical energy is shifted, the peak range is
expanded, and the phenomenon of multi-peak resonance is presented.

4. Conclusions

In this study, the stiffness of the sunk screw connection structure was studied by
finite element analysis, and it was found that the axial stiffness of the structure was in
trilinear form, and the lateral stiffness was in linear form when the assembly gap was
considered. The three linear segments of the axial stiffness represented the tensile stiffness,
gap stiffness, and compression stiffness, and an empirical formula for stiffness calculation
with a certain range of applicability was proposed. It can be used to quickly calculate
the connection surface stiffness at the early stages of program design. On this basis, a
3-dof trilinear dynamic model was proposed to study the dynamics of the sunk screw
connection structure for the stiffness characteristics of the sunk screw connection structure.
The connection surface was simplified into two axial trilinear springs and one lateral linear
spring. In order to facilitate the analytical calculation, the system motion was divided into
nine motion regions with the linear turning point as the dividing point. The equations of
motion in each motion region were derived separately, so the motion of the system in each
region could be fully resolved.

The dynamics of a 3-dof trilinear system under impact loading, as well as simple
harmonic loading, was investigated by means of a half-numerical analysis method, which
has been determined as suitable for most cases where the section size of the cabin structure
is much larger than the size of the sunk screw. The motion in this region was analytically
calculated by determining the initial motion state of the system and the time in this region.

Under the impact load, the time effect of the impact load was neglected and the initial
axial, lateral, or bending direction initial velocity of the system was given. It was found
that the response frequency of the system remained constant under smaller impact loads,
and the response frequency, as well as the motion response of the system, could be solved
by an approximate analytical expression. This was because the main motion region of the
system was predictable, and the motion time in other regions was very short and did not
significantly affect the overall motion of the system.

When the impact load was large, the full process motion response of the system could
not be approximately resolved, and the response frequency fluctuated due to the difficulty
in predicting the change of the system motion region and the large influence of the motion
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within each region on the overall motion of the system, which reflected the sensitivity of
the nonlinear system to the magnitude of the impact load. On the other hand, under the
axial impact load, the system produced only axial motion, but applying the impact load in
the lateral direction, as well as in the bending moment direction, led to a coupling of the
motion of the three degrees of freedom.

Under the bending moment simple harmonic excitation, when the excitation load
amplitude was small, the system energy frequency curve showed a good single-peak
characteristic; however, when the excitation load amplitude was large, the system energy
peak frequency was shifted and showed the phenomenon of multi-peak resonance in a
certain range.

This study presented a simplified model of the 3-dof trilinear dynamic model of the
sunk screw connection structure, and investigated the dynamics of the system under impact
loading and simple harmonic excitation by dividing the motion region and using the half-
value calculation method. It revealed the phenomenon that the system motion degrees
of freedom were coupled with each other, and the dynamics were sensitive to the load
magnitude. This trilinear dynamic model can be further applied to simulate the dynamics
of the rocket body to obtain accurate dynamics, which could provide a basis for mastering
the key dynamics modeling parameters and designing the dynamic characteristics at the
early stage of rocket body design.
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Abbreviations

ks+ = Tensile stiffness (N/m)
ks0 = Compression stiffness with clearance (N/m)
ks− = Compression stiffness without clearance (N/m)
δ = Deformation of sunk screw (mm)
F = Axial load (kN)
E = Elastic modulus of screw material (GPa)
E f = Elastic modulus of flange material (GPa)
asX = Correction factor in X direction
a f w = Deformation correction coffcients of outer flage
a f n = Deformation correction coffcients of inner flage
G f = Shear modulus of flange material (GPa)
f = Response frequency (Hz)

Appendix A

Table A1. Deformation and correction coefficient of compression section with gap.

Parameter δsX/mm δsY/mm δfw/mm δfn/mm δ/mm ks0/N·m−1

FEM 0.02374 0.02794 0.00361 0.00152 0.04227 2.839 × 109

Results 0.02372 0.02799 0.00362 0.00153 0.04228 2.838 × 109

Correction factor asX0 asY0 a f w0 a f n0 as0
Value 2.65 1.18 1.25 0.92 0.718
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Table A2. Spring state and stiffness matrix for each region.

