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Abstract: This work illustrates how a proposed method can be used to create optimization frame-
works for early conceptual design studies and to increase overall knowledge at an early design
stage. The method is intended to facilitate concept selection in challenging domains that typically
involve multidisciplinary design problems with contradictory requirements. The main focus of the
work presented here is on the conceptual design of helicopters; however, the method is intended
to be applicable to early design studies in other domains as well. In short, statistics about existing
helicopters are collected and compiled to provide a basis for various regression analyses. The purpose
of this is to unravel relationships in the data and to obtain simple estimation models from statistical
regressions that can be used in conjunction with existing formulas and equations to generate an
initial helicopter design estimate. Models for each discipline, such as aerodynamics, are then created
using the outcomes of the regression analyses and existing equations. Lastly, the method is used to
define a multidisciplinary design optimization framework incorporating all the models obtained
from the different disciplines. A case study based on search and rescue operations is used to test the
proposed framework in order to obtain possible first suggestions for the baseline design of a new
general-purpose search and rescue helicopter.

Keywords: symbolic regression; optimization; conceptual design; genetic algorithm; design of
experiments; helicopter statistics

1. Introduction

Early design studies are intended to increase overall knowledge about new concepts
and to indicate possible candidates for further evaluation. However, generating and
deciding between a large number of suitable concepts can be a challenging task, especially
when considering the multiple design disciplines involved. Helicopter design is such an
example and is a multidisciplinary domain that often includes contradictory requirements
and negotiations to arrive at suitable concepts. For example, objectives such as a desired
number of people onboard is typically in conflict with specified weight requirements.
Overall production cost is another factor that often places additional constraints on a
helicopter design, as shown in [1]. Consequently, optimization becomes a powerful tool
that can alleviate the designers’ work and facilitate decision-making. Multidisciplinary
design optimizations (MDOs) are a commonly used approach in aerospace design problems
and involves more considerations than just optimizations. As an engineering discipline,
MDO additionally deals with topics such as sensitivity analyses, information processing,
and management strategies [2]. It can also be seen as a methodology where the interactions
between involved disciplines and subsystems are exploited and in focus for the design of
new systems. However, these interactions introduce additional challenges compared to
optimizations in a single discipline. According to [3], the two main challenges that an MDO
approach brings are in terms of computational expense and organizational complexity.
Optimizations and MDOs have been used in several helicopter design studies. For example,
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the work presented in [4] shows a study where a rotorcraft multidisciplinary design and
optimization framework was utilized to assess regenerative powerplant configurations
for preliminary design. Another study shows how a multidisciplinary framework can
be used to perform both single and multiobjective optimizations in order to reduce fuel
consumption and emissions for new rotorcraft designs [5]. The obtained results were
here subsequently used to explore the design space for operations at a mission level and
to see how varying flight parameters influenced the objectives. The work from [1], that
was mentioned previously, illustrates how the production cost for a light turbine-training
helicopter can be minimized together with several other optimization objectives in an MDO
framework. The framework also enables explorations of the results so that designers can
see the influence of the design variables for all involved disciplines simultaneously. High-
fidelity rotorcraft computations are performed in [6] by means of a multidisciplinary design
and optimization framework. The involved disciplinary models include computational
fluid dynamic codes and have, for example, been used with optimizations to reduce
rotor torque while maintaining other desired rotor blade parameters, such as rolling and
pitching moments.

As just seen, the early design of a helicopter involves many considerations, such as
the intended mission, range and required power. While many different designs may meet
the intended requirements, it is not guaranteed that they will do so in an optimal way. It is
therefore important to properly explore the available design space at the conceptual stage in
order to identify the most suitable solutions that can meet the overarching requirements and
needs in the best way. However, consideration of all these details makes the design process
more complex, and finding a “best solution” without optimization could be both time-
consuming and costly. Furthermore, the limited knowledge about a new concept that is
available at the beginning of a design process further adds to the uncertainty. It is therefore
desirable to increase overall knowledge about a new design as much as possible early on in
the process. There are often well-established methods or general approaches and guidelines
for conceptual design studies in different engineering domains, such as the ones presented
in [7–10] for helicopter design or by Raymer for aircraft design [11]. However, these, and
some of the frameworks mentioned before, are typically fairly detailed, and a designer
must be quite familiar with the domain and process in question to make an initial concept
selection. Consequently, it is desirable to facilitate an early concept selection through other
and simpler means. One way of achieving this is to estimate the characteristics of new
concepts using statistics drawn from existing solutions. Such “ballpark” estimates are
usually enough at the beginning of a design process and in the evaluation of possible initial
concepts. Sensitivity analyses can then indicate how sensitive a concept is to changes in
various parameters and may thus also give an indication of the required model fidelity.
More details are, of course, preferable to a certain extent. However, if a concept is fairly
insensitive to changes in some of the involved models, statistical estimations are probably
sufficient for achieving good initial values. Requirements might also change over time,
and consequently, it is important to be able to trade requirements and investigate possible
future scenarios so that resilient designs can be obtained.

