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Abstract: In order to strengthen the construction of smart airports and improve the ability of airport
managers to identify, intervene and rescue delayed flights, this paper proposes a delay prediction
method for the whole process of transit flights through the basic steps of node time and link time
prediction and delayed flight identification. By designing the key node time prediction model
(ML-DM), the method predicts the important guaranteed node time involved in the process of
flight departure from the outstation to the departure from the current station. By constructing the
imbalance data classification model, the delayed flight is identified at each predicted guarantee node.
The experimental results for a busy airport show that this prediction method can achieve a maximum
recognition rate of 96.5% for delayed flights.

Keywords: transit flight; delay prediction; ML-DM model; imbalanced data classification model

1. Introduction

The smart airport concept is the future of airport operations, and it may dramati-
cally change the industry towards modern technology adaptation [1]. As a result of the
fourth industrial revolution, the smart airport concept has been evolving all over the world,
and it will eliminate the drawbacks of the conventional airport system. According to
Bouyakoub et al., Airport 4.0 is a concept that leverages big data and open data to enhance
its own innovation [2]. In its 2019 information circular, “Smart Airport Development
Research and Practice Report” [3], the Department of Airports of the Civil Aviation Ad-
ministration of China (CAAC) summarises the future development goals and trends of
airports through research on and the analysis of international smart airport development
and practice in a number of countries, including the US, Europe, the EU, Japan, Singapore
and Dubai, where trends in airport development state that “Managers will be able to
perceive aircraft security warnings in a timely manner; flight delays will be reduced to a
minimum; airport resources will be optimally allocated and resource utilisation will be
extremely high”. The above requires airports to accurately identify delayed flights and to
take reasonable and effective interventions for potentially delayed flights upon receipt of
an alert. The scientific issues involved include the prediction of delayed flights and the
implementation of delayed flight rescue measures.

Most of the existing papers on flight delay prediction have focused on both influence
factor extraction and prediction models. Khaksar et al. analysed flight delays in the U.S.
airline network based on machine learning, and the results of the study showed that
visibility, wind, and departure time have large impacts on flight delays [4]. Truong et al.
used two methods, decision trees and Bayesian inference, to predict the probability of
flight delay events and constructed several flight delay prediction models from flight data
from different sources; they then described the airport-related related important factors
and their impacts on flight punctuality [5]. Wu et al. constructed a flight delay prediction
model based on deep SE-DenseNet based on the fusion of flight information, related
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airport delay information and weather information data, and the experimental results
showed that the prediction accuracy improved by about 1.8% after information fusion
compared with considering only flight attributes [6]. Esmaeilzadeh et al. analysed, based
on support vector machine, the main factors that cause flight delays, and the analysis
showed that delayed delays, slip-out delays, and ground waiting procedures had the
greatest impacts on flight delays [7]. Choi et al. constructed a flight delay prediction model
under severe weather conditions based on data mining and supervised machine learning
algorithms and compared the prediction results of several algorithms, and the results
showed that random forest had the highest prediction accuracy [8]. Ye et al. constructed four
prediction models based on multiple linear regression, support vector machine, extreme
random tree and LightGBM, and the results showed that the LightGBM model had the best
prediction results [9]. Thiagarajan et al. constructed six departure flight delay prediction
models based on machine learning algorithms, and the experimental results showed
that the model constructed based on the gradient-boosting algorithm had the highest
prediction accuracy [10]. Qu et al. constructed two flight delay prediction models based on
deep convolutional neural networks, DCNN and SE-DenseNet, and achieved 92.1% and
93.19% prediction accuracy, respectively [11]. Yazdi et al. constructed three flight delay
prediction models, SDA-LM, SAE-LM and SDA, based on deep learning. Experimental
results on balanced and unbalanced datasets show that the SDA-LM model has the best
prediction effect, with a prediction accuracy of up to 96%, and the prediction effect on
balanced datasets is better than that on unbalanced datasets [12]. Ding et al. constructed a
multiclassification prediction model for flight delays based on LightGBM and imbalanced
the data by few oversampling techniques with TomekLink, and their prediction accuracy
reached more than 90% [13]. Basturk et al. constructed a flight arrival time prediction model
based on random forest and deep neural network considering flight, track and weather
information, and the results showed that the prediction error of both could be controlled
within 6 min [14]. Khan et al. proposed a hierarchical integrated machine learning model
and used different machine learning algorithms and sampling methods to analyse and
validate the proposed model using Hong Kong International Airport as the research object.
The results showed that the model constructed based on the SMOTETomek sampling
technique and the hyp-free CPCLS machine learning algorithm worked best [15]. Jiang Yu
et al. constructed a departure flight delay prediction model based on a spatio-temporal
graph convolutional neural network, and the experimental results showed that the model
could significantly improve the accuracy of flight delay prediction compared with the
historical averaging method, long and short-term memory recurrent neural network, and
stacked self-encoder [16]. Roger et al. proposed a departure flight delay prediction method
based on XGBoost and Logistic, which focuses on the effect of sparse data on the flight
delay prediction model. The experimental results show that the method can significantly
improve the prediction of the model on sparse data sets [17].

