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Abstract: One of the important applications of the space tethered system is formation flying. To
satisfy the requirement for interferometry of ground targets by remote-sensing satellites, a new type
of tethered solar sail spacecraft has been proposed in recent research. The replacement of subsatellites
of conventional tethered satellite systems with solar sail spacecraft allows for a special formation
configuration in which the main satellite is in sun-synchronous orbit and the subsolar sail is in
displaced orbit. If the solar sail is at the appropriate attitude, the main satellite and the solar sail
spacecraft connected by metal tethers could move side by side, hence this formation system is called
transverse formation. The relative baseline of this transverse formation system is perpendicular to
the ground trajectory of the satellite, effectively solving the problem that the relative baseline of
conventional orbital formations varies in a trigonometric cycle. Researchers on the past ignored the
mass and elasticity of the tether, and considered the tether just a constraint in the model system. Since
the solar sail is generally quite light compared to the other components of the system, the model
inaccuracy caused by ignoring the mass of the tether on the dynamic model and control is extremely
obvious. This paper investigates the relative dynamics and control of a proposed system during
the deployment process with the mass of the tether. Two precise models of satellite-sail systems
are established. One is based on the dumbbell model with the mass tether for the tethered satellite
system, and the other is on the basis of the beads model of a tethered satellite system. The rigid one is
for control design and the flexible one is for dynamic simulation. It is concluded that the length of the
tether and attitude angle of the transverse formation configuration can be decoupled and controlled
separately. On the basis of the models, a length rate and LQR control law is developed and the control
of the deployment and retrieval process of the tethered solar sail system is investigated. Numerical
simulations are performed to verify the accuracy of the conclusions.

Keywords: flight control; transverse formation; formation deployment; tethered satellite-sail system;
solar sail

1. Introduction

Since satellite formation flying was proposed in the 1990s, it has become a research
hotspot of space technology in the 21st century [1]. Satellite formation flying plays a key
role in satellite remote sensing, electronic reconnaissance, deep-space exploration, and
other space missions [2]. Remote-sensing satellites image ground targets through Earth
observation equipment with important applications in optical reconnaissance, agricultural
production, engineering surveying, urban planning, etc. Satellite formation flying is a
large-scale system combining two or more small satellites flying to maintain the formation
of a specific spatial configuration. The satellites involved in the formation jointly undertake
missions of collecting and processing space signals and carrying payloads through the
communication link for information transfer to jointly satisfy the needs of the mission.

A general two-body satellite formation consisting of a main spacecraft and a sub-
spacecraft, which normally describes relative motion using the Clohessy–Wiltshire (C-W)
equation, has been sufficiently investigated in previous studies [3–6]. However, the relative
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baseline of such fly-around formations is a trigonometric periodic change, which is not con-
ductive to the requirements of Earth observation and other formation-flying applications.
To overcome the complication, a new type of two-body satellite formation flying has been
proposed in recent studies. Solar sails can move in special displaced orbits because of the
continuous solar radiation pressure. The characteristic of solar sail spacecraft can be used
to form a special spatial configuration in which the main satellite is in a sun-synchronous
orbit (SSO) and the subsolar sail in a displaced orbit parallel to the orbital plane of the main
satellite. Pan et al. investigated a new solar sail system consisting of a sun-synchronous
orbiting satellite and a solar sail in a parallel displaced orbit [7]. As shown in Figure 1, the
main satellite and the solar sail can move side by side if the solar sail is at the appropriate
attitude, hence the name of this formation system is transverse formation. The relative
baseline of the transverse formation system is perpendicular to the track of the subsatellite
point, effectively solving the problem of the trigonometric periodic change of the relative
baseline of the classical fly-around formation.

Figure 1. Transverse formation.

However, since solar sails are extremely light in general, a single solar sail is not
capable of carrying the required payload unless a huge sail is used, posing an enormous
challenge to both solar sail fabrication and deployment. This problem was further discussed
in [7], where the main satellite was connected to the solar sail by a metal tether, following
the structure of the space tethered satellite. The system could be controlled. The primary
payload required for the mission can be carried on the main satellite, and the electrical
energy required for the cameras on the sail is transmitted via a conductive tether. The
tethered satellite system is used to maintain the spacecraft in formation flying at a constant
distance, with the tension of the tether ensuring the stability of the configuration. A
tethered satellite with no additional thrust has merely a single control force along the
longitudinal axis of the tether, which is the tension of the tether. The attitude angle of the
tethered satellite is not effectively controlled, such that the tethered satellite is a typical
underactuated system. With replacement of the subsatellite of a tethered satellite system
with a solar sail, the solar radiation pressure provides additional control input and the
underactuated system is transformed into a fully actuated system, allowing for a simpler
control design.

