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Abstract: Variable angle tow steering technology is capable of manufacturing complex aviation
parts with a trajectory of intricate curvature planned based on stress or profile characteristics, which
greatly improves the forming efficiency, design flexibility and mechanical properties of composite
structures. In view of the forming defects such as buckling and wrinkles caused by the lateral bending
of fiber prepreg tow, a theoretical buckling model based on the Rayleigh Ritz method, the principle
of minimum potential energy and the viscoelastic foundation is established, in which the adhesion
coefficient is characterized by the degree of intimate contact to introduce process parameters. On the
basis of the contact mechanics analysis, the distribution of the compaction pressure and bending stress
is studied to improve the theoretical model, and the critical buckling load and the minimum radius
of the tow under the normal and tangential contact conditions are determined precisely. Finally, the
finite element models of compaction and variable angle steering placement are proposed, and the
theoretical model and simulation model are verified by corresponding trials. It is demonstrated that
defects can be effectively suppressed through optimizing process parameters.

Keywords: variable angle tow steering; buckling model; contact mechanics; defects suppression

1. Introduction

Advanced composite materials with carbon fiber as a reinforcement have had high
performance advantages in specific strengths and specific stiffnesses since their first appli-
cation in the field of aircraft manufacturing in the early 1970s. It can reduce the weight of
aircraft by 10–40% and the cost of structural design by 15–30%, which plays a vital role
in the lightweight and modularization of the aircraft structure [1]. As one of the most
advanced composite structure-forming technologies at present, automated fiber placement
(AFP) can realize the multi-fiber prepreg tows to be laid on the mold surface layer by layer
according to the preset trajectory, while taking into account the production efficiency and
the complexity of products. Compared with manual laying, filament winding, automated
tape laying and other methods, AFP has lower cost and higher flexibility [2,3], which has
been widely used in the forming and manufacturing of aerospace composite structures.

Variable angle composite (VAC) [4], first proposed in 1992, can improve the mechanical
properties of the structure and relieve the local stress concentration without increasing
the weight [5], promoting the design and application of composite laminated structures
with variable thicknesses and stiffnesses in aerospace and other fields [6–8]. Variable angle
tow steering (VATS) combines AFP with the VAC structure, which is suitable for high-
performance manufacturing of complex aircraft structures, such as hyperbolic blended wing
bodies, s-shaped air inlets and engine fan blades. However, the compression performance
of carbon fiber composites is worse than the tensile performance, and buckling occurs on the
compressed side in virtue of the accumulated strain energy overcoming the adhesion [9,10],
resulting in equally spaced wrinkles [11]. Devesh systematically presented the multiple
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types of defects [12] associated with the manufacturing processes in curvilinear fiber
placement, including but not limited to wrinkles, waviness, overlaps, etc.

In order to explore the formation mechanism and suppression method of buckling
defects in VATS, Beakou [13] established a mathematical model based on elastic orthotropic
rectangular thin plates and used independent elastic elements to represent the bonding
performance of prepreg tow. To narrow the gap between the above model and actual
working conditions, Matveev added a simple boundary condition [14] to the model and
modified the deflection equation to make the solved critical load formula more convincing.
The models they established are relatively simple, and the deflection equation cannot
meet the boundary conditions in VATS. Belhaj perfected the composition of the model by
introducing the shear ply [15] between the prepreg tow and elastic elements to simulate
the interaction between the elements, and derived the differential control equation of
axisymmetric buckling of the thin plate with variable stiffness without verification, which
led to the complexity of the model. Nima [16] proposed a modeling method to characterize
the blisters and wrinkles during tow steering and obtained the simulation results, but
lacked corresponding theoretical model support. For the wrinkling in bilayer systems,
Huang et al. established a model for evolving wrinkles consisting of an elastic layer and a
viscoelastic layer [17–19].

However, most of the current buckling models are based on the minimum potential
energy principle of thin plates, in which the boundary conditions and deflection functions
are not accurate and there is a lack of correspondence with the placement process conditions.
Moreover, the compaction and rotating traction effects of the compaction roller on the
prepreg tow in VATS are ignored, which affect the stress-strain state and the adhesion
performance of the layer, thus affecting the magnitude and distribution accuracy of the
deflection. In addition, there is a lack of accurate simulation analysis methods for VATS,
which is not conducive to the efficient verification and iterative optimization of the buckling
theoretical model.