Existing studies have achieved good results in the extraction of flight delay influencing
factors and the construction of prediction models, but the prediction of delayed flights
mainly stays in the static stage and provides limited decision support for how to save
the delayed flights after identification. In actual operation, predicting and identifying
delayed flights is only a means to an end: taking effective measures to avoid delays after
they are identified is the goal. Compared with the originating flights, the transit flights
have more guaranteed links and require more coordination capability among airports,
airlines and ATC. Therefore, considering the whole process of flight transit, the flight
transit process is divided into four stages: approach, taxi-in, turnaround and taxi-out.
The first three intervention stages are used to predict and identify delays in turn, and by
predicting the time spent in the three stages, the possible locations of delays are located,
and corresponding intervention measures are taken for different locations of delays. The
ultimate goal is to identify delayed flights and provide decision support on what delay
intervention measures to take, thereby avoiding flight delays.
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This paper consists of four chapters. Chapter 1 introduces the guaranteed process
of the transit flight and the key nodes involved and defines the scope of the research on
delay prediction in this paper. Chapter 2 introduces the key issues in the transit flight delay
prediction method, including the definition of delay thresholds, the complete process of
prediction, and the description of the involved models. Chapter 3 verifies the effectiveness
of the proposed delay prediction method for transit flights using a busy airport in China as
the research object. Chapter 4 summarizes the contents of this paper.

2. Key Nodes and Guarantee Process of Transit Flight

In order to achieve effective monitoring and management of the flight guarantee
links, the Airport Collaborative Decision Making (ACDM) system collects and configures
45 flight guarantee nodes, including landing, in-block, off-block and take-off [18]. In this
paper, we focus on the overall process and some of the key nodes involved, and on the
basis of ensuring the integrity of the process, we discard some nodes and add the nodes
required in this paper to build the transit flight guarantee process, as shown in Figure 1.
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Figure 1. Transit flight guarantee process.

In order to ensure that the flight ground guarantee process can be completed on
time and efficiently, some guaranteed equipment needs to be in place before the in-block
time [19]. Therefore, by accurately predicting the in-block time of the flight and even
the landing time, the airport can dynamically adjust the time when the flight guarantee
resources are in place and improve the efficiency of guaranteed resources utilization, thus
avoiding flight delays caused by the availability of guaranteed resources to a certain
extent. In addition, in the turnaround process, the start, elapsed time and end of different
guaranteed operations are uncertain and may cause flight delays due to partial operational
delays. Therefore, by accurately predicting the off-block time at the in-block time, the
airport can intervene to ensure that the process can be completed on time and avoid flight
delays due to delays in the process to a certain extent. Therefore, the guaranteed node
moment prediction and flight delay prediction are performed sequentially at different
stages from the flight passing through the arrival point to departure, which can provide
more options for the adoption of intervention measures for delayed flights and also provide
a buffer time for the implementation of the measures.

For the delay prediction of the whole process of transit flights, the delayed flight
is identified when the flight passes the arrival point and the landing time, and at the
same time, the estimated landing time and the estimated in-block time of the flight are
obtained by predicting the approach time and taxi-in time respectively, to provide decision
support for the airport to intervene the time when guarantee resources are in place; The
delay identification is performed at the time of the in-block, and at the same time, the
turnaround time of the flight is predicted to obtain the estimated off-block time, which
provides decision support for the airport to intervene in the guarantee operation between
the in-block and the off-block.
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3. Design of Delay Prediction Method for Transit Flight

This chapter introduces the basis for defining flight delay thresholds and the general
process of prediction and provides a detailed description of the specific models and methods
involved in the prediction process, including the design and implementation process of
the key node time prediction model, the statistical method of empirical taxi time and the
construction method of the imbalanced data classification model, as well as the machine
learning algorithms involved.