Region [δ1,δ2] k∗s1,k∗s2 Stiffness Matrix K23 Q∗

1 δ1 ≥ 0
δ2 ≥ 0

k∗s1 = ks+
k∗s2 = ks+

[
2ks+ 0

0 b2

2 ks+

] 0
0
0


2 δ1 ≥ 0

∆ < δ2 < 0
k∗s1 = ks+
k∗s2 = ks0

[
ks+ + ks0

b
2 (ks0 − ks+)

b
2 (ks0 − ks+)

b2

4 (ks+ + ks0)

] 0
0
0


3 δ1 ≥ 0

δ2 ≤ ∆
k∗s1 = ks+
k∗s2 = ks−

[
ks+ + ks− b

2 (ks− − ks+)
b
2 (ks− − ks+)

b2

4 (ks+ + ks−)

]  0
∆(ks− − ks0)
b
2 ∆(ks− − ks0)


4 ∆ < δ1 < 0

δ2 ≥ 0
k∗s1 = ks0
k∗s2 = ks+

[
ks+ + ks− b

2 (ks− − ks+)
b
2 (ks− − ks+)

b2

4 (ks+ + ks−)

] 0
0
0


5 ∆ < δ1 < 0

∆ < δ2 < 0
k∗s1 = ks0
k∗s2 = ks0

[
2ks0 0

0 b2

2 ks0

] 0
0
0


6 ∆ < δ1 < 0

δ2 ≤ ∆
k∗s1 = ks0
k∗s2 = ks−

[
ks0 + ks− b

2 (ks− − ks0)
b
2 (ks− − ks0)

b2

4 (ks0 + ks−)

]  0
∆(ks− − ks0)
b
2 ∆(ks− − ks0)


7 δ1 ≤ ∆

δ2 ≥ 0
k∗s1 = ks−
k∗s2 = ks+

[
ks+ + ks− b

2 (ks+ − ks−)
b
2 (ks+ − ks−) b2

4 (ks+ + ks−)

]  0
∆(ks− − ks0)
b
2 ∆(ks0 − ks−)


8 δ1 ≤ ∆

∆ < δ2 < 0
k∗s1 = ks−
k∗s2 = ks0

[
ks0 + ks− b

2 (ks0 − ks−)
b
2 (ks0 − ks−) b2

4 (ks0 + ks−)

]  0
∆(ks− − ks0)
b
2 ∆(ks0 − ks−)


9 δ1 ≤ ∆

δ2 ≤ ∆
k∗s1 = ks−
k∗s2 = ks−

[
2ks− 0

0 b2

2 ks−

]  0
2∆(ks− − ks0)

0



Table A3. Typical sunk screw connection system parameters.

Parameters M/kg J/kg·m2 b/m r/m ∆/m

Value 80 6.2 0.238 0.47 0.0002
Parameters ks+/N ·m−1 ks0/N ·m−1 ks−/N ·m−1 kr/N ·m−1

Value 2.95 × 108 3.2 × 108 7.25 × 109 5.7 × 108

Table A4. Response frequency and vibration pattern of a typical sunk screw connection system.

Zone
Frequency /Hz Mode of Vibration

f1 f2 f3 A(1) A(2) A(3)

1 92.3 432.2 848.8 (0.046, 0, −1.974)T (0, −1.118, 0)T (2.193, 0, 3.498)T

2 94.1 441.3 849.4 (0.048, 0.01, −1.971)T (0.013, −1.118, 0.002)T (2.193, 0.006, 3.499)T

3 123.8 802.7 1718.4 (−0.082, −0.208, 1.880)T (2.001, −0.456, 3.065)T (0.895, 1, 1.788)T

4 94.1 441.3 849.4 (−0.048, 0.01, 1.971)T (0.013, 1.118, 0.002)T (2.193, −0.006, 3.499)T

5 96.0 450.2 850.0 (0.050, 0, −1.968)T (0, −1.118, 0)T (2.193, 0, 3.501)T

6 128.4 805.4 1719.5 (−0.088, −0.205, 1.871)T (2.003, −0.454, 3.075)T (0.891, 1.001, 1.781)T

7 123.8 802.7 1718.4 (0.082, −0.208, −1.880)T (2.001, 0.456, 3.065)T (0.895, −1, 1.788)T

8 128.4 805.4 1719.5 (0.088, −0.205, −1.871)T (2.003, 0.454, 3.075)T (0.891, −1.001, 1.781)T

9 327.8 1205.1 2179.3 (0.647, 0, −0.936)T (2.096, 0, 3.906)T (0, −1.118, 0)T
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Table A5. Movement time of each partition of the system under bending moment impact.