In this paper, a theoretical model of buckling defects in VATS based on the theory
of plates and shells is proposed. The viscoelastic elements are used to characterize the
bonding performance between the tow and the mold, and the boundary conditions of
large deflection bending of the elastic thin plate are determined according to their actual
condition. The detailed modeling process is introduced in Section 2. Secondly, based on
Hertz’s contact principle, the normal contact and tangential contact models of the flexible
compaction roller and prepreg tow are established, and the distribution of compaction
pressure on the surface of the tow and the internal stress in the section of the tow are
solved in Section 3, resulting in the critical buckling load and the minimum lateral bending
radius. In Section 4, finite element software is used to establish the simulation model of
VATS to verify the distribution of compaction pressure, in-plane compression load and the
formation of defects such as wrinkles. In Section 5, the theoretical model and simulation
model are verified by experiments, and the influence mechanism of process parameters on
defects in VATS is explored, so as to prove the feasibility of optimizing process parameters
to suppress the forming defects. Finally, Section 6 summarizes the research contents of this
paper and makes some concluding remarks.

2. Modeling of Defects Formation in VATS

The main reason for the out of plane wrinkles in VATS is the mismatch between the
length of trajectory and the initial length of the tow, resulting in the tensile and compressive
combined load along the width direction in the section of prepreg. In this paper, the
formation mechanism of wrinkle defects under non-uniform load is studied, which is
approximated as a large deflection buckling model of a thin plate laid on a viscoelastic
foundation and is solved by accurate boundary conditions and the deflection function.
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2.1. Viscoelastic Foundation and Boundary Conditions

It is known that the deflection is much larger than the thickness of the tow, and the
curvature of the trajectory is relatively small. Therefore, the buckling tow is equivalent
to a rectangular orthotropic homogeneous flexible thin plate, and the buckling equation
is established by the large deflection bending theory of the thin plate. The uniformly
distributed elastic elements are used to characterize the inhibition effect of the adhesion
between the tow and the mold on the formation of wrinkles (Figure 1); that is, the adhesive
layer composed of spring elements is inserted, and its elastic coefficient represents the
adhesion force of the tow, which is directly affected by process parameters.
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First of all, the large deflection bending theory of elastic thin plates is based on the
Kirchhoff hypothesis; that is, there is a neutral plane without in-plane deformation, and the
rest of the plate is parallel to the plane of the neutral plane, which remains parallel after
bending. The compaction roller applies torque to the tow, and both sides of the neutral
plane are in tension and compression, respectively, while the neutral plane stress is 0. It is
assumed that the edge of the tow under the roller is fixed without deformation to ensure
that the load in the section is linearly distributed along the width direction.

Before establishing the buckling model, it is necessary to determine the boundary
conditions of the elastic thin plate. The two edges (Edge 1 and Edge 2) along the fiber length
direction are fixed support edges, and there are no wrinkles at the boundary positions.
Among them, the strain energy stored at Edge 1 is not enough to overcome the adhesion
force to delaminate the tow. Edge 2 is the real-time compaction position, which bears
the normal compaction load and in-plane torque. Therefore, the two boundaries and the
nearby small area are in good contact with the mold. Because the axial tensile strength
of the prepreg fiber tow is large, the outer boundary keeps in contact with the mold,
and the wrinkles appear at the inner boundary. Macroscopically, it appears as a small
rotation around the outer boundary and away from the mold. Consequently, the outer
boundary (Edge 3) is simply supported, and the inner boundary (Edge 4) is a free edge
with approximately equidistant wrinkles after compression buckling.