Similarly to a conventional space tether system, a satellite-sail system, once launched
into a mission orbit, requires a controlled tether deployment to a proper mission length. For
tethered satellite systems, the focus of research has been on the dynamics and control of the
process of deployment and retrieval. The deployment and retrieval of tethered satellites has
been extensively investigated and is one of the most important issues in tethered satellite
missions. Throughout the years, numerous deployment and retrieval control laws have
been designed in related research on tethered satellites. The mainstream control methods
include tether length control [8], tether velocity control [9], tether tension control [10,11],
and optimal control [12–14]. At present, there are comparatively limited investigations on
the control of deployment and retrieval for satellite-sail systems. The focus and approach
of research on satellite-sail systems is essentially the same as conventional space tether
systems, which similarly revolve around the deployment and retrieval of the tether. While
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the control of deployment and retrieval has been exhaustively discussed for conventional
space tether systems, the dynamics of a satellite-sail system are more complex owing to
the influence of solar radiation pressure, and the deployment strategies of a conventional
space tether system might not be suitable for the satellite-sail system. For the problem of
deployment of a satellite-sail system, Zuo et al. designed a sliding mode controller with a
saturation function [15]. However, the special configuration requirements of the transverse
formation have been generally neglected in previous studies of the satellite-sail system.
In-plane angle and out-of-plane angle are generally used to describe attitude angles in
research on the space tether system, where such attitude angle definition is vulnerable to
singularities in the model for transverse formations. This requires description of alternative
attitude angles. In addition, the solar sail is large enough in area and light enough in
mass; therefore, the mass of the tether is generally of the same magnitude as the solar
sail. The mass of the tether is consequently an important factor in the uncertainty of the
model during the deployment and retrieval of a satellite-sail system, which has rarely been
discussed in past studies.

In this paper, the dynamics of a satellite-sail system applicable to a transverse forma-
tion is modeled based on the Lagrange equation using a dumbbell modeling approach
with reference to a conventional space tether system described by suitable attitude angle. A
simplified model based on the linear system autonomy idea, applicable to the design of con-
trol laws, is also proposed and control laws are formulated. This paper also discusses the
impact of model uncertainty caused by the mass of the tether on the design of control laws.

2. Dynamics

In this paper, it is assumed that the spacecraft orbits in a circular sun-synchronous orbit
at an altitude of 1000 km and a descent node time of 18:00 (i.e., a dawn–dusk orbit). The solar
light is approximately perpendicular to the plane of the spacecraft orbit and the spacecraft
is continuously supplied with available solar radiation pressure. It is worth noting that
there is no geosynchronous shadow zone in the sun-synchronous orbit. Disturbances
from the upper atmosphere of the planet are neglected, because the atmospheric drag
perturbation is of the magnitude of 10−7–10−6 N at the altitude orbital studied in the
paper, while the tension and the solar radiation pressure are of the magnitude of 10−3 N.
In addition, according to [15], a tether length of 1000 m was chosen for close formation and
imaging missions.

2.1. Definition of Coordinate Systems

The coordinate systems mainly used in this paper are defined as follows:
Inertial coordinate system Si(xi, yi, zi): The origin coincides with the center of the

Earth. The x-axis points from the Earth to the point of ascending intersection with the orbit,
the z-axis is perpendicular to the orbital plane, the y-axis is in the orbital plane, and the
right-hand rule is observed.

Orbital coordinate system So(xo, yo, zo): The origin is coincident with the center of the
main satellite, the x-axis is oriented along the Earth towards the host star, and the y-axis is
along the orbital velocity vector. The z-axis follows the right-hand rule.

In general, the state of a space tethered system is described by the three generalized
coordinates of the in-plane angle, the out-plane angle, and the length of the tether. This
is a clear physical definition with the simplest dynamic equations and is widely used in
research on space tethered systems. However, according to the requirements of the traverse
formation, as shown in Figure 1, when the traverse formation configuration reaches a
steady state, the tether is perpendicular to the orbit and the in-plane angle is not defined,
i.e., singular.

To overcome the singularities, two attitude angles, α and β, are defined in this study of
a satellite-sail system, as shown in Figure 2. Based on the new attitude angles, a spacecraft
body coordinate system is defined.
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Figure 2. Definition of coordinate systems for traverse formation.

Spacecraft body coordinate system Sb(xb, yb, zb): The origin is coincident with the main
satellite and the directions of the axes are shown in Figure 2. The coordinate transformation
relationship between Sb and So is defined as follows:

So
Ry(α)−−−→ • Rx(β)−−−→ Sb (1)

Finally, to describe the solar sail attitude, the solar sail body coordinate system is defined.
Solar sail body coordinate system Sd(xd, yd, zd): As shown in Figure 3, the origin

coincides with the center of the solar sail and the z-axis is opposite to the direction of
sunlight irradiation, which can be regarded as parallel to the orbital plane since the satellite
orbits in a sun-synchronous orbit and the solar–terrestrial distance is much greater than the
orbital radius. The x- and y-axes are parallel to the x- and y-axes of So, respectively.

