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Abstract: Air traffic flow management (ATFM) is of crucial importance to the European Air Traffic
Control System due to two factors: first, the impact of ATFM, including safety implications on ATC
operations; second, the possible consequences of ATFM measures on both airports and airlines
operations. Thus, the central flow management unit continually seeks to improve traffic flow
management to reduce delays and congestion. In this work, we investigated the use of reinforcement
learning (RL) methods to compute policies to solve demand–capacity imbalances (a.k.a. congestion)
during the pre-tactical phase. To address cases where the expected demands exceed the airspace
sector capacity, we considered agents representing flights who have to decide on ground delays jointly.
To overcome scalability issues, we propose using raw pixel images as input, which can represent
an arbitrary number of agents without changing the system’s architecture. This article compares
deep Q-learning and deep deterministic policy gradient algorithms with different configurations.
Experimental results, using real-world data for training and validation, confirm the effectiveness of
our approach to resolving demand–capacity balancing problems, showing the robustness of the RL
approach presented in this article.

Keywords: air traffic flow management; demand–capacity balancing; reinforcement learning;
multi-agent; deep Q-learning; deep deterministic policy gradient; convolutional neural networks

1. Introduction

Congestion problems arise in situations where limited resources have to be shared
simultaneously by multiple agents. They are present in a wide variety of domains in
the modern world, and they have drawn much attention in Artificial Intelligence (AI)
research [1,2]. Air Traffic Management (ATM) is one domain where congestion prob-
lems appear naturally, introducing extra costs and uncertainty to operations scheduling.
Concretely, congestion problems appear when the expected number of aircraft (airspace
demand) exceeds the maximum number of flights that the Air Traffic Controllers (AT-
COs) can safely manage for a particular airspace sector (capacity). This is known as the
Demand–Capacity Balancing (DCB) problem or process [3].

Initially, demand–capacity imbalances are solved via airspace management or flow
management solutions. However, when no solution is enough, Air Traffic Flow Manage-
ment (ATFM) regulations are implemented issuing extra ground delays to the necessary
flights. This cascade of events increases the uncertainty regarding the scheduling of op-
erations, costs [4], and unforeseen effects on the entire system. Furthermore, these events
present further negative effects for the ATM stakeholders, including environmental effects,
customer satisfaction, and loss of reliability.

In the European Air Traffic Control (ATC) network, ATFM delays are imposed by the
Computer Assisted Slot Allocation (CASA) algorithm [3,5], which is a heuristic algorithm
based on the principle of first-planned-first-served. In 2018, prior to COVID-19, at the Euro-
pean Civil Aviation Conference (ECAC) level, the number of flights increased by +14.6%,
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corresponding to 1.4 million additional flights in 2018 compared to 2013. At the same time,
en-route ATFM delays more than doubled compared to 2017 (+104%). As a result, 9.6% of
the flights issued ATFM delays with an increment of 1.74 min per flight [6].

Nowadays, demand–capacity imbalances are difficult to predict during the pre-tactical
phase (from several days to a few hours prior to operations) because of the uncertainty
in the operational information. Indeed, DCB is a two-stage problem: first, it is neces-
sary the identification of the overloaded regions (demand greater than capacity); second,
the CASA algorithm assigns new departure slots smoothing the demand to meet the
pre-defined capacity.

Previous research on ATFM regulations focused on the detection and/or resolution of
DCB issues, optimization algorithms, development of new performance metrics, or novel
techniques. For instance, in previous research [7,8], we proved the potential of supervised
Machine Learning (ML) models to predict which sectors were going to be regulated,
Reference [9] used ML models to predict the evolution of the ATFM delay for regulated
flights, and Reference [10] investigated the detection of regulations due to convective
weather and the associated airspace performance characteristics.

Other works investigated optimization techniques to find optimal resource utilization.
Reference [11] presented an optimization algorithm to minimize the propagation of ATFM
delays to subsequent flights, Reference [12] introduced an integer programming model for
strategic redistribution of flights to respect nominal sector capacities in short computation
times for large scales and Reference [13] investigated a new technique that could improve
airspace capacity usage and reduce ATFM delays by improving the slot allocation process
of CASA to avoid wasted capacity (empty slots) in regulated sectors.

On the other hand, several works attempted to study the downstream effects of ATFM
regulations and propose resolution techniques. Reference [14] used gradient-boosted
decision trees to predict the likelihood of a regulated flight rerouting to mitigate the ATFM
delay, and Reference [15] proposed using speed reduction on air to absorb ATFM delay
at no extra cost. Most recent works on the resolution of DCB issues focused on the use
of Reinforcement Learning (RL) techniques. For instance, Reference [16] proved it was
possible to both identify and resolve DCB problems by comparing three RL algorithms for
the pre-tactical phase. Similarly, Reference [17] is the result of a set of publications where
the DCB was formulated as a hierarchical Multi-Agent Reinforcement Learning (MARL)
decision problem with different levels of abstraction. However, one important drawback
of this MARLs approach is that a different agent controls each flight, presenting a severe
scalability problem, as hundreds or even thousands of different agents would be required
to handle the full European Air Traffic Management Network (EATMN).

In response to the previous scalability limitations, Reference [18] presented a collab-
orative Multi-Agent Asynchronous Advantage Actor-Critic (MAA3C) framework with
embedded supervised and unsupervised Neural Network (NN), where only flights cross-
ing airspace sectors with already identified demand–capacity issues were regarded as the
candidate agents. This approach improved the scalability and generalization of the system,
being able to handle a varying number of agents. As an extension of the scalability issues,
Reference [19] reviewed different deep MARL methods, examining their ability to scale
up to large agent populations (from hundreds to several thousands of agents). The main
conclusion drawn with respect to possible scalability issues is the importance of parameter
sharing in large agent populations. It is impractical to train thousands of independent
networks for each agent or to utilize an approach whose input size would explode as the
number of agents and their observations grow larger.