This work therefore proposes a method for generating optimization frameworks for
early conceptual design studies. In the case of this paper, the method is used to generate an
MDO framework for the conceptual design of a helicopter in order to address the challenges
mentioned above. This helicopter optimization framework is mainly built from statistical
regression models that were obtained in different ways. Together, these models make up
the MDO framework, which is implemented in the modeFRONTIER software [12]. From
there, the constraints and objective functions can be adjusted to meet the designer’s specific
design task. Design and trade space explorations can thereafter be performed in order, for
example, to investigate the concept’s sensitivity to the underlying models. In this work, the
design of a general-purpose search and rescue (SAR) helicopter is used as a case study to
test the implementation of the framework and to obtain a Pareto front of possible solutions.
Consequently, the SAR objective functions of the case study describe a helicopter that
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can fly as far as possible with as many passengers as possible, while minimizing weight,
fuel consumption, and the average cost per flight hour. Constraints, such as a maximum
flight velocity, are introduced to keep the solutions within realistic limits. Proposals and
opportunities for future work on the method and optimization framework are presented at
the end of the paper, together with a brief discussion on the outcome of the case study.

2. Approaches and Design Methodologies

This section briefly explains some of the governing equations for helicopter design as
well as approaches that can be used to create statistical regression models for optimizations
in order to meet the intended optimization framework outlined in the introduction. Ad-
ditionally, at the end of this section, other initiatives that have utilized optimizations for
helicopter conceptual design are identified.

2.1. Helicopter Equations and Relationships

An essential formula in any air vehicle design is the Breguet range Equation (1).
This equation can be used to calculate the distance that an aircraft can fly given a set of
parameters in steady and level flight [13].

Range =
V
g

1
SFC

L
D

ln

(
Winitial
W f inal

)
(1)

Here, V corresponds to the aircraft cruise velocity, g = the gravitational constant,
SFC = specific fuel consumption, L = lift force, and D = drag force, while Winitial and
W f inal describe the ratio between the weight at the start and the end of a flight. As
mentioned previously, this formula can be used to estimate the range of air vehicles with
surprisingly good results [14]. However, some additional factors must be taken into
consideration when estimating the range for helicopters. It can be seen in [10] that two
additional parameters are added to the Breguet range equation for helicopters, namely, a
rotor efficiency factor, η, and a coefficient, ξ, that takes power losses in the transmission
into account. This “updated” range equation for helicopters is shown in Equation (2):

Range =
V
g

ηξ

SFC
L
D

ln

(
Winitial
W f inal

)
(2)

The L
D term in Equation (2) can be estimated using a relationship described in [15] that

can also be seen in Equation (3) below.

L/D = WV∞/P (3)

In this equation, V is once more the velocity of the helicopter. W is the weight of the
airborne helicopter and P is the available main rotor power. The flight velocity and main
rotor power are correlated in a way that can be described using a graph presented in [16].
A representation of this relationship can be seen in Figure 1.

There are many more proposed formulas that can be found in the literature. However,
finding simple equations for helicopter design, without entering into too much detail, is
difficult. Regression models based on statistical data for already existing solutions can
therefore be a good complement to the calculations at a conceptual stage. Additionally,
many of the equations used in helicopter and airplane design are originally based on
statistics for existing or no-longer-operating aircraft.
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Figure 1. The relationship between helicopter power and airspeed. Based on the graph presented
in [16].