3.1. Flight Delay Threshold

The Civil Aviation Administration of China’s standard for the normal determination
of departing flights is: “A flight is normal if it takes off within the standard ground taxi time
after the planned departure time and no abnormal conditions such as return or standby
occur” [20]. Accordingly, in this paper, the difference between the actual take-off time
(ATOT) and the scheduled off-block time (SOBT) and the standard taxi time (STT) of a flight
is used as the threshold for determining whether a flight is delayed, and the calculation
method is shown in Equation (1):

D =

{
0 ATOT− SOBT− STT ≤ 0
1 ATOT− SOBT− STT > 0

(1)

where D = 0 represents normal flight, D = 1 represents abnormal flight, ATOT represents
actual take off time, SOBT represents scheduled off-block time, and STT represents the
standard taxi time.

3.2. Flight Delay Prediction Process

In this paper, delay prediction are phased for transit flight to provide airports with
more options for interventions and more time to implement the measures. The delay
prediction process for transit flights is divided into three phases: Phase 1 takes the flight
passing the arrival point time as the starting time; Phase 2 takes the flight landing time as
the starting time; and Phase 3 takes the in-block time as the starting time. The prediction
process of each phase is divided into two steps: node time and duration prediction and
delayed flight identification, and the overall prediction process is shown in Figure 2.
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Taking the first phase as an example, the flight delay prediction process and steps are
explained in detail, as shown in Figure 3.

Step 1: Through the regression prediction and statistical mining methods included in
the constructed key node time prediction model, the estimated time of each link in the flight
approach process is obtained, and the estimated time of each subsequent node is projected
based on the approach process with the time of passing through the arrival point as the
starting point. The predicted time of the link provides the feature input for the delayed
flight identification model, and the predicted time of the node provides support for the
delayed flight intervention.
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Step 2: Constructing a feature set based on the extracted influencing factors related
to flight delays and the expected duration of the link obtained in the previous sequence,
extracting data according to the feature set and identifying delayed flights on the basis of
balancing the data by means of an imbalanced data classification model.
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3.2.1. Key Nodes Time Prediction Model

The key node time prediction model is constructed based on machine learning and
data mining (ML-DM). The purpose of designing this model is to obtain the estimated
time spent at each link and the estimated time at each node through the updated iterative
method of the flight transit process, which is included in all three phases of transit flight
delay prediction.

The model is divided into two parts: The first part predicts the duration by construct-
ing a machine learning model as the feature input for the imbalanced data classification
model, and it extrapolates the estimated time of the subsequent guarantee node based
on the starting point time to provide decision support for the adoption of delayed flight
intervention measures; the second part uses the empirical taxi time statistics designed based
on data mining technology to obtain the corresponding link time to provide feature input
for the imbalanced data classification model; then, it extrapolates the estimated time of the
subsequent guarantee node based on the starting point time and the prediction result of the
first part to provide support for the adoption of delayed flight intervention measures. The
three phases of the transit flight delay prediction process are similar, and the differences are
mainly reflected in the number of research objects, as shown in Figure 4, and the meanings
of the acronyms in the figure are shown in Table 1.

The implementation process of phase 1 in Figure 4 is used as an example for detailed
explanation, and the whole process is divided into four steps.

Step 1: Obtain the Estimated landing time (ELDT) by predicting the approach time
(PAT) at the time when the flight actually passes through the arrival point (APAT), calculated
as shown in Equation (2).

APAT + PAT = ELDT (2)

Step 2: The Estimated in-block time (EIBT) is obtained by extracting the empirical
taxi-in time (ETI), which is calculated as shown in Equation (3).

ELDT + ETI = EIBT (3)
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Step 3: Obtain the Estimated off-block time (EOBT) by obtaining the Scheduled
connection time (SCT), which is calculated as shown in Equation (4).

EIBT + SCT = EOBT (4)

Step 4: The Estimated departure time (EDT) is obtained by extracting the empirical
taxi out time (ETO), which is calculated as shown in Equation (5).

EOBT + ETO = ETOT (5)
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Table 1. Acronyms in the implementation process of ML-DM model.

Acronyms Definition

APAT Actual passing the arrival point time
PAT Predicted approach flight time

ELDT Estimated landing time
ETI Experience taxi-in time

EIBT Estimated in-block time
SCT Scheduled connection time

EOBT Estimated off-block time
ETO Experience taxi-out time

ETOT Estimated take off time
ALDT Actual landing time

PTI Predicted taxi-in time
AIBT Actual in-block time
PCT Predicted connection time