Similar research has been conducted outside the EATMN. In the USA network,
Reference [20] developed a MARL system for ATM integrated with an air traffic flow
simulator—FACET. In Reference [21], the authors presented a distributed decision support
system for tactical ATFM in Brazil and traffic flow managers experts analyzed the solutions
proposed by the system.
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Traffic growth and changes in traffic patterns have caused increasing congestion and
delay in European airspace. The Central Flow Management Unit (CFMU) continually
seeks and develops methods to improve traffic flow management to reduce delays and
congestion [5]. To this end, and taking into account the available literature, as a research
question, this article investigates whether a RL system is able to solve demand–capacity
imbalances for specific airspace sectors without sharing explicit information between
agents, using an approach whose size does not depend on the number of agents and with a
fixed size of the observation states.

This article formalizes the ATFM problem as a collaborative MARL system where
homogeneous agents, representing flights, aim to decide on their ground delay jointly with
the other flights, while not having direct information about the preferences of other flights.
The goal is to smooth already-identified pre-tactical DCB problems in a specific airspace
sector using images as input to the system and ensuring efficient utilization of the airspace.
The usage of images allows the system to extract its own features for the problem instead
of manually deciding which ones are more representative, the input size is independent of
the number of agents, and it provides a fixed size of the states ensuring good scalability.
Moreover, the images allow the agents to have indirect information about the other flights.

To smooth the demand–capacity imbalances, we investigated two types of RL algo-
rithms: first, algorithms based on discrete actions; second, algorithms based on continuous
actions. In both cases, we used a homogeneous population of agents to ensure their behav-
ior was the same. Furthermore, the agent-based paradigm introduced in this article tried
to emulate the first-planned-first-served basis used in the current ATFM approach. Only
flights outside the regulated sector were candidates to be agents, ensuring that only flights
outside the airspace sector would be delayed.

Experimental results demonstrated the effectiveness and robustness of the novel
approach presented in this paper. The work presented in this article aimed to be the first
step toward devising multi-agent methods for deciding on delay policies using images.
The contributions made in the paper are as follows:

• The DCB problem was formulated as a MARL based on the use of images to im-
prove scalability.

• Two different types of MARL algorithms were studied, one using continuous actions
(DQN) and another one using discrete actions (DDPG).

• For the DDPG algorithm, three different approaches for exploration noise (random
values used for trial-and-error search) were analyzed.

• All configurations were trained and evaluated using real-world data.

This paper is organized as follows: Section 2 provides relevant background about RL,
focusing on Q-learning and deterministic policy gradient. Section 3 presents the problem
formulation. Section 4 describes the experimental setup focusing on the parameters of
the algorithms. Section 5 exhibits the experimental results obtained and their analysis.
Section 6 summarizes the work presented in this article and addresses future work.

2. Reinforcement Learning

RL problems consist of learning what to do (how to map situations to actions) to
maximize a numerical reward signal. The agent is not told which actions to take, but it
must discover which actions yield the most reward by trying them. Notice that actions may
affect not only the immediate reward but also the following states and, through that, all
subsequent rewards. These two characteristics, trial-and-error search, and delayed reward,
are the two most important distinguishing features of RL. Therefore, a learning agent must
be able to sense the state of the environment, take actions that affect the state, and have a
clear goal (or goals) relating to the state of the environment [22]. This interaction is depicted
in Figure 1.
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Figure 1. Interaction between the different elements in a RL system (adapted from [23]).

One of the challenges that arise in RL is the trade-off between exploration and ex-
ploitation. To obtain as much of a reward as possible, a RL agent must prefer actions that it
tried in the past and found to be effective. However, to discover them, it has to try actions
it has not selected previously. The agent has to exploit what it has already experienced to
maximize the reward, but it has to explore to make better action selections in the future.

Beyond the environment and the agent, we can identify four main sub-elements:

• Policy: roughly speaking, it is a mapping from the states of the environment to actions.
• Reward signal: it defines the goal of the RL problem. It defines what is “good” in an

immediate sense.
• Value function: specifies what is “good” in the long run. Roughly speaking, it is

the total reward an agent can expect to accumulate over the future, starting from a
particular state.

• Model: it mimics the behavior of the environment. It allows inference to be made
about how the environment will behave.

2.1. Single-Agent Reinforcement Learning

A RL problem for a single agent interacting with an environment can be formalized
as a finite Markov Decision Process (MDP) described by the tuple (S ,A, P, R), where S
is the set of states of the environment, A is the set of actions the agent can take, P is the
transition function, being P(s′|s, a) the probability of transitioning to s′ ∈ S , by applying
a ∈ A in s ∈ S , and R is the reward function. Notice, in a finite MDP, the sets of states,
actions, and rewards (S , A, and R) have a finite number of elements.

At each time step, the reward is a simple number, Rt ∈ R. However, the agent’s goal
is to maximize its cumulative reward G. That is, maximize both the immediate reward and
cumulative reward in the long run. Thus, the rewards we set up must truly indicate what
we want to accomplish. The cumulative reward, also referred to as return, can be defined
as follows:

G =
∞

∑
t=0

γtRt (1)

where γ is a parameter, 0 < γ < 1, called the discount rate. It determines how much the
agent cares about immediate rewards relative to distant ones.