Figure 3. Solar sail body coordinate system.

2.2. Dynamic Model

It is assumed that during a stable deployment, the solar sail is completely unfolded
and the tether is tight. In this case, the control forces of the system consist of the solar
radiation pressure and the tension on the tether. As the main satellite and the solar sail
are both sufficiently small, they could be considered masses in the dynamic model. The
following assumptions are considered. The elastic deformation of the tether is insignificant
and the tether is extremely light in comparison to the main satellite and the solar sail. The
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solar sail system in a transverse formation is modeled with reference to the dumbbell model
of an ordinary tethered satellite.

The Lagrange equation in generalized coordinates is used for modeling. According to
Equation (1), the coordinate transformation matrix between Sb and So could be described
as follows:

Abo =

 cos α 0 − sin α
sin β sin α cos β sin β cos α
cos β sin α − sin β cos β cos α

 (2)

In research on space tethered systems, the control laws of deployment, retrieval, and
maintenance are generally designed based on the dumbbell model and a more accurate
beads model used for simulation verification. For a space tether system where the mass of
the spacecraft at both ends is significantly larger than the mass of the tether, the dumbbell
model and simplified model ignore the mass of the tether and are sufficient for simulation
and control law design. However, solar sail spacecraft are large enough and light enough.
In the simulation of the above study, the mass of the solar sail used is assumed to be 1 kg.
The tether material commonly applied in the space tethered system trials is Dyneema.
The linear density of a Dyneema tether of 1.5 mm diameter is approximately 1.2 g/m
for a 1000 m tether, and thus the mass of the tether is approximately 1.2 kg, which is
in the same order of magnitude as the solar sail. Therefore, the mass of the tether is an
important factor contributing to model uncertainty during the deployment and retrieval of
a satellite-sail system.

In the following, the dumbbell model for a satellite-sail system considering the mass
of the tether will be derived based on the Lagrange equation. At this time, in addition to
the kinetic and potential energy of the satellites at the ends of the tether, this is in addition
to considering the kinetic and potential energy of the tether. The tether is a continuum.
Assuming that the mass of the tether is uniformly distributed, the tether could be considered
a continuous elementary mass and the kinetic and potential energy of the complete tether
could be obtained by integration, as follows:

Rm = Rc −
ms + 0.5mt

m
l (3)

Rs = Rc +
mm + 0.5mt

m
l (4)

where mt = ρl ρ is the linear density of the tether and ξ is the distance from the sail to
the elementary mass. It is important to note that the mass of the main satellite m1 is the
variable in this case.

mm = mm0 −mt = mm0 − ρl (5)

where mm0 is the initial mass of the main satellite.
Firstly, the kinetic energy of the system is calculated. The kinetic energy of the main

satellite is calculated as follows:

Tm =
1
2

mm
dRm

dt
·dRm

dt
(6)

The result of deriving Equation (3) is as follows:

dRm

dt
=

dRc

dt
− ms + 0.5mt

m
dl
dt

(7)

Projecting Equation (7) onto the spacecraft body coordinate system, the result is
as follows:

Vmb = Vcb −
ms + 0.5mt

m

[ .
l
]

b
− ms + 0.5mt

m
[ω]b × [l]b (8)

ω = [ωo]b + [ωl ]b (9)
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where [l]b,
[ .
l
]

b
, [ωo]b, and [ωl ]b are projections of l,

.
l, ωo, and ωb in the coordinate system

Sb separately. The results of the calculations are as follows:

[ω]b × [l]b =
[(
−ωo cos β cos α + sin β

.
α
)
l 0

(
−ωo sin α +

.
β
)

l
]T

(10)

Similarly, the kinetic energy of the solar sail is calculated as follows:

T2 =
1
2

ms
dRs

dt
·dRs

dt
(11)

The kinetic energy of the tether can be derived from the following integral equation:

Tt =
1
2

∫ .
Rξ ·

.
Rξ dm =

1
2

ρ
∫ l

0

.
Rξ ·

.
Rξdξ (12)

The final result is shown directly as follows:

T =
1
2

V2
c m +

1
2

m∗
[(
−ωo cos β cos α + sin β

.
α
)2

+
(
−ωo sin α +

.
β
)2
]

l2 + m̃
.
l
2

(13)

where the expression of the parameters of mass is:

m∗ =
(mm + 0.5mt)(mm + 0.5mt)

m
− 1

6
mt (14)

m̃ =
(mm + mt)ms

m
(15)

Further, the potential energy of the system is calculated. As an example, the gravita-
tional potential energy of the main satellite is as follows:

Um = −mm
µ

Rm
(16)

Similarly, the gravitational potential energy of the sail and tether are as follows:

Us = −ms
µ

Rs
(17)

Ut = −
∫

µ

Rξ
dm = −ρ

∫ l

0

µ

Rξ
dξ (18)

The total potential energy of the system is as follows:

U = −mµR−1
c +

1
2

µR−3
c m∗

[
3(l·Rc)

2R−2
c − l2

]
(19)

Projecting the above equation onto Sb and converting to a scalar, the result is as follows:

U = −mµR−1
c +

1
2

µR−3
c m∗

[
3(sin β sin α)2 − 1

]
l2 (20)

Thus, the Lagrange function expression for the system is as follows:

L = T −U =
1
2

m∗
{[(
−ωo cos β cos α + sin β

.
α
)2
+
(
−ωo sin α +

.
β
)2
−
(

3 sin2 β sin2 α− 1
)

µR−3
c

]
l2
}
+ m̃

.
l
2

(21)

For circular or near-circular orbits, µR−3
c = ω2

o . The final kinetic equations are as follows:

..
l =

m∗

m̃

[(
−ωo cos β cos α + sin β

.
α
)2

+
(
−ωo sin α +

.
β
)2

+ ω2
o

(
3 sin2 β sin2 α− 1

)]
l − (2m1 −m)mt

mm̃

.
l
2

l
Ql
m̃

(22)
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..
α = −2

cos β

sin β

.
α

.
β− 2ωo

.
β cos α + 4ω2

o sin α cos α− 2
m1(m2 + 0.5mt)

mm∗
.
ll−1

(
−cos α cos β

sin β
ωo +

.
α

)
+

Qα

m∗l2 sin2 β
(23)

..
β = 2ωo sin2 β cos α

.
α− 2

m1(m2 + 0.5mt)

mm∗
.
ll−1

(
−ωo sin α +

.
β
)
+ sin β cos β

( .
α
)2

+
(

4 sin2 α− 1
)

ω2
o sin β cos β +

Qβ

m∗l2 (24)

In Equations (22)–(24), Ql , Qα, and Qβ are the generalized forces corresponding to the
respective variables. In general, the mass of the main satellite is much greater than the solar
sail, where it could be considered m ≈ m2. The control force of the system consists of the
solar radiation pressure and the tether tension. The generalized forces are related to the
control forces as follows: 

Ql = −Fte + [Fs]yb
Qα = [Fs]xbl sin β

Qβ = [Fs]zbl
(25)

where [Fs]xb, [Fs]yb, and [Fs]zb are the projected components of the solar radiation pressure
on the three axes of Sb and Fte is the tension of the tether.

2.3. Simplified Dynamic Model for Controller Design

Since the rope length is generally of a much larger magnitude than the angular
magnitude in practice, causing considerable difficulty in calculation and analysis, the
kinetic equations are normalized. The dimensionless time and dimensionless length are
defined and expressed as follows:

t̂ = ωot (26)

Λ = l/l0 (27)

The physical definition of dimensionless time is in fact the true anomaly. l0 is the
nominal length of the tether, which could be either the initial or the target length of the
tether. In this paper, l0 is chosen as the target length.

The dynamic equations are analyzed with dimensionless time and dimensionless
length of tether. Alternatively, for the design of the controller, the residual angle γ = π

2 − β
is substituted for β. Equations (22)–(24) can be expressed as follows:

Λ′′ =
[(
− sin γ cos α + α′ cos γ

)2
+
(
− sin α− γ′

)2
+
(

3 cos2 γ sin2 α− 1
)]

Λ− (2m1 −m)mt

mm̃
Λ′2

Λ
+
−Fte + [Fs]yb

m̃ω2
o l0

(28)

α′′ = 2
sin γ

cos γ
α′γ′ + 2γ′ cos α + 4 sin α cos α− 2

m1(m2 + 0.5mt)

mm∗
Λ′Λ−1

(
−cos α sin γ

cos γ
+ α′

)
+

[Fs]xb
m∗l0ω2

o Λ cos γ
(29)

γ′′ = −2α′ cos2 γ cos α− sin γ cos γ
(
α′
)2 −

(
4 sin2 α− 1

)
sin γ cos γ + 2

m1(m2 + 0.5mt)

mm∗
Λ′Λ−1(− sin α− γ′

)
− [Fs]zb

m∗l0ω2
o Λ

(30)

where (·)′ = d(·)
dt̂ , (·)′′ = d2(·)

dt̂2 .
Under the assumption of small angles (i.e., less than 20◦), the higher-order terms of

the angles are ignored. Equations (28)–(30) can be expressed as follows:

Λ′′ = − (2mm −m)mt

mm̃
Λ′2

Λ
+

m∗

m̃
(
−2γα′ + 2γ′α− 1

)
Λ +

−T + [Fs]yb

m̃ω2
o l0

(31)

α′′ = 2γ′ + 4α− 2
mm(ms + 0.5mt)

mm∗
Λ′Λ−1(−γ + α′

)
+

[Fs]xb
m∗ω2

o l0Λ
(32)
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γ′′ = −2α′ + γ− 2
mm(ms + 0.5mt)

mm∗
Λ′Λ−1(−α− γ′

)
− [Fs]zb

m∗ω2
o l0Λ

(33)

Then, Equations (31)–(33) can be expressed in state-space equations. Assuming that
0 ≤ q ≤ 1 is the target length of the tether, the state-space variables are defined as follows:

z1 = Λ− q, z2 = Λ′, z3 = α, z4 = α′, z5 = β, z6 = β′ (34)

The state-space equations are as follows:

z1
′ = z2

z2
′ = − (2mm−m)mt

mm̃
z2

2
z1+q +

m∗
m̃ (−2z4z5 + 2z3z6 − 1)(z1 + q) +

−Fte+[Fs ]yb

m̃ω2
o l0

z3
′ = z4

z4
′ = 2z6 + 4z3 − mm(ms+0.5mt)

mm∗
2z2

z1+q (−z5 + z4) +
[Fs ]xb

m∗ω2
o l0(z1+q)

z5
′ = z6

z6
′ = −2z4 + z5 − mm(ms+0.5mt)

mm∗
2z2

z1+q (−z3 − z6)−
[Fs ]zb

m∗ω2
o l0(z1+q)

(35)

To facilitate the design of the controller, the nonlinear dynamic Equation (35) is lin-
earized. Considering z1 and z2 as small quantities, the linearized first-order approximation
model is obtained by expanding at point

(
0 0 0 0 0 0

)
, as follows:

Z′ = CZ + Bu (36)

where

C =



1
−m∗

m̃
1

4 2
1

−2 1


, Z =



z1

z2

z3

z4

z5

z6


, B =



0 0 0
1 0 0
0 0 0
0 1

q 0

0 0 0
0 0 − 1

q


u =

−m∗
m̃ q + u1

u2

u3

, u1 =
−Fte + [Fs]yb

m̃ω2
o l0

, u2 =
[Fs]xb

m∗ω2
o l0

, u3 =
[Fs]zb

m∗ω2
o l0

According to the stability in the first approximation, it is known that the stability analysis
of the nonlinear system (35) can be transformed into the stability analysis of the linear
system (36).

Theorem 1. If all eigenvalues of the matrix A contain negative real parts and ‖h(t, x)‖ = o(‖x‖)
holds consistently in the interval [0, ∞), then for the differential equation

.
x = Ax + h(t, x),

any solution x(t) satisfying ‖x(0)‖ sufficiently small always exists and the solution x = 0 is
asymptotically stable.

According to the simplified linear Equation (36), it can be seen that the length of the
tether is decoupled from the angles in the small-angle case of the transverse formation.

The physics of this conclusion can be explained. As shown in Figure 4, the effect
of tether velocity on the angular velocity is reflected in the Coriolis force; however, the
Coriolis force is remarkably insignificant due to the fact that the tether velocity is in the
same direction as the angular velocity and the cross product is equal to zero. Hence, the
effect of tether velocity on the angular velocity can also be neglected. According to the
above conclusion, only for the traverse formation, the controller of angle and the controller
of tether length could be designed separately under the assumption of small angles.
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Figure 4. Physical interpretation of the decoupling of length and angle.

2.4. Beads Model for Satellite-Sail System

The space tether system is a complex nonlinear system, and it is further complicated
by features with the coupled solar sail attitude and orbit, which results in a more complex
satellite-sail system model. Model uncertainty is one of the factors that have a large impact
in the control of satellite-sail systems. In this chapter, the influence of the mass of the tether
on the state of the satellite-sail system is investigated. A model with high accuracy based on
the beads model for a tethered system is developed to investigate the result of the controller
under the high-accuracy model. The effect of model uncertainty on the rope-system solar
sail system is discussed.

The dumbbell model cannot describe the flexibility of the tether, and in several cases
the dumbbell model cannot describe the characteristics of the tethered system accurately,
especially in the simulation; therefore, the dumbbell model is not accurate enough and a
more accurate model is required.

The beads model describes the motion of the tether and simulates the configuration
change of the tether more explicitly and accurately. An accurate model, the beads model
has extensive application in the accurate dynamic simulation of tethered systems, although
it has several disadvantages. The accuracy of the model depends hugely on the number of
beads, and as the number of beads increases, the computational effort increases rapidly
and computational speed becomes slower. Therefore, the beads model is generally applied
as an accurate model for simulation and not for the design of control laws.