(1) Duration Prediction Method
The duration prediction includes three parts: approach time, taxi-in time and turnaround

time. Each part of the prediction follows the following steps: pre-processing of airport
operational data, qualitative analysis of influencing factors to extract candidate factor sets,
quantitative analysis of influencing factors to filter and condense the final factor sets, feature
extraction and calculation to build model input data sets, algorithm selection and hyperpa-
rameter adjustment to build prediction models, and evaluation of model prediction effects.
Among them, the construction of the model input dataset is based on the final set of influenc-
ing factors for the corresponding feature extraction and the calculation of the data, while in
machine learning prediction, the quality of the input dataset has a much greater impact on the
model prediction effect than the selection of the prediction algorithm and the adjustment of
the model hyperparameters, so the extraction of influencing factors is crucial. In this paper,
the method and steps of duration prediction are shown in Figure 5, and the method and steps
of influence factor extraction are shown in Figure 6.
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(2) Statistical Method of Empirical Taxi Time
The empirical taxi time statistical method is included in the key node time prediction

model, including the taxi-in and taxi-out time, and the statistics of the two are used to
calculate the estimated time of subsequent nodes. The taxi-in time refers to the time spent
from landing to the in-block of the flight, and the taxi-out time refers to the time spent from
the off-block of the flight to take-off, both of which are calculated as follows.

TTaxi-In = TIn-Block − TTouch-Down (6)
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TTaxi-Out = TTake-Off − TOff-Block (7)

The statistical methods for taxi-in and taxi-out times are the same, and both follow
the following process: mining the historical airport operation data, selecting the candidate
values, statistically comparing MAE (Mean Absolute Error, MAE), and determining the final
values. The specific method is illustrated as an example of taxi-in time statistics process.
First, the data are divided into two groups, data mining group and result verification
group; then, the data are aggregated and grouped by inbound runway, inbound stand
and inbound time period based on the data mining group, and the mean and median of
each group are counted; then, the obtained mean and median are brought into the result
verification group to calculate MAE respectively; finally, the final value is determined based
on the MAE comparison result. The specific process is shown in Figure 7.
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3.2.2. Imbalanced Data Classification Model

The amount of data between normal and delayed flights in the transit flight data differs
greatly, and in order to solve the problem of poor accuracy of the classification model that
may be caused by sample imbalance, this paper introduces a classification model based on
SMOTE algorithm (Synthetic Minority Oversampling Technique) and CatBoost algorithm
(Categorical Boosting) to introduce an imbalanced data classification model, namely the
SMOTE-CatBoost model.

SMOTE algorithm is an oversampling processing technique applied to imbalanced
sample data proposed by Chawla et al. [21]. Unlike the simple copying sample mechanism
of random oversampling, the SMOTE algorithm synthesizes a new sample between two
minority class samples by linear interpolation, which can avoid the overfitting problem
generated in random oversampling to some extent. The main steps of the algorithm are
as follows.

(1) For each sample x in the minority class, calculate the distance between that point
and the other sample points in the minority class to obtain the nearest k nearest neighbours.

(2) Set the sampling ratio to determine the sampling multiplier, for each randomly
selected nearest neighbour x′.

(3) For each randomly selected nearest neighbour x′, a new sample is constructed
separately from the original sample according to the following formula.

xnew = x + rand(0, 1)×
(
x′ − x

)
(8)

CatBoost algorithm is a GBDT framework with symmetric decision tree as the base
learner and supports category-based variables. The CatBoost algorithm optimises the
constructed model by constructing a learner with reduced loss along the steepest direction
of the gradient at each iteration step. The algorithm model can be defined as [22].

F(x, ω) =
T

∑
t=0

αtht(x, ω) =
T

∑
t=0

ft(x, ωt) (9)
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In the formula: L(·) is the output of the whole decision tree, x is the input of the
sample, ω is the parameter of the whole decision tree, αt is the weight of the t-th tree, T
is the tree tree, ht(·) is the output of the t-th decision tree, ωt is the parameter of the t-th
decision tree, ft(·) is the output of the t-th decision tree after weighting.

The parameters of the optimal model were obtained by minimizing the loss function
as [22].

(αt, ωt) = argmin
N

∑
i=0

L(yi, F(xi, ω)) (10)

In the formula: L(·) is the loss function, yi is the actual output of sample i, xi is the
input of sample i, and N is the sample size.

The CatBoost algorithm uses ordered boosting to obtain an unbiased estimate of
the gradient, which mitigates the effect of the bias in the gradient estimation error and
improves the generalization ability of the model. In order to solve the conditional bias
problem arising when the traditional GBDT algorithm uses the label mean as the node
splitting criterion, the CatBoost algorithm adds prior terms and weight coefficients to solve
the bias problem by reducing the influence of noise and low frequency category data on
the data distribution [23].

x̂i
k =

N
∑

j=1
I{xi

j=xi
k}

yj + ap

N
∑

j=1
I{xi

j=xi
k}
+ a

(11)

In the formula: xi
k is the i-th category feature of the k-th training sample, x̂i

k is its
average; yj is the label of the j-th sample; I is the indicator function, i.e., go to 1 when
the two quantities in brackets are equal, otherwise take 0; p is the prior term; a is the
weighting factor.