The RL system aims to find the optimal policy π∗, which maximizes the expected
commutative reward. Let us define the value function of a state vπ(s), for a policy π (which
may not be optimal), as the expected return when starting in state s following policy π.
For MDPs, we can define vπ(s), formally by:

vπ(s) = E[Gt|St = s] (2)
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Similarly, we define the value of taking action a in state s under a policy π as qπ(s, a),
providing the expected return:

qπ(s) = E[Gt|St = s, At = a] (3)

There is always at least one policy that is better than or equal to all other policies.
The optimal policy. Although there may be more than one, all the optimal policies are
denoted by π∗. They share the same state-value function, called the optimal state-value
function, denoted v∗ and defined as:

v∗(s) = max
π

vπ(s) (4)

for all s ∈ S .
Optimal policies also share the same optimal action-value function, denoted q∗ and

defined as
q∗(s) = max

π
qπ(s, a) (5)

for all s ∈ S and a ∈ A.
Therefore, the optimal policy π∗ selects what action maximizes the expected commu-

tative reward. If the optimal action-value function q∗(s, a) is known, the best action in the
state s is given by:

π∗(s) = arg max
a∈A

q∗(s, a) (6)

The two main approaches used to obtain the optimal policy are policy iteration, which
manipulates the policy directly, and value iteration, which aims to find an optimal value
function adopting a greedy policy.

2.2. Multi-Agent Reinforcement Learning

A MARL system involves a set of N interacting agents, which can be cooperative,
competitive, or both. It can be described by the tuple (N ,S , {Ai}i∈N , {Oi}i∈N , P, {Ri}i∈N ).

At every time step, each agent i ∈ N observes a partial representation of the environ-
ment oi ∈ Oi, and performs an action ai ∈ Ai determined by a policy function πi. Then,
when an action is taken, the environment evolves to a new state s′ ∈ S , according to the
transition function P. This transition function depends on the current state and the joint
action of all agents. Finally, the reward that each agent receives is given by the reward
function. For instance, agents typically share the reward in a cooperative RL.

One possible approach for MARL is to train independent agents. However, this simple
approach does not perform well in practice [24]. To overcome these limitations, in [25,26],
each agent has its centralized critic, only used during learning, which approximates and
learns the action-value function given the observations and actions of all agents. However,
the critics require the actions and observations of all agents as input. Consequently, their
complexity is proportional to the number of agents.

A different solution is proposed in [27] to mitigate this scalability issue. In this case,
the agents learn an individual action-value function based on their local observations,
and the sum of these functions approximates the centralized joint action-value function.

2.3. Q-Learning

Q-learning [23] is one of the most well-known algorithms based on value iterations. It
makes use of a Q-table, which typically has the shape [states, actions], and each Q-value
Q(s, a) represent the quality of taking as action a ∈ A, in s ∈ S . Thus, Q-learning was
designed to work with discrete actions.

At each time step ∆t, the agent observes the current state st and chooses the action at
with the highest Q-value in that state. After applying the selected action, the agent receives
a reward rt, enters on new state st+1, and the Q-value is updated using Equation (7):
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Q(st, at)← Q(st, at) + α
(

rt + γ max
a

Q(st+1, at)−Q(st, at)
)

(7)

where rt is the reward received when moving from state st to st+1, α ∈ [0, 1] is the learning
rate and γ ∈ [0, 1] is the discount factor.

According to Equation (7), the agent adopts a greedy strategy by constantly selecting
the actions with the largest Q-value. In that case, it exists the risk of adopting a sub-
optimal solution by converging to a local minimum. The ε-greedy strategy is widely used
to properly explore the state space, where ε corresponds to the probability of choosing
a random action. Typically, ε is usually initialized to 1 to force high exploration at the
beginning, with a decay rate over time to ensure exploitation at the end of the training.

One limitation of this well-known algorithm is the rapid growth of dimensionality
in the state space. The traditional solution is deep Q-learning [28], which uses a NN
to approximate the Q-values. However, instead of training the NN with the sequence
of experiences as they occur during the simulations, they are saved in what is usually
called the experience replay buffer. Using a buffer prevents the agent from forgetting past
experiences as time evolves and breaks the correlation between consecutive experiences.
Finally, a target network is used to stabilize the learning. The target network is the result of
periodically replacing its weights with the ones from the online network used to select the
action greedily.

2.4. Deterministic Policy Gradient

Deterministic Policy Gradient (DPG) [29] is an actor–critic RL algorithm, used for
continuous actions, which learns a deterministic policy function and a value function
simultaneously, from an exploratory behavior.

It is not possible to straightforwardly apply Q-learning to continuous action spaces
because finding the greedy policy would require optimization of at at every time step, which
is too slow to be practical with large, unconstrained functions approximators, and nontrivial
action spaces [29]. The DPG algorithm uses an actor as the current policy to map states to a
specific action. The critic determines the expected reward for an agent starting at a given
state and acting according to the previous policy.

As with Q-learning, to learn and generalize on large-scale state spaces, it is required to
introduce non-linear function approximators, which means that convergence is no longer
guaranteed. However, such approximators appear essential in those scenarios [30] that
presented a modification to DPG from [31], inspired by the success of Deep Q-Learning
(DQN), allowing the use of NN function approximators. This implementation is called
Deep Deterministic Policy Gradient (DDPG), and it was proved that the algorithm could
learn policies “end-to-end” directly from raw pixel inputs. Target networks are used to add
stability to the training, and an experience replay buffer is used to learn from experiences
accumulated during the training.

3. Problem Formulation

In the current European ATC network, ATFM delays are particularly complex prob-
lems. When flights are affected by an ATFM delay, they are issued with a Calculated
Take-Off Time (CTOT), which indicates the new time windows for the flight to depart
(from 5 min before the CTOT to 10 min after). This new CTOT is computed by the CASA
algorithm, and if the flights cannot depart within this window, the ATFM slot will be
missed and a new one will be assigned.