The basic structure of the beads model is shown in Figure 5. The space tethered system
is discretized into N beads connected by springs without mass, and the mass of each section
of the tether is concentrated at the point. The dispersion of the tether can be asymmetrical
and the density also. The system is transformed into a multibody system consisting of
N + 2 rigid bodies. The distributed and concentrated forces are transformed into the forces
and moments on the main satellite, the subsail, and the beads according to the principle of
force equivalence.

Figure 5. Beads model.
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The dynamics of the main satellite and beads are similar to the beads model for a
general space tethered system, except that the solar radiation pressure on the solar sail
instead of a general subsatellite is considered. The dynamic equations could be as follows:

mm
d2Rm

dt2 = −µmm

R3
m

Rm + fm + gm + Um,F (37)

ms
d2Rs

dt2 = −µms

R3
s

Rs − fs + gs + Fs (38)

mi
d2Ri
dt2 = −µmi

R3
i

Ri − fi+1 + fi + gi (39)

where f is the tension of the segments of the tether, g is the perturbative force, U is the
control force of the main satellite, Fs is the solar radiation pressure, and i is the number of a
bead (i = 1, 2, · · ·N − 1).

3. Design of Control Law
3.1. Parameter Selection of the Sail

In Section 2.1, the solar sail body coordinate system Sd(xd, yd, zd) is defined. The solar
sail attitude angle ϕ1, ϕ2 is defined, as shown in Figure 3. According to the geometric rela-
tions, the normal direction of the sail could be expressed in Sd as
n =

[
sin ϕ1 cos ϕ2 sin ϕ1 sin ϕ2 cos ϕ1

]T. Therefore, the expression for the solar pressure
is as follows:

Fs = m2ξ
µs

r2
sd

cos2 ϕ1n (40)

Since the sun–Earth distance is much larger than the orbital radius and the length
of the tether, i.e., rse � Rc � l, rsd ≈ rse could be considered in the research. ξ is the
solar sail lightness number, which is constant for a specific solar sail and is related to the
area-mass ratio.

According to [7], to produce a planetary displaced orbit when the solar sail is affected
by the gravity of the planet and the solar radiation pressure only, the magnitude of the
solar radiation pressure and the height of the planetary displaced orbit satisfy the equation
as follows:

Fs = ωo
2

1 +
(

λ

h

)2
[

1−
(

ωd
ωo

)2
]2


3
2

h (41)

where λ is the distance between the solar sail and the planet, h is the distance between the
plane of the displaced orbit and the plane of the geocentric orbit parallel to it, and ωd is the
angular velocity of the displaced orbit. The calculation of ωd is as follows:

ωd =

√
µ

(λ2 + h2)
3
2

(42)

For this study h ≈ l0 � λ, and it might be concluded that
√
(λ2 + h2) ≈ Rc and

ωd ≈ ωo. Therefore, Fs ≈ ωo
2l0. According to Equation (40), the solar radiation pressure

is Fs = ξ
µs
r2

sd
. It could be known from the analysis above that for a solar sail planetary

displaced orbit affected only by gravity of the planet and solar radiation pressure, the solar
pressure coefficient ξ is determined after determining the required orbital radius and h.
However, for the satellite-sail system investigated in this paper, the solar sail is additionally
affected by the tension of the tether; therefore, in the selection of parameters related to the
solar sail, it may not be necessary to follow Equation (40). In this paper, the solar radiation
pressure is Fs = 3ωo

2l0. In this case, ξ = 0.4993 is required, which means the surface to
mass ratio is 3.0641 g/m2.
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The ideal force model of solar pressure is described in Equation (40), which is suitable
only for a perfectly reflective sail. In a more realistic case, the expression for the solar
pressure could be approximated as the value of ideal model multiplied by an optical
efficiency factor K, which is as follows:

Fs = m2ξK
µs

r2
sd

cos2 ϕ1n (43)

3.2. Controller Design

There are two main methods for deployment and retrieval of tethered satellite system—
length rate control and tension control—both of which are essentially the same, except
for the control quantity output by the actuators. However, in the deployment/retrieval
process of solar sail systems, if the effect of the perturbative force is not considered, the
variation in length of the tether, i.e., the relative distance between the solar sail and the
main satellite, is affected by both the solar radiation pressure and the tension of the tether,
which requires that the magnitudes of the above two forces are essentially the same. For
solar sail spacecraft in low-Earth orbit, the solar radiation pressure on the solar sail is of
a magnitude of 10−3 N. Therefore, the tension on the tether is generally of a magnitude
of 10−3 N. This presents a challenge for the design of the actuator. For the deployment
mechanism of a tethered satellite, tensions as small as 10−3 N would make it difficult to
achieve accurate values without additional thrust assist. Length rate control is an effective
alternative solution. The tether is released by this method at a specified rate determined
by real-time calculations, and it is a more convenient method for the actuator to provide
an accurate required speed than to provide the required tension. Therefore, we design a
control law for the deployment/retrieval process of a satellite-sail system with a length
rate control method in this paper.