.
θ/rad·s−1 t1/s t2/s t3/s t4/s t5/s t6/s t7/s t8/s t9/s

0.1 0 0.4979 0 0.4990 0.0031 0 0 0 0
0.2 0 0.4979 0 0.4990 0.0031 0 0 0 0
0.4 0 0.4979 0 0.4990 0.0031 0 0 0 0
0.6 0 0.4979 0 0.4990 0.0031 0 0 0 0
0.8 0 0.4979 0 0.4990 0.0031 0 0 0 0
1 0 0.4979 0 0.4990 0.0031 0 0 0 0

1.1 0.0297 0.4563 0.0237 0.4591 0.0077 0 0.0235 0 0
1.5 0.0315 0.3874 0.0698 0.3845 0.0586 0 0.0682 0 0
2 0.1128 0.3097 0.0952 0.3106 0.0638 0.0070 0.0961 0.0046 0.0002
3 0.2518 0.1962 0.1289 0.2017 0.0537 0.0182 0.1308 0.0150 0.0036

Here we give a proof of Equation (45).
The solution of the equation of motion within the region can be set as

x = A sin(ωt + φ) (A1)

where A is the displacement amplitude vector, ω is the vibration frequency, and φ is the
phase angle. Substituting this into Equation (45) yields:(

K−ω2M
)

A = 0 (A2)

The characteristic equation of the system is:∣∣∣K−ω2M
∣∣∣ = 0 (A3)

By solving this equation, we can obtain n positive real roots ωi(i = 1, 2, · · ·, n), which
are the n intrinsic frequencies of the system. Then Equation (A2) can be written as

E(i)A(i) = 0 (A4)

E(i) = K−ω2
i M (A5)

A(i) is the eigenvector corresponding to the eigenvalues ω2
i .

When the characteristic Equation (A3) has no repeated roots, only one of the n equa-
tions of Equation (A4) is not independent and the first element of the characteristic vector
can be taken as the unit magnitude.

A(i) = [1 a(i)2 a(i)3 . . . a(i)n ]
T

(A6)

Expanding and blocking Equation (A4), we obtain:
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 
 

Λ


 (A12)

Substituting the ith-order intrinsic frequency iω  and the displacement amplitude 
vector ( )i

ia=A A  into Equation (A1), we obtain 

( )( ) sini
i i i ia tω φ= +x A  (A13)

This is the i-th order vibration pattern. 
Taking the labels of Equation (A13) from 1 to n and superimposing them, the un-

damped free vibration form of the system is obtained as 

( )( ) ( )

1 1
( ) sin ( cos sin )

n n
i i

i i i i i i i
i i

t a t B t C tω φ ω ω
= =

= + = + x A A  (A14)

The solution of the free vibration is obtained by giving 2 n initial conditions of the 
system. 

Suppose the initial displacement and initial velocity of the system are 

0 0(0) , (0)= =x x x x   (A15)

(A7)[
e(i)11 E(i)

12

E(i)
21 E(i)

22

]{
1

A(i)
2

}
=

{
0
0

}
(A8)

A(i)
2 = −

[
E(i)

22

]−1
E(i)

21 (A9)

At this point, the i-th order feature vector is obtained.
Equation (A2) can be extended to the form of the vibration and spectral matrices:
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KΦ=MΦΛ (A10)

Φ =
[
A(1) A(2) · · · A(n)

]
(A11)

Λ =


ω2

1
ω2

2
. . .

ω2
n

 (A12)

Substituting the ith-order intrinsic frequency ωi and the displacement amplitude
vector A = aiA(i) into Equation (A1), we obtain

xi = aiA(i) sin(ωit + φi) (A13)

This is the i-th order vibration pattern.
Taking the labels of Equation (A13) from 1 to n and superimposing them, the un-

damped free vibration form of the system is obtained as

x(t) =
n

∑
i=1

aiA(i) sin(ωit + φi) =
n

∑
i=1

A(i)(Bi cos ωit + Ci sinωit) (A14)

The solution of the free vibration is obtained by giving 2 n initial conditions of the system.
Suppose the initial displacement and initial velocity of the system are

x(0) = x0,
.
x(0) =

.
x0 (A15)

Substituting Equation (A14) into Equation (A15) yields

x(0) =
n

∑
i=1

A(i)Bi,
.
x(0) =

n

∑
i=1

A(i)ωiCi (A16)

According to the orthogonality of the vibration pattern there are
A(i)TMA(j) = 0, (i 6= j)
A(i)TKA(j) = 0, (i 6= j)

A(i)TMA(i) = Mi
A(i)TKA(i) = Ki

(A17)

Multiplying Equation (A16) left by A(i)TM and A(i)TK respectively, we get

Bi =
A(i)TMx(0)

Mi
, Ci =

A(i)TM
.
x(0)

ωi Mi
(A18)

Thus, the undamped free vibration form of the system can be obtained as

x(t) =
n

∑
i=1

A(i)(
A(i)TMx(0)

Mi
cos ωit +

A(i)TM
.
x(0)

ωi Mi
sinωit) (A19)
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