ATFM regulations are located at specific airspace traffic volumes (which can be in-
formally defined as a portion of airspace linked to a sector) where a demand–capacity
imbalance is detected. Nowadays, the methodology used to identify where ATFM regula-
tions are required is purely human and does not rely on automation. Air Navigation Service
Providers (ANSPs) define two capacities for the sectors, which have to be interpreted by the
Flow Manager Position (FMP): the sustained capacity and the peak capacity. The sustained
capacity indicates the maximum number of flights that can be operated for a particular
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time window, while the peak capacity indicates the maximum value for a specific instant of
time. Close to the day of operation, capacities are defined based on the Occupancy Count
(OC), which considers the expected number of flights inside the traffic volume.

It is possible to have multiple demand–capacity imbalances in the network simultane-
ously. However, the general principle is that a flight subject to several ATFM regulations is
given the delay of the most penalizing regulation.

3.1. Assumptions

In this work, the following assumptions are considered to define the ATFM delay
(a.k.a. ground delay) system for specific traffic volumes:

1. The airspace sectors with a demand–capacity imbalance are known (interval of time
with overload, location, and capacity), and squares can be used to approximate
their shape.

2. Pre-tactical flight plans are available for each flight before any regulation is applied.
The flight plans contain the Scheduled Off-Block Time (SOBT) and the route of the
flight. Additionally, it is assumed constant speed for each of the segments composing
the routes.

3. There is one type of agent. There are no aircraft with priority.
4. Financial costs imposed on commercial entities resulting from ATFM decisions are

negligible.

There is a deviation from traditional state-of-the-art problems by assuming the demand–
capacity imbalances are already known for the sector of study. Assumption 1 was used
because this work focused purely on the resolution of DCB issues. Only historical data from
regulated intervals and sectors were used. Moreover, related to assumption 1, the approxi-
mation of the sector’s shape as squares aimed to reduce the implementation complexity in
this preliminary study.

Related to assumption 2, we considered the constant speed per segment defining the
routes because they only contained information about the starting/ending location and
time. By assuming a constant speed between the origin and end of the segments, it is
possible to interpolate the location of the flights at intermediate timestamps (see [32,33] as
other examples of interpolation).

Assumption 3 aspires to create a prototype that is as fair as possible for all the opera-
tors. A homogeneous population of agents guarantees that all flights are treated equally.
However, using heterogeneous populations of agents in future work could be interesting
from an optimization point of view. For instance, the use of different populations between
domestic or international flights, or to prioritize transit flights to avoid possible downstream
effects such as missing connections. Similarly, assumption 4 is used to emphasize that this
prototype focuses on the current used Key Performance Indicators (KPIs), although they
could be extended according to additional requirements if needed.

3.2. Action Variable

The action variable in this problem corresponds to selecting the ground delay that
an aircraft will receive due to a demand–capacity imbalance. At each step ∆t, each agent
i ∈ N has an associated action variable ai

t ∈ A, where ai
t is the ATFM ground delay.

For discrete action algorithms, the action variable can be defined as:

ai
t ∈ A, A ∈ {0, 5, 10, 15} (8)

While for continuous action algorithms, the action variable can be defined as:

ai
t ∈ A, A ∈ [0, 15] (9)
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3.3. State Variable

The state vector si
t ∈ S includes the information that the population of agents N uses

to determine the actions. Each state si
t is defined per flight candidate to be an agent and

step of the system.
One of the primary challenges associated with MARL is problem representation.

The challenge is in defining the problem in such a way that an arbitrary number of agents
can be represented without changing the architecture of the DQN or DDPG. To solve this
problem, we propose the usage of image-like tensors where each channel in the images
encodes a different set of information from the global state. This representation allows us
to take advantage of Convolutional Neural Networks (CNNs), which have been shown
to work well for image classification tasks [34] and competitive MARL systems based on
images [35].

The image tensor is of size HxWx3 (shown in Figure 2), where H is the height, W is the
width of our two-dimensional images, and three is the number of channels in the image.
The channels can be broken down in the following way:

• Inside channel: Contains the representation of the flights inside the sector being regulated.
• Outside channel: Contains information about the flights outside the sector of study,

i.e., the flights that may be delayed.
• Self channel: Contains information about the agent making the decision.

Figure 2. Three channels, image-like, represent the input states of the RL system. The inside and
outside channels encode information about the flights. The self-channel encodes information about
the agent that is taking action. The inner square represents the shape of the sector.

Note that the three channels are depicted with white backgrounds for clearness,
but they encode zero pixel values. The non-zero pixel values encode the locations of the
flights, their headings, and the approximate shape of the sector.

3.4. State Transition

The state transition defines a set of conditions that determine how the state si
t ∈ S

evolves along the steps. With every step, the aircraft candidates (to be agents) decide
whether they are going to issue ATFM delays. Three conditions must be verified to ensure
a proper transition between states.

The first condition that must be verified is related to the regulations used for the
training. Each episode will start using information from a randomly selected historical
regulation, and the environment will evolve for a time period TP equal to 60 min with a
timestep ∆t equal to one minute. Thus, from the randomly selected regulation, we must
guarantee that the regulations will be active for more time than the TP.

The second condition to consider is related to the delay. For each state variable si
t ∈ S ,

the agent i will produce a new action to cooperatively decide its own ground delay to
ensure that the demand meets the capacity. Actions equal to zero imply no delay for the
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flight moving forward on the predefined trajectory. However, if the delay differs from zero,
the new delay is added to possible previous delays (cumulative delay).

The last required consideration is related to how the flight is assumed to move forward.
A trajectory T ∈ T is a time series of segments of the form:

T = {(IDl , begintl , endtl , lat_begintl , lon_begintl , lat_endtl , lon_endtl )} l ∈ [1, m] (10)

where IDl is the identifier of the segment, begintl the initial timestamp of the segment, endtl

the end timestamp of the segment, lat_begintl , lon_begintl the initial latitude and longitude
of the segment, lat_endtl , lon_endtl the end latitude and longitude of the segment, and l is
the number of segments used to define the trajectory.