Firstly, the tether length trajectory of the deployment process is designed, which is
implemented with a cubic function. The trajectory is presented as:

l(t) =
{

at3 + bt2 + ct + d l < lmax
lmax l ≥ lmax

(44)

Equation (46) can be expressed in dimensionless length of tether and dimensionless
time, and the result is as follows:

Λ
(
t̂
)
=

{
ât̂3 + b̂t̂2 + ĉt̂ + d̂ Λ < 1

1 Λ ≥ 1
(45)

where â = a
ω3

o l0
, b̂ = b

ω2
o l0

, ĉ = c
ωo l0

, d̂ = d
l0

. Substituting Equation (45) into the dynamic
Equations (32) and (33), the result is as follows:

α′′ = 2γ′ + 4α− 2
mm(ms + 0.5mt)

mm∗
Λ′
(
t̂
)
Λ
(
t̂
)−1(−γ + α′

)
+

[Fs]xb
m∗ω2

o l0Λ
(
t̂
) (46)

γ′′ = −2α′ + γ + 2
mm(ms + 0.5mt)

mm∗
Λ′
(
t̂
)
Λ
(
t̂
)−1(−α− γ′

)
− [Fs]zb

m∗ω2
o l0Λ

(
t̂
) (47)

Defining y1 = α, y2 = α′, y3 = β, y4 = β′, Y = [y1, y2, y3, y4]
T , u =

[
Fxb

m∗ω2
o lmax

, Fzb
m∗ω2

o lmax

]T
,

Equations (46) and (47) can be written as:

Y′ = C
(
t̂
)
Y + B

(
t̂
)
u (48)

where:
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C =


1

4 −2M
Λ′(t̂)
Λ(t̂)

2M
Λ′(t̂)
Λ(t̂)

2

1

−2M
Λ′(t̂)
Λ(t̂)

−2 1 −2M
Λ′(t̂)
Λ(t̂)

, B =


0
1

Λ(t̂)
0
0

0
0
0

− 1
Λ(t̂)

, M =
mm(ms + 0.5mt)

mm∗

System (48) is a linear time-varying system. The control law for angles is designed
with the time-varying LQR method. The expression of the designed value function is as
follows:

J =
1
2

∫ ∞

0

(
YTQY + uT Ru

)
dt (49)

where Q and R are a positive definite matrix. According to LQR control theory, if there exists
a time-varying positive definite matrix P

(
t̂
)

that satisfies the following Riccati equation at
each moment of time:

C
(
t̂
)T P

(
t̂
)
+ P

(
t̂
)
C
(
t̂
)
− P

(
t̂
)

B
(
t̂
)

R−1B
(
t̂
)T P

(
t̂
)
+ Q = 0 (50)

when u
(
t̂
)
= −R−1B

(
t̂
)T P

(
t̂
)
Y
(
t̂
)
, then the equation is stable.

3.3. Allocating Angles of the Sail and Tension

With the projection of the control forces into the coordinate system Sd for analysis,
according to Section 2.1, since the direction of sunlight irradiation could be considered
perpendicular to the orbital plane, it means that Abd = Abo and [Fs]d = Adb[Fs]b. Therefore,
the relationship between the projections of solar radiation pressure is as follows:

m2ξ
µs

r2
sd

[
cos2 ϕ1 sin ϕ1 cos ϕ2 cos2 ϕ1 sin ϕ1 sin ϕ2 cos3 ϕ1

]T
= Aob

[
[Fs]xb [Fs]yb [Fs]zb

]T
(51)

Equation (51) is considered a nonlinear system of equations F(x) = 0,

x =
[
[Fs]yb, ϕ1, ϕ2

]T
. According to Equation (48), [Fs]xb and [Fs]zb are known and given

by control law. The attitude angle of the solar sail during deployment and [Fs]yb could be
determined by solving the nonlinear system of equations with Newton’s iterative method.
The magnitude of the tension is calculated by [Fs]yb and Equation (25).

4. Simulation and Results

Assuming that the dimensionless time at the end of the deployment is t̂ f , Parameters

for simulation are shown in Table 1 to ensure that Λ′(0) = Λ′
(

t̂ f

)
= 0, Λ

(
t̂ f

)
= 1, the

parameters a = −2.0324× 10−9, b = 3.0242× 10−5, c = 0, d = 8 are selected during the
process of deployment.