The kinematic boundary conditions of the thin plate model are:

ω(x = 0) = 0 ω′(x = 0) = 0

ω(x = L) = 0 ω′(x = L) = 0

ω(y = b) = 0 ω′′ (y = b) = 0

(1)

where ω is the buckling deflection, L is the length of the buckling model and b is the width.
The load boundary conditions of the buckling model are complex. Edge 1 is a fixed

boundary, and its stress has no effect on the establishment of the model. Edge 2 bears the
coupling load of compression and torsion from the roller, wherein the compaction force
has a direct impact on the adhesion coefficient of the tow, and the torque is applied in
the cross-section of the tow and is approximately expressed as the in-plane tensile and
compressive load perpendicular to the boundary. Edge 3 only bears the support force from
the mold, while Edge 4 is a free boundary without any load.
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2.2. Optimized Buckling Model Based on Rayleigh Ritz Method

The flow of the Ritz method to solve the large deflection buckling equation of the
thin plate is as follows: firstly, the buckling deflection function ω is assumed to satisfy
all boundary conditions; the total potential energy of the large deflection buckling model
is solved, including the elastic strain energy, the potential energy of the viscoelastic ele-
ments and the work done by the in-plane load; according to the principle of minimum
potential energy (the first-order variation of the total potential energy is 0), the critical load,
i.e., the maximum compression load in the plane of the inner boundary, is solved; finally, the
critical torque and the minimum radius of curvature are obtained based on the critical load.

Since the established buckling model is a rectangular thin plate structure with fixed
support on opposite sides and a simple support on one side, the Navier method [13] and
Levy method [14] based on Fourier trigonometric function series cannot meet the boundary
conditions. In this paper, a deflection function based on the deformation form of the double
cosine series is proposed:

ω(x, y) =
∞

∑
m=1

∞

∑
n=1

amn

(
1− cos

2mπx
L

)
cos

(2n− 1)πy
2b

(2)

where amn is the Fourier coefficient.
The deflection function Equation (2) has different frequencies along the X direction

(fiber length) and the Y direction (fiber width), which ensures that the deflection, rotation
angle and bending moment of the thin plate at the boundary meet the requirements.

The strain potential energy of the thin plate model is:

U(ω) =
1
2

∫ L

0

∫ b

0

[
D11

(
∂2ω

∂x2

)2

+ D22

(
∂2ω

∂y2

)2

+ 2D12
∂2ω

∂x2
∂2ω

∂y2 + 4D66

(
∂2ω

∂x∂y

)2]
dxdy (3)

where Dij is the bending stiffness of the tow.
The potential energy of the elastic elements is:

V(ω) =
1
2

∫ L

0

∫ b

0
k·ω2dxdy (4)

where k is the adhesion coefficient of the prepreg tow.
The work done by the in-plane load is:

W(ω) =
1
2

∫ L

0

∫ b

0
Nx

(
∂ω

∂x

)2
dxdy (5)

where Nx is the in-plane load of Edge 2.

Nx(y) =
2N0

b
y− N0 (6)

where N0 is the boundary load.
Assuming that the tensile and compressive loads are equal and the directions are

opposite, the in-plane load is linearly distributed along the tow width direction (Figure 2).
According to the Rayleigh–Ritz method, the total potential energy of the buckling

model system is:
Π(ω) = U(ω) + V(ω)−W(ω) (7)

Substitution of Equations (2)–(6) into Equation (7), the total energy of the theoretical
model is:

Π =
Lb
8

 D11a2
mn
(mπ

L
)4

+ D22a2
mn
( nπ

b
)4

+ 2D12a2
mn

(
mnπ2

Lb

)2
+

4D66a2
mn

(
mnπ2

Lb

)2
+ ka2

mn − a2
mn
(mπ

L
)2 N0

n2π2

 (8)
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According to the principle of minimum potential energy, the first-order variation of
the total energy equation is 0, and only the first-order deflection equation is selected for
calculation in this paper. The prepreg fiber tow is highly anisotropic, and the bending
stiffness in other directions is much smaller than D11. The critical buckling load of the
prepreg tow can be obtained:

N0cr = D11
π4

L2 + kL2 =
π4E1bh3

12L2 + kL2 (9)

where h is the thickness of the prepreg tow and E1 is the Young’s modulus.
It can be seen from Equation (8) that there are many factors affecting the buckling

state of the inner side. In addition to the material properties (width, thickness and Young’s
modulus of the tow), the in-plane compression load and the adhesion coefficient between
the tow and the mold play an important role. Therefore, in this paper, intimate contact
is used to characterize the adhesion coefficient, and the rough surface of the prepreg tow
is equivalent to a rectangular element array with equal spacing distribution (Figure 3).
The fluid continuity equation is used to calculate the geometric size change of rectangular
elements before and after compaction, which is the evaluation index for the bonding effect
of the layers [20–22].