The CatBoost algorithm solves the problem of gradient bias and prediction bias,
which reduces the occurrence of overfitting and improves the generalisation ability of the
algorithm while increasing its accuracy.

The SMOTE-CatBoost model prediction process is shown in Figure 8. Firstly, the
pre-processed dataset is divided into train and test set according to a certain ratio; then, the
SMOTE algorithm is used to generate minority category samples in the training set and
train CatBoost based on the balanced dataset; finally, the trained CatBoost classifier is used
to predict the test set and the prediction effect of the model is evaluated.
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4. Case Study

In order to verify that the proposed method of transit flight delay prediction can be
applied to actual airport operations, this section conducts tests based on actual airport
operational data to verify the effectiveness of the method in this paper. The experimental
algorithms were written in Python 3.7.0.
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4.1. Data Preprocessing

The experimental data are obtained from the actual operational data of a busy airport
in China. Firstly, the transit flights are filtered according to the planned turnaround time.
Then, some of the data that do not conform to the time logic and business logic are adjusted
or deleted; the missing values that cannot be filled are deleted, such as time type data; the
missing values that can be filled, such as runway and stand, are filled according to the
airport operation characteristics. Finally, based on the filtered data set, the empirical taxi-in
and taxi-out times are counted based on the method described above and filled into the
data set, and the sample data obtained is shown in Table 2.

Table 2. Sample data.

Name Content Name Content Name Content

Airline KN STA 1 february 2021 11:50 Outbound stand 104
Aircraft type 738 ATA 1 february 2021 11:10 Outbound runway 35R
Arrival point A3 In-block 1 february 2021 11:20 Empirical taxi-in time 6.50

Time of passing arrival point 2021/02/01 10:39 Off-block 1 february 2021 12:43 Scheduled turnaround time 65

Inbound runway 01L STD 1 february 2021 12:55 Empirical taxi-out time 16.91
Inbound stand 104 ATD 1 february 2021 12:57

In the statistics of the number of delayed flights in the dataset, it was found that among
about 25,000 data, the data of delayed flights totalled 4710, accounting for less than 20%.
Generally, in classification tasks, when the ratio of training samples of different categories
is significantly larger than 1:1 it can be classified as a sample imbalanced problem, while in
the dataset studied in this paper, the ratio of normal flights to delayed flights is larger than
4:1, which is a sample imbalanced problem.

4.2. Prediction Modeling
4.2.1. Duration Prediction Model

In the construction of the approach time influence factor set, the influence of the
company and aircraft on the approach flight is reflected by the airline company and aircraft
type, the influence of the approach status on the approach flight is reflected by the approach
time, approach speed, arrival point and approach altitude, the influence of the airspace
busyness on the approach flight is reflected by the number of incoming flights and the
number of departing flights, and the influence of the approach route on the approach flight
is reflected by the landing runway.

In the construction of the set of factors influencing taxi-in time, the influence of
company and aircraft on taxi-in is reflected by the airline company and aircraft type, the
influence of surface busyness on taxi-in is reflected by the number of aircraft taxiing at the
same time and landing time period, the influence of taxiing route on taxi-in is reflected
by landing runways, inbound stand and the number of hot spots passing through, the
influence of airport-specific layout on taxi-in is reflected by whether crossing the runway
and whether cross taxi-in.

In terms of the construction of the set of factors influencing the turnaround time,
the influence of the company and aircraft on flight guarantee is reflected by the airline
and aircraft type; the airport guarantee efficiency in the current period is reflected by the
average turnaround time of the first 15 and 30 min flights; the influence of time urgency
on turnaround guarantee is reflected by the planned turnaround time and the length of
inbound delays; and the influence of demand on turnaround guarantee is reflected by
in-block time period, the number of flights landing in the first 15 and 30 min. The set of
influencing factors of the three links is shown in Table 3.
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Table 3. The set of influencing factors of the three links.