2.2. Statistical Regression

A statistical regression can be described as a method for determining dependencies
between variables of interest in a dataset. One of the simplest forms of regression is trend-
line fitting on graphs between two variables [17]. In this case, the trend line can give the
relationship between two parameters; for example, as a linear equation. Different equations
may fit the investigated data better, such as an exponential trend line. However, it can be
difficult to judge whether one trend line fits the data better than another. A possible way of
assessing the fit is to use, for example, an R2 value. The R2 value, also called the coefficient
of determination, simply describes how well a regression model fits the data on which it is
based [18]. The R2 value is built on the variance of the dataset and can be described by the
following Equation (4):

R2 =
Variance explained by the model

Total variance
(4)

The R2 value in this case is given as a number in the range 0–100%, where 100% would
correspond to a perfect fit. However, having a high R2 value and a perfect fit may not
necessarily be either good or desirable. For example, both interpolations and extrapolations
using the trend line’s equation can give values that are very wrong, and consequently, some
intuition is almost always necessary when fitting a trend line. Hence, this type of regression
can be prone to biases [17].

Regression analyses with more than two variables are commonly referred to as mul-
tiple regression analyses [19]. These analyses typically use two or more independent
variables with known values to estimate the value of a single dependent parameter. Un-
like a “regular” regression with only one variable, multiple regression analyses include
weightings so that the contribution of each predictor variable can be determined.

Both regular and multiple regression analyses can be performed on the logarithm of
the original values in a dataset, and there are many potential benefits of doing this. One
example is that the data can be better “centred”, which can allow for a better fit with a
linear regression model. It thus also facilitates the analysis of datasets that are not normally
distributed [20].

Symbolic Regression

Fitting suitable trend lines and creating statistical models under uncertainty can be
challenging. However, optimization can be used for this purpose. One way of doing
so is to use symbolic regression. This, as the name implies, is a regression analysis that
yields prediction models using mathematical expressions that best fit a given dataset.
Lengthy mathematical expressions are typically penalized so that both accuracy and sim-
plicity are considered [21]. Optimizations using, for example, genetic algorithms are thus
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suitable because the mathematical building blocks—such as addition, subtraction, and
multiplication—can be seen as the different available chromosomes. An optimization is
then performed with the objective of minimizing aspects such as the mean square error,
while penalizing the complexity of the resulting expressions or individuals. This reduces
some of the human bias and creates a “simple” but accurate prediction model from sta-
tistical data using optimizations. The end result of a symbolic regression using genetic
algorithms is therefore an equation, or formula, optimized to fit the given data while
keeping the expression simple in terms of length and complexity. Figure 2 provides an
example of a symbolic regression process.

Figure 2. An illustration of a symbolic regression process.

2.3. Optimization

So far in this paper, genetic algorithms have been suggested as one optimization
technique. However, there are many other methods, ranging from simple gradient-based
approaches to more complex particle swarm optimizations [11,22]. Common to all opti-
mization techniques is the fact that there typically exist objective functions, constraints, and
design variables. Optimizations with more than one objective function are referred to as
multiobjective optimizations (MOOs) and optimizations within more than one discipline,
such as aerodynamics, are labeled as multidisciplinary design optimizations (MDOs) [23,24].
Optimizations, and especially MDOs, can be quite expensive in terms of computational
cost and time. It is therefore sometimes beneficial to create surrogate or meta models that
can be used to make predictions about the optimization results. However, in order to create
accurate surrogate models, certain benchmark optimizations must be performed. These
optimizations should be chosen so that as few simulations as possible need to be performed
in order to create an accurate surrogate model. A design of experiments (DOE) can be used
to determine the simulations that should be performed in order to obtain suitable elements
of the surrogate model [25]. A variety of different DOE methods can be used. One example
of a common DOE is Latin hypercube sampling.

Optimization algorithms are available and can be found in many different software
and programming languages, such as MATLAB, Microsoft Excel, Python, etc. The software
called modeFRONTIER [12] is dedicated to design optimization and allows users to perform
design space explorations on the optimization results in order to identify optimal solutions
in an intuitive way. Additionally, modeFRONTIER allows for MDO with models from other
tools, and it features several optimization algorithms and design space sampling methods.