The expression of intimate contact degree is as follows:

Dic =
1

1 + w0
b0

[
1 + 5

(
1 +

w0

b0

)(
a0

b0

)2 P
µm f

tic

]1/5

= α

(
P

µm f
tic

)1/5

(10)

where a0, b0 and w0 are the characteristic parameters of the surface roughness of the prepreg
tow, which can be simplified as α, P is the compaction pressure on the tow surface, tic
is the contact time between the tow and the roller, and µm f is the resin viscosity related
to temperature.

The compaction pressure and in-plane compression load of the prepreg tow have a
strong correlation with the formation of buckling defects, and the above loads are all from
the contact between the compaction roller and the tow. Wherein the compaction pressure is
derived from the normal force applied by the roller to the tow through the normal contact,
and the in-plane load comes from the tangential contact force exerted by the roller on the
tow. The contact model between the compaction roller and the tow will be described in
detail in Section 3.
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3. Modeling of the Contact between Compaction Roller and Tow

In the VATS process, the robot applies a preset compaction force to the prepreg tow
through the compaction roller, and the flexible roller will deform to a certain extent under
the pressure, forming a compaction region of a certain width so that the layers have a better
bonding effect. Simultaneously, the robot end effector drives the placement head to rotate
around the normal line of the laying surface while maintaining the compaction state. The
friction force between the roller and the tow in the compaction region drives the tow to
bend laterally, so that the tow can be laid continuously in a curve with variable angles.

3.1. Normal Contact Model Based on Hertz Theory

The contact model between the flexible roller and the prepreg tow can be divided into
the contact along the tow length direction and the contact along the tow width direction [23].
Since the roller continuously compacts the tow on the mold surface along the laying
direction, the compaction effect on each position of the tow is consistent; that is, the tow
is laid under the maximum pressure. If the width of the tow is narrow, there is almost
no difference in the pressure along the width of the tow. Consequently, the lateral and
longitudinal distribution of the pressure have no impact on laying quality. The compaction
model established in this paper is mainly to solve the maximum compaction pressure and
the width of the contact region, so as to obtain the degree of intimate contact.

According to the Hertz contact theory [24], the compaction process of the prepreg
tow by a flexible roller can be simplified by the contact model of an elastic cylinder and
a rigid half space (Figure 4). F is the compaction force applied by the robot, P is the
pressure experienced by the prepreg tow, R is the radius of the compaction roller, h is the
deformation depth of the flexible roller, d1 is the width of the roller, and d2 is the width of
the contact region.
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The deformation depth is linearly proportional to the compaction force:

F =
π

4
E∗d1h (11)

where E∗ = E2
1−v2 , E2 is the elastic modulus of the roller material and v is Poisson’s ratio.
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The width of the contact region is:

d2 = 2
√

Rh = 4

√
FR

πE∗d1
(12)

The compaction pressure is:

P =

√
E∗F

πd1R
(13)

Substituting Equations (11)–(13) into Equation (10), a new expression of the degree of
intimate contact is obtained:

Dic = α

(
4F

µm f πd1V

)1/5

(14)

The adhesion coefficient is expressed as:

k = β

(
4F

µm f πd1V

)1/5

(15)

where β is constant and V is the laying speed.
The adhesive coefficient Equation (15) is brought into Equation (9) to obtain the

expression of critical buckling load:

N0cr =
π4E1bh3

12L2 + β

(
4F

µm f πd1V

)1/5

L2 (16)

3.2. Tangential Contact Model Based on Torsion without Sliding

In the compaction region, the prepreg tow is subjected to a certain angle of lateral
bending due to the tangential friction of the roller, which makes the tow lie in a continuous
variable angle curve on the whole. The thickness of the tow is small, and it can be consid-
ered that the shear stress of the tow section is uniformly distributed along the thickness
direction. Therefore, the tangential friction force of the tow surface forms the in-plane
tensile and compressive loads (uniformly distributed along the thickness direction and
linearly distributed along the width direction) in the tow section.