Number Approach Taxi-in Turnaround

1 Airline Airline Airline
2 Aircraft type Aircraft type Aircraft type
3 Arrival point Landing time period In-block time period
4 approach altitude Landing runway length of inbound delay
5 approach speed Landing Stand Planed turnaround time

6 Inbound runway Number of Hot Spots Average turnaround time in the first 15 min

7 Inbound time period Number of aircraft taxiing on the
surface at the same time Average turnaround time in the first 30 min

8 Number of inbound flights Whether crossing the runway Number of landing flights in the first 15 min

9 Number of outbound flights Whether cross taxi-in Number of landing flights in the first 30 min

Based on the constructed set of influencing factors, the individual features used to
input the model were extracted and calculated from the pre-processed data, and the text-
based data were coded and processed to obtain the final input data for the three links
duration prediction model. Taking the taxi-in time as an example, the model input data is
shown in Table 4.

Table 4. Taxi-in time prediction model inputs.

Month 1 1 Inbound cumulative flow 5 7

Hour 23 0 Outbound instantaneous flow 1 5

Airline 0 1 Outbound cumulative flow 3 8
Aircraft type 1 2 Whether crossing the runway 1 0

Runway 0 1 Whether crossing the runway 0 1
Stand 5 12 Number of Hot Spots 0 2

Inbound instantaneous flow 2 3

Approach time, Taxi-in time and Taxi-out time were modelled separately and the key
hyperparameters of the algorithm were tuned using a grid search to obtain the best values
for the key hyperparameters of the three models built on the CatBoost algorithm as shown
in Table 5.

Table 5. Optimal values of key hyperparameters of the three phases model.

Iterations Max_depth Subsample Learning_rate L2_leaf_REG

Approach time 800 5 1 0.15 4

Taxi-in time 600 4 0.9 0.12 4
Taxi-out time 1000 6 0.9 0.18 3

4.2.2. Flight Delay Prediction Model

In the construction of imbalanced data classification model feature set, the impact
of company, aircraft, inbound and outbound procedure on flights is reflected by airline
company, aircraft type, arrival point, runway and stand; the impact of traffic on flights is
reflected by time period and duration in each links obtained based on ML-DM model. The
third phase reflects the impact of inbound delay on subsequent flights by the length of
inbound delay. The final feature sets of the three phases are shown in Table 6.
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Table 6. Feature sets of the three phases of the imbalanced data classification model.

Number Phase 1 Phase 2 Phase 3

1 Airline Airline Airline
2 Aircraft type Aircraft type Aircraft type
3 Arrival point Landing time In-block time

4 Time of passing arrival point Inbound runway length of inbound delay

5 Inbound runway Inbound stand Inbound runway
6 Inbound stand Outbound stand Inbound stand
7 Outbound stand Outbound runway Outbound stand
8 Outbound runway Predicted taxi-in time Outbound runway

9 Predicted approach time Scheduled turnaround time Predicted turnaround time

10 Empirical taxi-in time Empirical taxi-out time Empirical taxi-out time

11 Scheduled turnaround time

12 Empirical taxi-out time

Based on the constructed feature set, each feature data used for the input model is
extracted from the preprocessed data and the results obtained from the ML-DM model,
and the text class data is processed using the same data coding method as above to finally
obtain the input data for the imbalanced data classification model in three phases. Taking
the second phase as an example, the input data of the model are shown in Table 7.

Table 7. Input data for the second phase imbalance data classification model.

Name Content Name Content

Airline 0 Outbound stand 12
Aircraft type 1 Outbound runway 1
Landing time 11 Predicted approach time 8.0 min

Inbound runway 0 Scheduled turnaround time 65 min

Inbound stand 12 Empirical taxi-out time 15.45 min

After balancing the dataset using the SMOTE algorithm, the established CatBoost
classification model is tuned using grid search based on the balancing processed data. In
order to increase the applicability of the model, the optimal values of the key parameters of
the classification model in the three phases were consistent, and the optimal values of the
key parameters of the model were obtained on the basis of ensuring the prediction effect in
each stage as shown in Table 8.

Table 8. Optimal values of key hyperparameters of CatBoost model.

Iterations Depth Subsample Learning_rate L2_leaf_reg

Value 700 5 0.77 0.10 3

4.3. Analysis of Experimental Results
4.3.1. Empirical Time Statistics Results

Using the empirical taxi time statistics, the MAE statistics obtained based on the
pre-processed data set with median and mean values as candidates, respectively, are shown
in Table 9. From Table 9, it can be seen that the MAE obtained by using the median for both
taxi-in time and taxi-out time is significantly smaller than the mean value, and the error
of MAE compared to the mean value of both is within 18%, and this accuracy can meet
the airport operation requirements, so the median is used as the final value of empirical
taxiing time.
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Table 9. MAE Statistical Results.