2.4. Conceptual Helicopter Design Initiatives

Conceptual design studies of aircraft are usually performed based on historical data
of already existing solutions. A well-known methodology for aircraft conceptual design,
which utilizes both statistical data and some optimizations, is presented in Raymer’s
book “Aircraft Design: A Conceptual Approach” [11]. However, this book mainly focuses on
fixed-wing aircraft and does not specifically address the conceptual design of rotorcraft or
helicopters. Although very different, some inspiration can still be taken from the conceptual
design methodology for fixed-wing aircraft and applied to rotorcraft in early design studies.
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This can, for example, include the overall sizing procedure of a cabin or how different
weight penalties must be taken into account for engine installations, etc. Besides the he-
licopter design references mentioned in the introductory section, the “Helicopter Flying
Handbook” provides a detailed overview of all aspects of rotorcraft [26]. From a conceptual
design perspective, the handbook can, for example, give guidance about different configu-
ration possibilities and the desired flight characteristics of a concept to be developed and
evaluated. However, there are various dedicated guides and methodologies available for
the conceptual design of helicopters and rotorcraft. One of these is the “Guide for Conceptual
Helicopter Design” by Kee [7]. Here, a combination of historical data and formulas are
used for the conceptual design of a single-rotor utility helicopter. More recent initiatives
for the conceptual design of rotorcraft have been presented, for example, in studies by
the German Aerospace Center (DLR) [27] and the Georgia Institute of Technology [28]. A
multidisciplinary design framework for rotorcraft is introduced in [27]. This framework
also utilizes optimization and a high level of modularity for achieving flexibility in the
process and among the different disciplines. The study in [28] introduces a conceptual
design methodology for rotorcraft maneuverability using modeling and simulation. Design
space explorations and optimizations are also used here to give decision support and to
indicate a suitable design region in terms of maneuverability.

3. Method

This chapter presents the overall method that is used to create the helicopter conceptual
design optimization framework suggested in this paper. The method builds upon the
gathered knowledge from Sections 1 and 2, but is also intended to be general so that the
design of any system is facilitated. Figure 3 presents an illustration of the method and
intended workflow to create an optimization framework for early design studies in general.

Figure 3. The general method and workflow for creating optimization frameworks for early
design studies.

As seen in Figure 3, the process starts by determining the purpose of the analysis. For
example, are the design studies going to evaluate helicopters, cars, or toasters? Once the
topic of analysis is decided, objective functions can be specified. For example, this could
consist of the main objectives or requirements that the design is intended to fulfill, such
as the capability of transporting a given number of passengers over a specific range in as
little time as possible. With goals and objectives determined, the analysis of underlying
relationships can begin. This step typically involves applying statistical data from previous
solutions to the objectives and goals specified in the previous step. This could, for example,
consist of various regression analyses, such as the ones described in Section 2.2. It is also
possible to utilize analytical methods, such as centre-of-gravity calculations for the involved
components. Other methods, such as domain-specific or well-established formulas, can,
of course, be included here as well; for example, Newton’s second law. The purpose of
this step is essentially to identify the relationships between the optimization objectives
and possible design variables. These relationships can then be used to establish different
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calculation models related to the chosen objectives. As the Generate Model/Models step
in Figure 3 shows, these models can either be single large models or split into several
smaller models—for example, one for each involved discipline—that can be connected to
each other.

Once appropriate models have been created, the inputs and outputs between each
model must be determined. In an MDO case, a design structure matrix (DSM) can aid in
this specific task [29]. A DSM gives an overview of the connections between the different
involved models and can be used, among other things, to sort the execution order of
these models in the subsequent optimization. Finally, appropriate design parameters and
constraints can be added to the optimization, depending on the previously determined
objectives and goals. Once this is complete, the optimization itself can be set up by choosing
a desired optimization method and, for example, sampling the design space using a DOE.
The optimization results can subsequently be investigated and evaluated, as well as being
used to aid in decision support, design, and trade space explorations. The proposed
workflow presented in Figure 3 can be somewhat iterative, and certain steps might need
to be revisited throughout the process as more knowledge about a design is generated.
However, the final outcome of the workflow is an optimal design point or a Pareto front of
overall optimal solutions for the given objectives.

4. Case Study and Implementation

A case study for the conceptual design of a general-purpose search and rescue (SAR)
helicopter is performed and implemented in order to test the proposed method and work-
flow illustrated in Figure 3 in the previous section. The first step is to determine the goals
and objectives of the optimization that is to be performed. SAR operations is an area that
typically involves several goals and objectives that are sometimes in conflict with each
other. Generally, the goal is to find a lost rescue subject in as little time as possible while
also being able to cover as large a search area as possible. Other considerations, such as
fuel consumption for the involved vehicles and rescue/passenger capacity, must also be
taken into account. Based on this goal, the objectives for the optimization of a possible new
SAR helicopter in this particular case study are listed as follows:

• Maximize range and rescue/passenger capacity.
• Minimize fuel consumption, weight, and cost per hour.