For each of the segments, we assumed constant speed. Therefore, the expected velocity
of the flight in a particular segment can be defined as follows:

vIDl =
f (lat_endtl , lat_begintl , lon_endtl , lon_begintl

endtl − begintl

(11)

where f is a function that computes the distance between two pairs of coordinates.
Finally, we can compute the aircraft’s location at any timestamp, knowing the required

segment to use, assuming constant speed in the segments, and taking into account the
imposed ATFM delay.

3.5. Problem Constrain

A set of operational constraints is associated with the sectors’ capacity, whose violation
results in DCB problems (congestion). This violation occurs when OCTP ≥ C, where
OCTP is the demand of a predefined counting period and C is the capacity of the sector.
Although this violation will result in a DCB issue, it must be taken into account that two
capacities are defined: sustain and peak capacity. The sustained capacity can be exceeded
for a short period, while the peak capacity should not be exceeded. Furthermore, for each
new episode, it must be guaranteed that there is no demand–capacity imbalance for the
selected random starting timestamp of the ATFM regulation. Ensuring that the agents
are not directly penalized due to the demand–capacity imbalance without being able to
perform any action.

Another constraint is related to which flights are considered candidates to be agents.
Thus, the flights can be delayed in each step. To emulate as close as possible the current
approach based on first-in-first-served used by CASA, for each step, only those flights
outside the congested sector are considered agents.

The last constraint of the system is related to the ATFM delay itself. The maximum
delay an agent can impose on a flight per step is equal to 15 min. This aims to allow agents
to delay flights without imposing huge penalization.

3.6. Objective Function

Demand reduction is one of the main goals in DCB during the pre-tactical phase.
The objective is to try to smooth the traffic and meet the expected demand with the
predefined capacity of the airspace sector. The objective function can be defined with
Equation (12), which corresponds to minimizing the ATFM delay while trying to ensure
that the demand meets the sector’s capacity for the counting period.

min
t∈TP

E
{
N
∑
i=0

Di

(
st, π∗(st)

)}
∪Vt ≤ C (12)

where Di is the ATFM delay of agent i, N is the population of the agent, st is the state of
the system at step t, π∗ is the optimal ATFM delay policy, Vt is the OC of the sector, and C
is the capacity of the sector.
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4. Experimental Setup

This section details the developed DQN and DDPG algorithms, focusing on the dataset
used to train the agents, the RL elements, and the parameters of the algorithms.

4.1. Dataset

The proposed RL algorithms are trained using pre-tactical information from Aeronau-
tical Information Regulation and Controls (AIRACs). Concretely, we used data from June,
July, August, and September 2019.

In the EATMN, a wide variety of regulations are applied due to many reasons across
different traffic volumes. The study done in this article focuses on C-ATC Capacity ATFM
regulations, which are those regulations purely related to demand–capacity imbalances.
Other types of regulations can be related to convective weather or military operations.
Moreover, because of the huge number of sectors, we focused our attention on the Maas-
tricht Upper Area Control Centre (MUAC) region. In particular, to the sector EDYYBOLN
with the associated traffic volume MASBOLN. The main reason behind the selection of this
particular sector is because it is one of the most regulated airspace regions in the MUAC
area, which will guarantee enough variety of samples to train the RL agents. The available
dataset contains around 200 C-ATC Capacity ATFM regulations for en-route traffic along
71 different days, with a mean number of regulations per day equal to 1.7 and a mean
duration per regulation of 97.08 min.

4.2. Reward Function

RL algorithms learn from the interactions with an environment, which provides a
reward according to how good the agent’s action was. The reward function is crucial
because different reward structures will result in different system performances.

Previous research has investigated different reward functions. Typically, the literature
shows that researchers mainly focused on delay and congestion without considering
fairness impact on different commercial entities [20,36]. Similarly, [37] also took into
account the amount of time the agents contributed to the demand–capacity imbalance.
Fairness is usually measured by financial costs imposed on commercial entities resulting
from ATFM decisions [38].

In our case, as a proof of concept using images, focus on delay and congestion. The re-
ward function G(z), written as Equation (13), consists of three main components: the
number of flights delayed C(z), the delay itself D(z), and the demand–capacity ratio I(z):

G(z) = −βM(z)− δD(z)− λI(z) (13)

where z represents the system under evaluation, M(z) and D(z) represent delay, and I(z)
the congestion; β, δ, and λ are the weights used to adjust the income penalty in the
evaluation function. Note that the reward function is based on penalties.

When ATFM delay is issued, the number of aircraft entering the airspace traffic volume
is reduced; thus, the congestion is relieved. However, this restrictive measure has negative
effects on the ATM network. Equation (14) counts the number of delayed flights and
Equation (15) computes the total delays imposed:

M(z) = Θ
(
N
)

(14)

where N is the population of agents, and Θ is a function that counts the number of flights
that received ATFM delay.

D(z) =
P

∑
t=0

dt
i∈N (15)

where D is the total ground delay, P is the counting period, and rt
i is the imposed ground

delay at step t for each agent i ∈ N .
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It is required to compute the number of aircraft at the current step to determine the
congestion severity in the airspace sector; that is, the excessive number of aircraft in the
sector. The congestion function I(z) is given by:

I(z) =

{
(V − C)(V−C) V > C

0 Otherwise
(16)

where V is the number of aircraft in the sector, and C is the maximum number of aircraft in
a sector that does not cause congestion (capacity). Note that the function is characterized
exponentially with respect to the excessive number of aircraft in a sector.

4.3. Deep Q-Learning

In this work, the first RL algorithm we studied to optimize the ATFM delay was DQN.
We followed the approach proposed in [39], which operates directly on RGB images to play
Atari games, uses experience replay to store the agents’ experiences, and uses a second
target network.