Taxi-in Time Taxi-out Time

Candidate Value Mean Median Mean Median
MAE 3.93 min 1.95 min 5.39 min 4.2 min

4.3.2. Duration Prediction Results

The prediction results of taxi-in time, turnaround time and taxi-out time based on
the tuned CatBoost model are shown in Table 10. From Table 10, the predicted MAE is
1.98 min with the mean value of approach time of 23.8 min, and the prediction accuracy
within the error range of ±5 min reaches 92.8%; the predicted MAE is 1.37 min with the
mean value of taxi-in time of 12.1 min, and the prediction accuracy within the error range
of ±3 min reaches 92.5%. The estimated landing time and the estimated in-block time
of the flight obtained under this accuracy condition can provide decision support for the
airport to intervene in the possible delayed flight by scheduling the availability of guarantee
resources. The predicted MAE is 4.66 min with a mean connection time of 69.7 min, and
the prediction accuracy within the error range of ±15 min reaches 97.6%. This accuracy
can provide more reliable input features for the imbalance data classification model.

Table 10. Prediction results of approach time, taxi-in time and turnaround time.

Mean (min)
MAE (min) Accuracy (%)

CatB XGB RF CatB XGB RF

Approach time 23.8 1.98 2.08 2.30 ±5 min 92.8 92.1 88.5

Taxi-in time 12.1 1.37 1.44 1.63 ±3 min 92.5 91.5 87.2

Turnaround time 69.7 4.66 4.75 5.08 ±15 min 97.6 96.5 92.8

4.3.3. Flight Delay Prediction Results

The predicted MAE for the remaining time spent on a transit flight and recognition
rate of delayed flights obtained based on the ML-DM model are shown in Figure 9. As can
be seen from Figure 7, there is not much difference in the MAE of prediction results and the
recognition rate of delayed flights in both phase 1 and 2, and the MAE of phase 2 decreases
less than 7% and the recognition rate increases less than 3% compared with phase 1. In
phase 3, the MAE of predicted time decreases from 22.08 min in the previous phase to
7.69 min, with a decrease of 66.3%; while the recognition rate of delayed flights increases
from 52.5% in the previous phase to 72.1%, with an increase of 37.3%, which is a significant
improvement in the prediction effect, which is due to the fact that phase 3 replaces the
planned turnaround time used in the previous two phase with the predicted turnaround
time. The reason for this is that phase 3 is closer to the actual turnaround time after replacing
the planned turnaround time with predicted turnaround time. However, the 72.1% delayed
flight recognition rate obviously does not meet the actual operational requirements.

To further improve the recognition rate of delayed flights, an imbalanced data classifica-
tion model was introduced based on the ML-DM model. For the evaluation of classification
results, precision rate, recall rate and ROC (receiver operating characteristic) curve are
selected. The precision rate represents the percentage of correct predictions among the
samples with positive predictions, which in this paper represents the recognition rate of
normal flights; the recall rate represents the percentage of correct predictions among the
samples with negative predictions, which in this paper represents the recognition rate of
delayed flights; the ROC curve can visually evaluate the model as a whole.
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The calculation results of the precision and recall rates of the three phases of flight
transit are shown in Table 11, the flight transit process is shown in Figure 10, and the ROC
curve is shown in Figure 11. Combining Table 11 and Figure 10, it can be seen that at the
passing arrival point time of flight transit phase 1, the recognition rates of the model for
normal and delayed flights are 88.9% and 83.6%, respectively, neither of which reaches
90%. However, at the landing time of phase 2, the recognition rate of the model for normal
and delayed flights increases to 93.0% and 90.4%, respectively, which has reached the high
level of the current papers of the same type. By the in-block time of phase 3, the model
achieved 96.3% and 96.5% recognition rate for normal and delayed flights, respectively, and
exceeded the recognition rate of the same type of paper by 4% for delayed flights. It can
also be seen visually from Figure 11 that the ROC curve gradually moves to the upper left
corner from phase 1 to phase 3, and the AUC value (the area under the curve, which takes
values between 0 and 1) gradually increases. Although the recognition rate of delayed
flights in the first phase is relatively low, the unrecognized flights can be further identified
in the subsequent phases, so on the whole this relatively independent and progressive
identification method can avoid missing delayed flights to the greatest extent, and at
the same time the phased intervention measures can provide a larger buffer space for
the airport.

Table 11. Results of precision and recall rates in three phrases.