Table 1. Parameters for simulation.

mm/kg ms/kg lmax/m Q R

100 1 1000 diag(1, 1, 100, 100) diag(100, 100)

Initial Length Target Length Initial α Target α Initial β Target β

Deployment 0.008 1 20◦ 0◦ 70◦ 90◦

Retrieval 1 0.008 1◦ 0◦ 89◦ 90◦

The variation of states is shown in Figure 6a. It can be noticed that the deployment
process is completely stable. The length of the tether reaches the target value in about
10,000 s and the two attitude angles reach the target values in about 6000 s. The variation in
control input is as shown in Figure 6b. The tension of the tether is always positive, which
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satisfies the requirement that the tether can only be stretched and not stressed, and the
satellite-sail system is successfully deployed.

Figure 6. (a) State trajectory during the deployment of a satellite-sail system; (b) control input
trajectory during the deployment of a satellite-sail system.

During the process of retrieval, a = 2.0324× 10−9, b = −3.0242× 10−5, c = 0, d = 1000
are selected. The variation of states is shown in Figure 7a. Again, the retrieval process
is steadily completed. The length of the tether is recovered to the target value in about
10,000 s and the two attitude angles reach the target values in about 7000 s. The variation
of control input is as shown in Figure 7b. The tension of the tether is always positive, and
the satellite-sail system is successfully recovered.

Figure 7. (a) State trajectory during the retrieval of a satellite-sail system; (b) control input trajectory
during the retrieval of a satellite-sail system.

The cases for the ideal model and a more realistic model are both discussed in simula-
tion K = 0.9. The other results are similar, but the tension of the real model is smaller than
the ideal model in either deployment or retrieval, because the solar radiation pressure of
the real model is smaller than the ideal model.
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The control law of deployment designed in 4.2 is directly applied to the beads model
and the number of beads N = 10 is selected. The results are compared with the dumbbell
model, which considers the mass of the tether in Figure 8a.

Figure 8. (a) State trajectory of beads model; (b) state trajectory of beads model (with MPC).

According to the simulation results, the two attitude angle-variation strategies of the
dumbbell model and the beads model in the deployment process are almost the same;
however, for the variation strategy of length, there is a certain difference between the two
models, which might be caused by the elasticity and flexibility of the tether considered
in the beads model. Model predictive control (MPC) is used to deal with this problem.
Considering the state trajectory of the dumbbell model as the reference trajectory, the results
obtained are shown in Figure 8b.

5. Conclusions

The conclusions of this paper are as follows:
(1) In this research, based on the Lagrange equation, the dynamics of the satellite-sail

system applicable to the transverse formation are modeled with reference to the dumbbell
modeling method of the general space tethered system under the avoidance of singular
attitude angle description. A simplified linear model applicable to the design control law
is also proposed on the basis of the theory of linear autonomous systems. The model
with small angles is linearized by the stability in the first approximation. It is concluded
that the length is decoupled from the two attitude angles in the case of a small-angle
transverse formation configuration, and this conclusion is explained physically, leading to
the conclusion that the length and the two attitude angles could be designed separately in
the controller. Meanwhile, a dumbbell model of a satellite-sail system with mass of tether
and a more accurate beads model with the flexibility of the tether are developed.

(2) On the basis of the method of velocity control of the tethered satellite, a control
law for both deployment and retrieval was designed. The deployment and retrieval of the
tether is at a specified velocity determined by real-time calculations, and the angles are
controlled by time-varying LQR method. Simulation results demonstrate that the control
strategy allows the states to converge steadily to the target value, and the tether tension is
always positive. The simulation results show that there are some differences in the states of
the beads model and the dumbbell model during the deployment process. This might be
caused by the flexibility and elasticity of the beads model. The MPC controller is used to
solve the problem.
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Nomenclature
A = coordinate-transformation matrix
A = cross-sectional area of tether
e = base vector of coordinate system
E = stiffness of tether
Fs = solar radiation pressure, N
Fte = tension of tether, N
l = vector of the main satellite pointing towards the solar sail
l = length of tether, m
m = mass of the particle, kg
n = normal vector of sail
rse = sun–Earth distance, m
rsd = sun–sail distance, m
R = vector of the center of the Earth pointing towards the particle
t̂ = dimensionless time
T = kinetic energy
U = potential energy
V = velocity of a particle
α, β, γ = attitude angle for satellite-sail system, rad
Λ = dimensionless length of tether
µ = geocentric gravitational constant, m3/s2

µs = heliocentric gravitational constant, m3/s2

ξ = solar sail lightness number
ρ = linear density of tether, kg/m
ϕ1, ϕ2 = attitude angle for solar sail
ωo = orbit angular velocity, rad/s
ωl = angular velocity of satellite-sail system moving around the center of mass, rad/s
Subscripts
m = main satellite
s = solar sail
c = barycenter of system
i = the i’th bead
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