At the beginning of each episode, a new initial state is set. Subsequently, for each
step and flight candidate to be an agent, an action is chosen either randomly or greedily
and stored in the replay buffer. In the first episode, the ε-greedy strategy has an ε equal
to 1 forcing agents to explore. However, this value linearly decreases until it reaches 0.01,
ensuring the agents prioritize exploitation in the last episodes.

The input to the system is the images used to obtain the agent’s experience tuple of
the form (st, at, rt, st+1), where st is the starting image-like state, at is the action taken, rt
is the reward received, and st+1 is the new state of the system. The replay buffer stores
the last 25,000 experience tuples, and batches with 64 samples are randomly selected to
train the NN computing the target value and the respective loss. This loss is the minimum
squared error of the predicted value and the target value, and the Adam optimizer [40] is
used. After training the online network, the weights of the target network are also updated.

The input layer of the NN takes as input the 150 × 100 × 3 images. The first layer
convolves 32 (8 × 8) filters with stride 4 and uses a Rectified Linear Unit (ReLU) activation
function. The second layer is a batch normalization layer [41]. The third layer convolves 64
(4 × 4) filters with stride 2 using a ReLU activation function. The fourth layer is a batch
normalization layer. The fifth layer convolves 64 (3 × 3) filters with stride 1 and uses a
ReLU activation function. The sixth layer is a batch normalization layer. The final hidden
layers are a fully-connected with 256 rectifier units and a droupout layer with a rate of 0.5.
The output layer is a fully-connected linear layer with a single output for each valid action.
The output of the NN corresponds to the predicted Q-values of the individual action for
the input state. The main advantage of this type of architecture is the ability to compute
Q-values for all possible actions in a given state with only a single forward pass through
the network. Table 1 shows the remaining hyperparameters.

Table 1. Hyperparameters for the deep Q-learning algorithm.

Hyperparameter Value Description

Episode 1000 Total number of training episodes
Max steps 60 Maximum number of steps per episode
Number of actions 4 Number of different actions
Discount factor 0.99 Discount factor of future rewards
Learning rate 0.00025 Learning rate used by the optimizer
Initial ε 1 Initial value for exploration
Final ε 0.1 Minimum value for exploration
Target update 4 Step frequency to update the target network
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4.4. DDPG

The second algorithm we want to study to optimize ATFM delays is DDPG. We follow
the approach presented in [30], which adapts the ideas underlying the success of DQN to
continuous actions. DDPG is an actor–critic method, where a parameterized actor function
µ(s) specifies the current policy by mapping states to actions while the critic Q(s, a) learns
how good is the action. Similarly to our previous approach, this implementation of DDPG
directly learns from raw pixel information, using a replay buffer, and throughout the use of
target networks (one for the actor and one for the critic).

The chosen NN for the actor takes as input 150 × 100 × 3 images. The first layer
convolves 32 (8 × 8) filters with stride 4 and uses a ReLU activation function. The second
layer is a batch normalization layer. The third layer convolves 64 (4 × 4) filters with stride
2 and uses a ReLU activation function. The fourth layer is a batch normalization layer.
The final hidden layers are a fully-connected with 256 rectifier units and a droupout layer
with a rate of 0.5. The output layer is a fully-connected linear layer with a single output unit.

The chosen NN for the critic takes as input 150 × 100 × 3 images and the action
predicted by the actor. The first layer convolves 32 (8 × 8) filters with stride 4 and uses a
rectified linear unit (ReLU) activation function. The second layer is a batch normalization
layer. The third layer convolves 64 (4 × 4) filters with stride 2 with a rectified linear unit
(ReLU) activation function. The fourth layer is a batch normalization layer. The fifth layer is
a fully-connected with 256 rectifier units. The sixth layer is fully-connected with 128 rectifier
units and takes as input the concatenation of the output from the fifth layer and the action
from the actor. The output layer is a fully-connected linear layer with a single output unit.

A major challenge of learning in continuous action spaces is exploration. An advantage
of off-policy algorithms, such as DDPG, is that we can treat the exploration problem
independently from the learning algorithm. We constructed an exploration policy µ′ by
adding noise sampled from a noise process J to our actor policy:

µ′(st) = µ(st) + J (17)

where µ′(st) is the noised policy, µ(st) is the current policy, and J is the action noise.
In the first published article based on DDPG and raw pixel images, the authors used

the stochastic Ornstein–Uhlenbeck process [42] to generate random values temporally
correlated as action noise. However, in the literature, we can also find implementations
using exploratory noise from a normal distribution. Although these exploration approaches
are proven to work, recent studies claim that parameter noise frequently boosts perfor-
mance [43]. Parameter noise adds adaptive noise to the parameters of the NN policy (actor).
It injects randomness directly on the weight of the NN, altering the type of actions the
agent makes depending on what the agent currently senses. Different layers of the NN
have different sensitivities to perturbation, which is why we add parameter noise to the
last fully connected layers. In this paper, we will analyze the performance of the models
using all three types of noise.

Finally, batches of 64 random samples are used from a replay buffer of size 25,000 to
train the networks. Online actor and critic networks are trained by computing the target
value and respective loss. The loss is the minimum squared error of the predicted and target
values. The optimizer used is Adam. The actor and critic target networks are updated
using soft target updates instead of directly copying the weights. Table 2 shows the values
of the remaining hyperparameters.
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Table 2. Hyperparameters for the DDPG algorithm.

Hyperparameter Value Description

Episode 1000 Total number of training episodes
Max steps 60 Maximum number of steps per episode
Discount factor 0.99 Discount factor of future rewards
Learning rate actor 0.001 Learning rate used by the optimizer
Learning rate critic 0.002 Learning rate used by the optimizer
Initial ε 1 Initial value for exploration
Final ε 0.1 Minimum value for exploration
Target update 4 Step frequency to update the target network

5. Results and Discussion

This section presents the results obtained for both DQN and DDPG implementations,
learning from raw pixel images to assign ATFM delay, with the dataset described in
Section 4.1.