With the objectives established, the process can proceed to the step of determining
the underlying relationships and the definition of suitable models to be used for the opti-
mization. However, some of the design parameters and constraints are already determined
and can be introduced at this point for the SAR helicopter case study. In the design of
other systems, knowledge might be limited at an early stage. The design parameters and
constraints in such a case can typically be decided at a later stage, as indicated in the process
presented in Figure 3. The introduced design parameters are here defined as:

• Fuselage length (≈helicopter size).
• Helicopter rotor diameter.
• Number of rotors.

A constraint on the flight velocity of the helicopter is also introduced at this point
in order to avoid problems with stalling rotor blades due to aerodynamic effects at high
rotational speeds [26]. The next step in the method is to determine the relationships and
formulas that are going to be used in the optimization. The range equation for helicopters
(2) is considered to be a central part of this case study because it involves consideration from
several disciplines, such as aerodynamic and structural analyses. Consequently, additional
relationships had to be found in order to create a model for estimating range. The L/D term
in Equation (2) was estimated using the expression stated in Equation (3). The relationship
between power and airspeed was estimated using the graph shown in Figure 1. The
coefficient of power loss, ξ, was specified as 0.88 for a single rotor helicopter in forward
flight, while a dual-rotor counterpart was given a value of 0.93 according to [10]. The
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reason for the higher power loss in a single rotor helicopter comes from the transmission
losses due to a required tail rotor. Finally, the rotor efficiency, η, was chosen as 0.87 for high
flying speeds [10].

Some of the required parameters for the range estimation were hard to find without
entering into more details than were required at this early stage. Therefore, the remain-
ing relationships were determined based on statistics from other existing helicopters, as
explained in the next section.

4.1. Helicopter Statistics and Regressions

In order to generate estimation models from statistics and regression analyses, data
for existing helicopters had to be collected and compiled. The majority of these data were
collected from specifications publicly available on either manufacturers’ data sheets or
web pages such as Wikipedia. Specifications for 75 different helicopters were collected
and compiled for this case study using Microsoft Excel. The type of helicopters mainly
focused on those used in SAR operations; however, some different configurations were
included as well, for example, military helicopters. Overall, the specifications collected
for the different helicopters were based on those needed for the range estimation, the
overall optimization objectives, and the design parameters. Table 1 gives a summary of the
different specifications that were collected and used for the regression analyses, together
with an example helicopter. The complete dataset used in this paper is available from [30].

Table 1. The different specifications that were collected. An AW139 helicopter is included as a
reference to show its values and the associated units.

Specification Value Unit

Helicopter Type AW139
No. Crew 2 -
Passenger Capacity 15 -
No. People Onboard 17 -
Length 16.66 m
Width 2.26 m
Height 4.98 m
Helicopter Volume 187.5 m3

Empty Weight 3621.93 kg
Max Takeoff Weight 6400 kg
Fuel Capacity 1568 l
SFC 298 g/(kWh)
No. Engines 2 -
Power (one engine) 1142 kW
Total Power 2284 kW
No. Blades 5 -
Main Rotor Diameter 13.8 m
Main Rotor Area 149.56 m2

Total Rotor Area 149.56 m2

No. Rotors 1 -
Disk Loading 42.79 kg/m2

Cruise Speed 306 km/h
Never Exceed Speed 310 km/h
Range 1061 km
Endurance 313 min
Service Ceiling 6096 m
Rate of Climb 10.9 m/s
Cost per Hour 4000 USD

With these compiled helicopter data, the regression models could be generated. This
was mainly achieved using linear regressions based on the logarithm of the original data
values. For example, the helicopter length values were investigated against the number of
people onboard. The length was then related to both the width and height of the helicopter
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using another regression analysis. The outcome of this was an estimated helicopter volume
that could subsequently be used in yet another regression for aspects such as the helicopter’s
structural weight. This procedure was followed until all the required regression models
had been established. Figure 4 presents an example for some of the regressions performed
on both the logarithms of original values and default ones.

Figure 4. A regression for the relationship between helicopter volume and empty weight on a
logarithmic scale (left). The relationship between specific fuel consumption (SFC) and power (right).

As seen in Figure 4, the applied trend lines give both an equation and an R2 value. The
R2 values give an indication of how well the trend lines match the underlying statistical
values, as mentioned previously in Section 2.2. Even though the R2 values could be im-
proved, the overall trends show good agreement with the underlying data, which indicates
that interpolation, as well as light extrapolation, can be performed with some confidence.