According to the friction contact theory, the tangential contact model between the
roller and the tow is established (Figure 5), as well as the functional relationship between
the total rotating torque of the placement head and the in-plane load. The width of the tow
is small and close to the width of the compaction region. The tangential contact region can
be approximated as a circular contact model, and the diameter is the width d1 of the tow.
In Figure 5, M is the torque applied to the roller, and N0 is the in-plane compression and
tensile load. In order to simplify the model, the relative sliding between the roller and the
tow is not considered in this paper.

The simplified two-dimensional tangential contact model is a circular contact surface,
and the polar radius of the contact region is d1/2. The in-plane load is generated by the
torsion of the roller compacted on the surface of the tow, which is perpendicular to the
polar radius and linearly distributed along the radial direction. The total torque of the
compaction roller acting on the contact region is:

M =
1
6

πd3
1N0 (17)

The buckling radius of the prepreg tow can be obtained by Equation (17) and the
bending moment formula:

rcr =
E1b3h

2πd3
1N0cr

(18)
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In the next section, the finite element software is used to establish a simulation model
to verify the contact model and the distribution of the compaction force, analyze the
tangential stress and the forming defects in VATS, and establish the corresponding rela-
tionship between the material parameters and the critical buckling radius based on the
theoretical model.
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4. Simulation Modeling and Numerical Results Analysis

In this paper, the finite element software ANSYS [25] is used to establish the contact
model between the roller and the prepreg tow. The VATS buckling simulation model
established in this paper includes four parts: a deformable silicone rubber compaction
roller (40 mm diameter, 30 mm width, 6.1396 MPa elastic modulus and 0.48 Poisson’s
ratio), an epoxy resin prepreg tow (6.35 mm width and 230 GPa elastic modulus), a rigid
laying mold (structural steel) and a rigid roller mandrel (structural steel). In addition, the
influence of important material parameters such as length, width and thickness of prepreg
tow on critical buckling radius in the theoretical model is also studied in this section.

4.1. Simulation Model of Normal Contact and Pressure Distribution

The compaction force is generated by the robot end effector and applied to the mandrel
of the roller, which then acts on the surface of the prepreg tow through the roller. Therefore,
the compaction force applied to the rigid mandrel in the simulation model is closer to the
actual situation. A small tensile force is applied to the upper section of the tow to simulate
the tow tension and avoid the lateral slip of the tow. The established compaction simulation
model is shown in Figure 6.

Since the model is mainly used to study the normal contact mechanism between the
roller and the tow, the radial deformation of the roller and the distribution of the compaction
force, the contact type between the roller and the tow, and the tow and the forming mold
is set as fixed contact for the simplification of calculation; that is, the tangential relative
displacement is not considered.

From the simulation results of normal contact (Figure 7), it can be seen that after
the compaction force is applied, and the flexible roller deforms, forming a contact region
approximately rectangular on the surface of the tow and the mold, and the maximum
pressure is located at the center of the region. When the applied force is 50 N, the maximum
compaction pressure at the center of the contact region is 0.46509 MPa, and the change is
small within the tow width. The maximum theoretical compaction pressure calculated by
Equation (13) is 0.46001 MPa, which is similar to the simulation result. The strain simulation
results of the roller show that the width of the contact region is about 4.9081 mm after the
roller is deformed, and the theoretical value of the width calculated by Equation (12) is
4.6130 mm.
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By observing the stress and strain nephogram of the flexible compaction roller, it can
be concluded that the normal contact stress and strain are distributed in a parabolic curve
along the width direction, which is consistent with the theoretical equation of pressure
distribution and further proves the feasibility of applying Hertz theory to the compaction
contact model.

4.2. Simulation Model of Angential Contact and Buckling

The key to establishing the buckling simulation model in VATS is to determine the
characterization method of the adhesion coefficient between the prepreg tow and the mold.
Since the adhesion can inhibit the occurrence of buckling, delamination and other defects of
the tow, it can be regarded as a connection mode between the tow and the mold. Therefore,
this paper simulates the adhesion (tackiness of prepreg tow) with reference to the interface
crack failure form of the adhesive structure. The interface delamination simulation methods
in ANSYS software include virtual crack closure technology (VCCT) and cohesive zone
materials (CZM).