5.1. Performance Evaluation

The KPI is defined to evaluate the quality of the ATFM delay policy:

• The sum of the rewards received by all the agents.
• The sum of THE ATFM delay imposed by the agents.
• The total number of delayed flights.
• The sum of times the agents delayed a flight.
• The mean OC of the sector along the episode.

These KPI’s are all relevant when evaluating the ATFM plan on a MARL system. One
of the most widely used indicators to evaluate the performance of the agents is the sum
of rewards earned at the end of each episode. The total delay imposed by the flights is
also key because it is one of the indicators to minimize. The total number of delayed
flights and the number of times the agents applied a delay (number of actions) can be
considered KPIs showing how those delays are distributed among aircraft and the number
of micro-adjustments agents make. The OC is key because it dictates situations with severe
demand–capacity imbalances.

To compare the performance between the different implementations, Figure 3 shows
the trend of the different KPIs using a moving window of fifty episodes. Those values have
been obtained in all the cases, periodically testing the policy without exploratory noise.

The results demonstrate the potential of using RL algorithms based on images to solve
DCB problems. As expected, the total reward per episode increases with the number of
episodes, meaning that the agents are able to improve their policy by gathering experience
from the environment. For the last 250 episodes, where we can assume convergence of the
reward, DQN reported a reward of around −3000 while DDPG is around 1500. Note that
the reward will always be smaller than 0 because the scenarios the agents will see always
have DCB issues; thus, ATFM delay is mandatory. From the point of view of maximizing
the cumulative reward, DDPG exhibits better performance than DQN.

The total ATFM delay shows a downward trend, denoting that the agents can infer
which flights are more efficient to delay. DQN is the algorithm with the largest delay
in the last episodes. DDPG with exploratory noise from a normal distribution reported
the lowest delay while DDPG with Ornstein–Uhlenbeck and parameter noise reported
an intermediate amount of delay. The main reason behind this difference in performance
could come from the native characteristics of the algorithms. DQN uses discrete actions,
which constrains the possible delay values, while DDPG uses continuous actions providing
much more flexibility.
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Figure 3. Trends KPIs used to evaluate the performances of the RL systems.

The number of delayed flights also decreases with similar behaviors between all the
configurations, with an average value of around 20 delayed flights in the last 250 episodes.
Although DQN and DDPG with Ornstein–Uhlenbeck seem to report slightly better perfor-
mances, the improvements are minor.

Results related to the number of actions applied by the agents show that DQN is the
algorithm with fewer micro-adjustments. DDPG with Ornstein–Uhlenbeck and parameter
noise reported an intermediate similar number of actions. DDPG with noise from a normal
distribution reported the highest value. This KPI is not directly linked to the goal of solving
demand–capacity imbalances, but it is a good indicator of how many micro-adjustments
are required to smooth the expected demand.

Related to the mean congestion of the sector, after 600 episodes, the sector’s mean
OC seems to stabilize. DDPG with Ornstein–Uhlenbeck and parameter noise reports on
average an 80% usage of the airspace sector capacity, while DDPG with normal noise and
DQN exhibit around 90% usage of the capacity. As a reference, in the European ATM
network, the desired occupancy value is around 80% of sector capacity, providing space to
absorb unexpected events and ensuring that ATCOs are not overloaded [3].

Looking at the results of the different KPIs, it is not strongly clear which approach
reports the best overall performance. While DDPG with normal noise excels at reducing
the overall delay, DQN or DDPG with Ornstein–Uhlenbeck achieve a greater reduction
in the number of affected flights, and DDPG with Ornstein–Uhlenbeck or DDPG with
parameter noise further optimize the use of sector capacity. To better analyze the behavior
of the algorithms from the DCB point of view, i.e., focusing on capacity usage to smooth the
expected demand, Figure 4 shows the mean OC per episode for the DDPG implementations.
The image shows the collected values per episode and their trend.
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(a) OU (b) Normal (c) Parameterized

Figure 4. Mean occupancy count per episode for the DDPG implementations. (a) Ornstein–Uhlenbeck
noise, (b) normal distribution noise, and (c) parameter noise. The purple line shows the trend, the red
line represents the sustained capacity, and the green line represents 80% of the sector’s capacity.

For the last 250 episodes where the mean OC converges, results from the DDPG
with Ornstein–Uhlenbeck show the worst performance where many episodes reported a
mean OC larger than the sustained capacity. DDPG with noise from a normal distribution
reports slightly better results with fewer episodes with a demand greater than the sustained
capacity on average. DDPG with parameter noise reports the best result with the smallest
number of episodes with a mean demand larger than the sustained capacity.

Note that even though the algorithms do not keep the mean OC under the sustained
capacity for all the episodes, for the last episodes where we can assume convergence in the
performance, the mean demand does not exceed the peak capacity. Furthermore, focusing
on the parameter noise implementation, it can be seen that the frequency and the number of
consecutive episodes where the demand exceeds the sustained capacity are much smaller
than in the other implementations.

Finally, a direct comparison between the results presented in this article and the actual
ATFM delay is not feasible since the latter is the result of considering a broader environment.
For example, let us imagine that a flight crosses two different regulated sectors. Even though
the CASA algorithm could impose two different delays, the hypothetical flight would be
affected only by the largest one. To directly compare the ATFM delay between the two
approaches, a RL model for the two airspace sectors would be needed. Extending the
proposed system to a broader region that considers the interaction between neighboring
sectors is a relevant point to be studied in future works.