Symbolic regressions using genetic algorithms, as mentioned in Section 2.2, were
performed on some of the regression analyses where proper relationships and trend lines
were difficult to determine “manually”. A test to compare the regular and symbolic
regression analyses was performed on the relationship between helicopter empty weight
and maximum takeoff weight (MTOW). In this case, the regular regression was performed
using a linear trend line in Excel. This analysis resulted in the expression shown in
Equation (5), with an average error of 18% from the data used.

MTOW = 1.8923 · Empty Weight − 604.43 (5)

The symbolic regression analysis was performed in MATLAB using the GPTIPS
toolbox [31]. Simple mathematical building blocks—such as addition, subtraction, multipli-
cation, and division—were added as design parameters for the regression. An optimization
was then performed using a genetic algorithm, with the objective of minimizing the mean
square error while penalizing lengthy expressions. The optimization setup was specified
as a population size of 200 and to run the optimization for 200 generations. Additionally,
a tournament method was used with some mutation operators allowed. This particular
symbolic regression analysis with a genetic algorithm resulted in the following expression,
shown in Equation (6) below:

MTOW = 0.00001855 · Empty Weight2 + 1.462 · Empty Weight + 504.7 (6)

The expression in Equation (6) gave an average error of 12% when compared to the
underlying data. Consequently, Equation (6) was able to estimate the MTOW of the utilized
dataset 6% better than the regular, manually applied, linear regression in Excel. It should,
however, be noted that Equation (6) is a second-order polynomial function with a low
gradient. Consequently, heavy extrapolation could result in unreliable results. Nevertheless,
all the symbolic regressions performed with genetic algorithms were set up with the same
design parameters, objectives, and population specifications as described above.
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4.2. Optimization Framework

The overall outcome of the regression analyses performed, and the identified helicopter
relationships from Section 2.1, was six different estimation models for various disciplines
in helicopter design. The established models and their corresponding implementation
software are listed below:

• Helicopter Dimensions Model (Matlab).
• Weight Estimation Model (Excel).
• Aerodynamics Model (Matlab).
• Propulsion Model (Matlab).
• Range Model (Excel).
• Cost Model (Excel).

ModeFRONTIER was chosen as a suitable software to connect these different models
in a multidisciplinary design optimization (MDO) framework [12]. However, the input
and output relationships between the different models had to be established prior to that.
As explained above, the helicopter range equation was considered central for this case
study. Consequently, all models except the cost model eventually led to inputs for the range
model. Table 2 presents an input/output matrix for the six models obtained, together with
the intended optimization design parameters, objectives, and constraints.

Table 2. The input/output matrix, where inputs are indicated in green and outputs in red. Addition-
ally, design parameters are highlighted in green, optimization objectives in red, and constraints are
in yellow.

4.2.1. Helicopter Dimensions Model

As seen in Table 2, the helicopter dimensions model takes the fuselage length as an
input. The length is then used in different linear regression models to obtain widths and
heights that subsequently are used to obtain an estimated helicopter volume. From there,
the passenger capacity is derived based on a regression with the previously established
helicopter volume.

4.2.2. Weight Estimation Model

The weight estimation model uses the previously determined helicopter volume and
passenger capacity as inputs. Here, the volume is used to estimate the empty weight
with the regression shown in Figure 4. The relationships from the symbolic regression in
Equation (6) are then used to derive the MTOW from the estimated empty weight. The
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passenger capacity is used to determine the overall payload weight. An average weight of
90 kg is assumed per passenger onboard. MTOW is, in this case, composed of empty weight,
payload weight, and fuel weight. Consequently, fuel weight is calculated by subtracting
the empty and payload weights from the MTOW.

4.2.3. Aerodynamics Model

The rotor diameter, number of rotors, and MTOW are the required inputs for the
aerodynamics model. The total rotor area is calculated from here and used with MTOW to
determine the helicopter disk loading. A symbolic regression relationship is thereafter used
to determine the required power from the disk loading. The relationship from Figure 1 can
consequently be used to approximate the flight velocity. Equation (1) is used at the end to
calculate the lift to drag ratio, or L/D.

4.2.4. Propulsion, Range, and Cost Models

The propulsion model uses the second relationship from Figure 4 and consequently
determines the helicopter’s specific fuel consumption (SFC) from the input power, as seen
in Table 2.

The range model is simply an implementation of the helicopter range Equation (2)
from Section 2.1 and requires inputs from most other models. The number of rotors is also
added as an input for specifying the value of the coefficient of power loss.