Considering that the wrinkle area is unknown, it is impossible to set the preformed
crack, so CZM is utilized to simulate the delamination. In order to simplify the simulation
model, contact debonding is used to establish the contact pair between the tow and the
mold, and different adhesion coefficients are characterized by setting the material properties
of the cohesive zone (maximum normal contact stress and delamination gap) in the ACP
pretreatment module. The Figure 8 shows the detailed modeling process.



Aerospace 2022, 9, 620 10 of 16

Aerospace 2022, 9, x FOR PEER REVIEW 10 of 17 
 

 

 2.5409×10-5 Min

Contact Region Stress Roller Strain

(a) (b) 

Figure 7. Nephogram of finite element simulation results: (a) Simulation results of contact stress; (b) 
Simulation results of roller strain. 

By observing the stress and strain nephogram of the flexible compaction roller, it can 
be concluded that the normal contact stress and strain are distributed in a parabolic curve 
along the width direction, which is consistent with the theoretical equation of pressure 
distribution and further proves the feasibility of applying Hertz theory to the compaction 
contact model. 

4.2. Simulation Model of Angential Contact and Buckling 
The key to establishing the buckling simulation model in VATS is to determine the 

characterization method of the adhesion coefficient between the prepreg tow and the 
mold. Since the adhesion can inhibit the occurrence of buckling, delamination and other 
defects of the tow, it can be regarded as a connection mode between the tow and the mold. 
Therefore, this paper simulates the adhesion (tackiness of prepreg tow) with reference to 
the interface crack failure form of the adhesive structure. The interface delamination sim-
ulation methods in ANSYS software include virtual crack closure technology (VCCT) and 
cohesive zone materials (CZM). 

Considering that the wrinkle area is unknown, it is impossible to set the preformed 
crack, so CZM is utilized to simulate the delamination. In order to simplify the simulation 
model, contact debonding is used to establish the contact pair between the tow and the 
mold, and different adhesion coefficients are characterized by setting the material properties 
of the cohesive zone (maximum normal contact stress and delamination gap) in the ACP 
pretreatment module. The Figure 8 shows the detailed modeling process. 

Define the material properties of tow, 
interface and mould in Engineering Data

Enable Fracture function in Mechanical 
Model

Insert Contact Debonding in Fracture and 
set Contact Region

Define Boundary Conditions and Analysis 
Settings in Static Structural

Post processing of Delamination simulation 
in Eigenvalue Buckling  

Figure 8. Flow chart of delamination simulation. Figure 8. Flow chart of delamination simulation.

Firstly, the internal stress model of the tangential contact surface is verified. The laid
edge of the prepreg tow is set as a fixed boundary, and a torque of 1 N·m is applied to
the edge to be laid. Cohesive contact elements are established between the tow and the
mold, and the equivalent stress simulation result (Figure 9) is 7.5702 MPa. The theoretical
value of the maximum in-plane load (boundary load) calculated according to the functional
relationship between torque and stress Equation (17) is 7.4590 MPa, with an error of about
1.47% compared with the simulation result. It can be seen from the mesh diagram that there
is a neutral plane with a stress and strain state of 0 at the middle position of the prepreg
tow subjected to traction rotation torque, and the tow on both sides of the neutral plane
is in compression and tension states, respectively, and is symmetrical with respect to the
neutral plane.

Secondly, the formation of wrinkles when the prepreg tow is laid at different angles is
simulated in the post processer. The edge to be laid is set to rotate 10◦ around the fixed edge,
and the length of the laid tow is 100 mm, and the calculated bending radius is 572.958 mm.
It can be seen from Figure 10 that there are out of plane wrinkles with equal spacing distri-
bution on the compressed side, and the buckling deflection is approximately sinusoidal,
while there are no forming defects on the tensile side of the tow, which fits well with the
mold. In conclusion, the distribution of defects is consistent with the theoretical model.
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4.3. Influence of Material Parameters

Since the main purpose of this section is to establish the corresponding relationship
between the material parameters of the prepreg tow and the critical buckling radius, the
influence of the laying process parameters, such as compaction force, can be excluded
to simplify the model. The coefficient β can be set to 0, and the critical buckling radius
Equation (18) can be simplified as:

rcr =
6L2b2

π5d3
1h2

(19)

Figure 11 shows the relationship between the length of the tow with different widths
and the critical buckling radius. The critical buckling radius increases with the length and
is sensitive to the change in width. When the width of the tow is narrow, the change in the
buckling radius with the length is small. When the width is increased to 1 inch, the increase
in the laying length will easily lead to the formation of defects in the tow, such as wrinkles.