Precision Rate Recall Rate

Time of passing arrival point 88.9% 83.6%
Landing time 93.0% 90.4%
In-block time 96.3% 96.5%
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Figure 10 shows the comparison of the recognition rate of delayed flights using only the
XGB-DM model and using both the XGB-DM model and the imbalanced data classification
model. As can be seen from the Figure 12, compared with the delay prediction using only
the XGB-DM model, the inclusion of the imbalanced data classification model results in a
greater increase in the recognition rate of delayed flights in all three phases, from a low of
51.3% to 83.6% in phase 1 and from a high of 72.1% to 96.5% in phase 3.
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Table 12 shows the comparison between the direct flight delay prediction, i.e., the
features corresponding to the duration in the imbalanced data classification model are
removed, and the delay prediction based on the duration. As can be seen from Table 12,
the prediction results based on the duration are higher than the direct prediction in terms
of precision and recall in all three phases of the transit flight, which further confirms the
effectiveness of the critical node moment prediction model, and that the predicted duration
can reflect the surface operating conditions to a certain extent and thus can be used as input
features for the imbalanced data classification model to improve the prediction effect.

Table 12. Comparison of prediction results between the two methods.

Precision Recall

Method 1 Method 2 Method 1 Method 2

Phase I 87.6% 88.9% 81.5% 83.6%
Phase II 91.4% 93.0% 87.8% 90.4%
Phase III 93.8% 96.3% 94.2% 96.5%
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Table 13 shows the comparison of the nodes and model prediction accuracy of this
paper for judging flight delays with existing research results. The existing predictions of
flight delays for departing flights are all judged by the time of off-block, while this paper
chooses the time of departure as the judgment criterion and makes multiple predictions in
the whole process of flight transit. This is, firstly, more conducive to the managers’ judgment
and early warning of delays in the whole process of flight operation; secondly, multiple
predictions and warnings in the process of flight transit are beneficial to the recovery of
delays; thirdly, it is more in line with the requirements of the Civil Aviation Administration
of China (CAAC) on the statistical standard of departing flights’ normalcy. In terms of
prediction accuracy, the method described in this paper achieves 86.3% in phase 1, 91.8% in
phase 2, and 96.3% in phase 3, which is an improvement of more than 3% compared with
the existing papers that use the time of off-block as the delay judgment criterion.

Table 13. Comparison between this paper and existing studies.

Author
Node Used to Determine Flight Delays

Accuracy
Off-Block Time Take-Off Time

Khaksar et al. [3] (2017)
√

× 77.01%
Thiagarajan et al. [9] (2017)

√
× 86.48%

Wu Renbiao et al. [5] (2019)
√

× 92.39%
Ye et al. [8] (2020)

√
× 86.55%

Qu et al. [10] (2020)
√

× 93.19%
Ding Jianli et al. [11] (2021)

√
× 90.30%

Roger et al. [14] (2022)
√

× 92.90%

This paper ×
√ Phase I: 86.3%

Phase II: 91.8%
Phase III: 96.3%

5. Discussion

This paper addresses the problem that the current flight departure delay prediction
method is difficult to provide decision support for saving delayed flights, and designs a
phased delay prediction method for the whole process of transit flights, The main results
are as follows. A machine learning-based key nodes time prediction model was constructed
for the flight landing time, the in-block time and the off-block time. The model prediction
results showed that the CatBoost algorithm outperformed XGBoost and Random Forest
in terms of prediction error and prediction accuracy. The prediction accuracy of the three
links reached 92.8%, 92.5% and 97.6% respectively using the CatBoost algorithm. A delayed
flight prediction identification method based on the output of the key nodes time prediction
model and machine learning was designed to perform flight delay prediction identification
at the arrival point moment, the landing moment and the in-block moment respectively in
sequence during the flight approach. Using the constructed imbalance data classification
model combining SMOTE and CatBoost algorithm, the recognition rate of delayed flights
in the three phases reached 83.6%, 90.4% and 96.5% respectively. The designed flight delay
prediction method consists of a key nodes time prediction model and an imbalance data
classification model, and stage predictions are made during the flight approach process. On
the basis of ensuring that the accuracy of delayed flight prediction meets or exceeds existing
research, the key nodes time prediction model is used to locate the possible locations of
flight delays and provide decision support for the adoption of corresponding intervention
measures, while the stage predictions also provide more time for the implementation of
intervention measures.

The focus of this paper is on how to predict delayed flights while providing decision
support to save them, therefore only the process of a transit flight from passing through the
arrival point to departure is selected. The next phase of the study considers extending this
process to include flights from outstation departures to current station departures, while
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expanding the applicability of this method beyond transiting flights. In addition, weather
was considered as a factor in the design of the delay prediction method, but as reliable
weather data is not currently available, the effect of weather is not reflected in the paper.
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