Finally, the cost model determines the cost per hour based on disk loading, as seen in
Table 2. This relationship is based on a linear regression between disk loading and cost per
hour in log scale.

4.2.5. Implementation

With the input and output relationships established in Table 2, a design structure ma-
trix (DSM) could be defined. The resulting DSM with model input and output relationships
can be seen in Table 3.

Table 3. The design structure matrix (DSM), indicating model inputs and outputs with “X” according
to the legend highlighted in blue.

As seen in both Tables 2 and 3, the required relationships between inputs, outputs,
design parameters, optimization objectives, and constraints were determined, and the
implementation of the optimization framework in modeFRONTIER could begin. Here,
the six different models were connected with each other according to the connections
shown in Tables 2 and 3. Additional constraints were also added; for example, to prevent
negative values because this was not accounted for in the individual models. The finalized
optimization framework generated in modeFRONTIER is given in Figure 5.

The three design parameters in Figure 5 were specified with range properties to
indicate the allowed interval of values. The fuselage, or helicopter, length was defined
as being able to vary between 4 and 40 m. Similarly, the rotor diameter was allowed to
vary between 4 and 25 m. Finally, the number of rotors was defined as either one or two,
corresponding to a single- or dual-rotor configuration. The model execution order follows
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the structure from Tables 2 and 3, since no “feedback” loops were detected between the
models in the DSM. As mentioned previously, additional constraints were added to prevent
the fuel weight and lift to drag ratio from taking on too small or negative values. The
originally intended velocity constraint was specified as an upper limit of 350 km/h. The
objectives of the optimization were finally specified according to the list at the beginning of
Section 4. This is also seen in Figure 5, where a minimization is indicated with a downward-
pointing arrow, while a maximization is represented by an upward-pointing arrow.

Figure 5. The modeFRONTIER optimization framework.

4.2.6. Optimization Setup

As seen in the starting node of the optimization framework illustrated in Figure 5, the
evolutionary NSGA-II algorithm was chosen for the subsequent optimization. The number
of generations for the NSGA-II algorithm was set to 150. All other NSGA-II settings were left
at the default modeFRONTIER values. A design of experiments (DOE) was also specified
in order to initialize the optimization and provide a first population. In this particular case
study, the uniform Latin hypercube algorithm was used to provide a DOE with 20 different
designs. This DOE is presented in Table 4 below. Consequently, 3000 evaluations were to
be performed during the optimization according to the DOE and NSGA-II generations.

4.3. Results

This section presents the optimization results that were obtained from the case study
and optimization framework outlined above. It shows the available design space and also
identifies the Pareto fronts between some of the different optimization objectives. Figure 6
shows the optimization results for the two most important objectives for this particular
search and rescue (SAR) case study; namely, the number of people onboard and the range
that the helicopter is able to fly.

As seen in Figure 6, two clusters of data points can be identified. This is due to the
number of rotors design parameter. All one-rotor configurations are found to the left in
Figure 6, while the dual-rotor configurations are found more towards the right-hand side.
Two Pareto fronts can therefore be identified, as highlighted in blue in the figure. It can also
be seen that the dual-rotor configurations generally have a greater range and passenger
capacity than the single-rotor configurations. However, Figure 6 only illustrates two of
the five optimization objectives, and further evaluations are therefore required in order to
draw a conclusion about the most suitable design for SAR operations in this case.

There are various ways of illustrating all the design parameters and optimization
objectives simultaneously. A sensitivity matrix can give insight into how the different
design parameters affect all the optimization objectives. As the name implies, it is also
possible to see how sensitive the different objectives are to the design parameters. Figure 7
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presents a sensitivity matrix, with the design parameters on the horizontal axis and the
optimization objectives on the vertical axis.

Table 4. The utilized design of experiments (DOE) with its 20 different designs.

ID Category Fuselage Length [m] Number of Rotors [-] Rotor Diameter [m]

0 ULH 13.678 2 20.066

1 ULH 39.668 1 4.835

2 ULH 7.581 1 13.182

3 ULH 37.910 1 15.783

4 ULH 12.680 1 5.864

5 ULH 19.227 2 21.868

6 ULH 4.470 2 8.406

7 ULH 28.758 1 24.122

8 ULH 33.890 2 12.229

9 ULH 16.208 1 13.831

10 ULH 35.622 2 10.291

11 ULH 30.580 1 19.087

12 ULH 31.198 2 15.332

13 ULH 27.331 2 7.275

14 ULH 10.134 2 6.408

15 ULH 24.421 1 10.590

16 ULH 23.584 1 21.315

17 ULH 8.225 1 17.664

18 ULH 20.228 2 17.489

19 ULH 18.028 2 23.204

Figure 6. A scatter graph for the number of passengers against the helicopter range. Two Pareto
fronts for the number of rotors are identified and marked in blue.