Figure 12 shows the relationship between the thickness of the tow with different
widths and the critical buckling radius. With the increase of the thickness, the resistance
of the prepreg tow to buckling is gradually enhanced, and the possibility of out of plane
wrinkles is reduced. The thicker tow can realize large curvature bending without defects. In
addition, the width of the tow still affects the sensitivity of the buckling radius to thickness.
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It can be seen from the above two line graphs that the width plays an important role
in determining whether buckling occurs in VATS. The wider the width, the more likely
the tow is to have wrinkles, warps and other defects during lateral bending, which is not
conducive to the adaptation to complex curved surfaces. Therefore, when manufacturing
complex structures such as aircraft engine blades and air inlets, it is preferred to use narrow
prepreg tows for VATS.

5. Experimental Verification and Discussion

The robotic fiber placement shown in Figure 13 was used to perform the VATS exper-
iments. The T700/epoxy resin prepreg tows produced by Guangwei Co., Ltd in Weihai,
China are selected as the material, with a resin content of 33%, a tensile strength of 2300 MPa
and a tensile modulus of 115 GPa. The ambient temperature of the test site is 26 ◦C. The area
to be laid is heated to 35 ◦C by the infrared heating device integrated into the placement
head, and the mold heating function is able to keep the temperature constant. After the lay-
ing of the first layer is completed, the quality of the layer should be observed immediately
to eliminate the influence of multiple compaction after multi-layer laying on the wrinkles.
Considering that it is difficult to detect the real-time adhesion coefficient between the tow
and the mold, this paper mainly focuses on the qualitative verification of the buckling
theoretical model.
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5.1. Influence of Steering Radii

Firstly, the influence of tow steering radius on the formation of defects such as wrinkles
was explored through a group of experiments with different curvature radii. When the
area to be laid is heated to 35 ◦C, the robotic placement will heat and lay the prepreg tow
on the mold surface at a laying speed of 0.1 m/s and a compaction force of 50 N, and the
laying length of the tow is set to 1 m. The 8 trajectories of this group of experiments are
set as straight-line paths and curve paths with a steering radius of 20 m, 10 m, 5 m, 2.5 m,
1.5 m and 0.5 m (Figure 14).
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The prepreg tow has obvious defects since the curvature radius of the trajectory is
2.5 m, and the specific form is the separation of the inner edge and the mold to varying
degrees. When the radius of curvature is 2.5 m, a small range of wavy wrinkles appear on
the inner side of the fiber tow. As the radius gradually decreases, the defects become more
and more obvious, and the area where defects appear gradually increases. When the radius
of curvature is 1.5 m, the wrinkles develop into warping, and there is a serious delamination
between the tow and the mold. Until the radius reaches 0.5 m, the tow is in a buckling state,
and continuous wrinkles are formed on the inner side with serious defects. Therefore, it can
be proven that the corresponding relationship between the steering radius and the in-plane
load (Equation (18)) is accurate; that is, as the radius decreases, the compression load on
the inner side of the tow increases until it exceeds the critical buckling load, leading to
defects, such as wrinkles, which are more likely to occur on the compressed side of the tow.

5.2. Influence of Compaction Force

According to the steering radius experiments, it can be concluded that the prepreg
tow will produce wrinkles and other defects at a radius of 2.5 m under the force of 50 N.
Therefore, the radius is set to 2.5 m and the temperature is kept at 35 ◦C in this group of
experiments. The robotic placement applied different compaction forces and laid the tow
at a speed of 0.1 m/s to verify the influence of compaction force on forming defects. The
variation range of compaction force was set to be 20 N to 80 N, and the interval was 5 N.
The results are shown in Figure 15.