5.2. Case Study

This section presents the outcome of the framework for two specific regulations sub-
tracted from the training dataset. The selected regulations are YBOLN07 from 7 September
2019, and YBOLN18A 18 August 2019. For each of the previous regulations, the RL system
based on DDPG and parameter noise is used to collect which flights should be delayed and
the amount of delay. Then, using this information, the original expected pre-tactical traffic
is visualized using the following color schema:

• Red: System-suggested flights for regulation.
• Green: Non-regulated flights outside the sector in the corresponding timestamp.
• Blue: Non-regulated flights inside the sector in the corresponding timestamp.

Figure 5 shows the results for regulation YBOLN07, which started at 8:00 A.M. and
finished at 10:30 A.M. As a high-level indicator, the 141 flights crossing the sector linked
to regulation YBOLN07 had a total delay of 556 min (delay from YBOLN07 or any other
active regulation); thus, an average delay of 3.94 min per flight. On the other hand, our
RL system suggests regulating 41 (from the 141 flights crossing the traffic volume) with
an average delay per flight equal to 3.71 min per flight and a maximum individual delay
equal to 21 min. Note that the comparison of minutes of delay per flight considers all the
regulated traffic crossing the sector independently of the regulation.

Looking at the images, the selected sector (EDYYBOLN) has two traffic flows, one
from the top-left to bottom-right and another from the bottom-left to top-right. Both traffic
flows are similarly regulated, indicating that the delay is spread between fights, and the
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system does not have a preference. However, the RL policy sometimes decides to delay
flights that do not completely cross the sector, which seems to be not ideal (see Figure 5,
timestamp 8:57, red fight at the bottom-right).

Figure 5. Representation of the RL system outcome for the regulation YBOLN07.

Note that only five images at different timestamps per regulation are shown because of
space constraints. Furthermore, there are no regulated flights in the first timestamp due to
the problem constraint that must guarantee each episode starts without demand–capacity
imbalance (see Section 3.5).

Figure 6 shows the results for regulation YBOLN18A, which started at 2:00 P.M. and
finished at 4:45 P.M. In this case, the flights crossing the sector when the regulation was
active received an ATFM delay of 3.39 min per flight, while the RL framework regulated 48
(from the 159 flights crossing the traffic volume) with an average delay per flight equal to
3.35 min per flight and a maximum individual delay equal to 18 min Notice that, despite
the images being more crowded than in the previous case study, the average delay per
flight is slightly smaller; 3.94 versus 3.39 for the actual ATFM delay and 3.71 versus 3.35
using the RL system. This is also the case for the peak delay imposed on individual flights.

Figure 6. Representation of the RL system outcome for the regulation YBOLN18A.

The results obtained in these two case studies show the potential of the proposed new
framework. The RL system is able to solve already detected DCB problems using images
with a behavior that could be considered valid. However, a deeper analysis is required to
obtain further conclusions.

6. Conclusions

This article proposes an image-based MARL solution to optimize ATFM delay in the
European network. The goal is to maximize the usage of the airspace sector’s capacity
while minimizing the ground delay. The proposed approach compares DQN and DDPG
algorithms with the experience replay buffer, target networks, and different strategies for
exploration. Although the obtained results did not lead to a clear conclusion about which
algorithm configuration best fits the problem, DDPG arises as a promising candidate. It
exhibits a lower overall ATFM delay and a mean OC closer to optimal values, especially if
parameter noise is used for exploration during training.

The results obtained as a first step towards devising MARL methods for deciding
on ATFM delay policies using pixel images are promising. The proposed system can
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successfully solve complex real-world DCB problems. Moreover, the work presented in
this article could contribute to improving the usage of the airspace sector’s capacity and
reducing current delays.

Another relevant aspect to highlight from this research is that the approach based on
images for DCB problems provides a scalable architecture that allows the representation
of an arbitrary number of agents without changing the state variables architecture. This
characteristic is especially relevant when working on the entire European ATM network,
where thousands of flights are operated daily.

As part of future work, it becomes mandatory to study how to extend the system
to larger regions of multiple sectors, thus considering the effect that the decisions made
in one sector generate in the neighborhood. Additional work towards a more realistic
scenario would also include using the real polygonal shape of the sectors, considering more
KPIs, such as cost, or analyzing the possibility of modeling heterogeneous agents. Finally,
the combination of this work with the one presented in [7] will allow us to create an end-
to-end system to precisely identify the airspace sectors with demand–capacity imbalances
and propose a possible solution to reduce such demand during the pre-tactical phase.
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Abbreviations

AI Artificial Intelligence
AIRAC Aeronautical Information Regulation and Control
ANSP Air Navigation Service Provider
ATC Air Traffic Control
ATCO Air Traffic Controller
ATFM Air Traffic Flow Management
ATM Air Traffic Management
CASA Computer Assisted Slot Allocation
CFMU Central Flow Management Unit
CNN Convolutional Neural Network
CTOT Calculated Take-Off Time
DCB Demand–Capacity Balancing
DDPG Deep Deterministic Policy Gradient
DPG Deterministic Policy Gradient
DQN Deep Q-learning
EATMN European Air Traffic Management Network
ECAC European Civil Aviation Conference
FMP Flow Manager Position
KPI Key Performance Indicator
MAA3C Multi-Agent Asynchronous Advantage Actor–Critic
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
ML Machine Learning
MUAC Maastricht Upper Area Control Centre
NN Neural Network
OC Occupancy Count
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ReLU Rectified Linear Unit
RL Reinforcement Learning
SOBT Scheduled Off-Block Time

Nomenclature

α Learning rate
γ Discount factor
N Number of agents
µ DDPG ATFM delay policy
π DQN ATFM delay policy
a Action variable
C Capacity variable
D Delay variable
G Cumulative reward
i Agent indicator
P Transition function
R Reward variable
r Reward variable
s State variable
TP Counting time period
V Occupancy Count variable
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