With the increase of the compaction force, the obvious warpage phenomenon gradually
disappears, and the range and frequency of wrinkles are also significantly reduced. This
is because an appropriate pressure increase can make the resin flow better between the
tow and the molding mold, inhibit the generation of bubbles, and make the prepreg fit
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better. However, excessive pressure will cause low resin content between layers, affecting
the bonding performance. It is proven that the adhesion performance between the tow
and the mold can be increased by increasing the force, and the formation of buckling
defects can be suppressed, which helps to reduce the in-plane load and decrease the critical
buckling radius.
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5.3. Influence of Layup Rate

According to Equations (15) and (16), the laying rate also has an effect on the adhesion
performance, in-plane load and critical buckling radius of the prepreg tow. The compaction
force of the experiment was 50 N, the temperature was 35 ◦C, and the radius of curvature
of the laying trajectory was 2.5 m. The laying speed ranged from 0.1 m/s to 0.5 m/s with
an interval of 0.05 m/s.

In Figure 16, different laying speeds correspond to uneven forming quality. The faster
the laying speed, the shorter the contact time between the compaction roller and the tow,
which leads to a poor fit between the tow and the mold. In addition, the fast velocity leads
to insufficient heating temperature in the placement area and poor fluidity and viscosity of
the prepreg resin, which further reduces the bonding quality. In this case, the inhibition
effect of tow adhesion on wrinkle formation is very poor. The actual results are consistent
with the theoretical model; that is, excessive laying speed reduces the adhesion coefficient
of the tow, so that a small in-plane compression load can cause buckling, wrinkles or even
wavy warping.

Through the aforementioned laying experiments, the influence mechanism of forming
process parameters on the formation of defects in VATS can be revealed, and the theoretical
buckling model established above can be qualitatively verified. The theoretical calculation,
simulation and experiment results are consistent, which proves the feasibility of applying
Hertz’s contact and tangential contact theories to optimize the variable angle tow buckling
model based on Rayleigh–Ritz solution, minimum potential energy principle and viscoelas-
tic foundation, and lays a theoretical foundation for the research of VATS technology and
defect control method. However, due to the experimental conditions, there is no accurate
measurement method for the viscosity of prepreg tow resin, so it is impossible to establish
the quantitative relationship between the critical load and the process parameters. Future
research can determine the resin viscosity of tow under specific temperature conditions
through multiple groups of controlled variable experiments and then explore the character-
ization method of adhesion coefficient to realize the qualitative analysis and demonstration
of the buckling model.
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6. Conclusions

A buckling model including the width, thickness, adhesion coefficient and other
material properties of the prepreg tow is proposed for the placement of complex composite
structural parts in the aviation field. The critical in-plane load and buckling radius in
VATS are solved by the Ritz method and the minimum potential energy principle based
on more accurate boundary conditions and deflection functions. On this basis, the normal
contact and tangential contact models of the compaction roller and the tow are innovatively
established, so that the buckling model is improved by the theory of intimate contact and
traction torsion without sliding, and factors such as the compaction force, laying speed
and resin viscosity are introduced into the model, which is an important innovation point
of this paper. In addition, a simulation model of VATS based on cohesion theory was
established, and the distribution of compaction pressure as well as in-plane load was
verified, which proved the feasibility of using viscoelastic foundation to characterize the
adhesion of prepreg tow. Finally, the proposed theory and simulation models are verified
by multiple groups of single factor laying experiments. It is proven that a proper increase
in compaction force and a decrease in velocity can improve the adhesion performance of
prepreg tow and reduce the critical radius in VATS.

Limited by the current experimental conditions and testing methods, this paper lacks
research on the quantitative characterization methods and experimental verification of the
adhesion coefficient. In addition, due to the temperature fluctuation, the corresponding
relationship between process parameters and the critical buckling radius needs to be
established. Future research will be devoted to exploring the relationship between the
heating temperature and the formation of defects in VATS. In view that the resin viscosity
of the prepreg tow is sensitive to temperature, and the heating process has a great influence
on the adhesion coefficient of the tow, it is important to establish an accurate temperature
field model to introduce the thermal effect into the buckling model to achieve high-quality
placement. Furthermore, composite structures are composed of multiple layers, and each
layer has undergone repeated compaction and heating processes. It is of great significance
to study the effect of repeated placement on wrinkle formation in VATS for improving the
manufacturing quality of aviation components and parts.
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