As seen in Figure 7, the fuselage length is closely correlated with the range, passenger
capacity, and MTOW. An increase in fuselage length would consequently result in an
increase in these objectives as well. This is reasonable since the passenger capacity and
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weight are both directly tied to the size of the helicopter. The increase in range with a longer
fuselage is probably due to the greater possible fuel capacity in a larger helicopter.

Figure 7. A sensitivity matrix between design parameters and optimization objectives.

The correlations between objectives can be illustrated in a system characteristic cor-
relation matrix. Figure 8 illustrates such a matrix where all optimization objectives are
correlated against each other.

Figure 8. A system characteristics correlation matrix illustrating the relationships between the
optimization objectives.

Naturally, the correlation matrix in Figure 8 becomes symmetrical and illustrates both
relationships and possible design conflicts between the used objectives. Here, a value of
1 indicates that two objectives are completely in line and that an increase in one of them
would yield a similar response in the other. Negative values in the matrix indicate that the
objectives are pulling in opposite directions. Values close to zero indicate weak correlations
between objectives, while a value of zero would correspond to no correlation at all. For
example, the MTOW objective in Figure 8 has a strong positive correlation to the amount
of passengers. Cost and range are also positively correlated and would consequently rise
with increased MTOW. However, the fuel consumption objective has a slight negative
correlation and would therefore decrease as MTOW increases.

These observations from the matrices in Figures 7 and 8 can also be seen in, for
example, a parallel coordinates graph. Consequently, Figure 9 presents such a graph, where
all design parameters and optimization objectives have been added.

Each line in Figure 9 represents one specific design. It can also be seen here that the
fuselage length, number of passengers, and MTOW more or less follow each other (as also
indicated in Figures 7 and 8). Consequently, the MTOW objective can be regarded as closely
coupled to the number of passengers, thus “reducing” the overall number of objectives to
four. As a result, a four-dimensional bubble chart is finally presented in order to identify
the most suitable solutions to this specific SAR case study. This bubble chart can be seen in
Figure 10.

As Figure 10 shows, the dual-rotor configurations are superior from a range and
passenger capacity point of view. However, these generally have a higher fuel consumption
for the same number of passengers compared to the single-rotor helicopters. Another inter-
esting observation is that high-capacity, single-rotor helicopter configurations are typically
more expensive to operate than their dual-rotor counterparts. A possible explanation for
this could be the required power and size of the corresponding engines per rotor. With
all remaining optimization objectives taken into consideration, the most suitable design
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region is likely to be on the “Pareto front” for the dual-rotor configurations, with a range of
around 4500 km and a capacity of about 50 passengers. This region is marked with a black
ellipse in Figure 10.

Figure 9. A parallel coordinates graph showing the relationships between design parameters and
optimization objectives for each design alternative.

Figure 10. A four-dimensional bubble chart, where the range objective is represented on the x-axis,
the passenger capacity on the y-axis, the fuel consumption as the color gradient, and the overall cost
objective as the size of the individual bubbles.

5. Discussion and Future Work

The results of this case study show how the method and workflow illustrated in
Figure 3 can be used to create an optimization framework for early design studies. More
specifically, the results of the case study were used to propose a helicopter design configu-
ration for SAR missions. It should be noted, however, that the optimization objectives for
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this case study were set for a general-purpose mission, and in reality it might not be very
efficient to send a 50-passenger helicopter to search for, and rescue, a single survivor lost
at sea. No particular solution has been chosen at this point, and consequently the design
space is kept open for possible changes in boundary conditions and optimization objectives.
This gives decision-makers an available trade space, where different objectives can be
traded against each other in an investigation of different possible future SAR scenarios.
Additionally, this is similar to the practice of “set-based design”, where no single point
solutions are chosen until the very end of the design process, or when sufficient knowledge
about the available design space has been obtained [32].

The case study performed here was relatively simple in terms of the design parameters
involved and models used. However, the intention in choosing an MDO framework with
different models was to keep it modular. This means that the models used can be exchanged
for higher-fidelity ones if desired. As an example, in the future, the aerodynamics model
could be exchanged for a more detailed computational fluid dynamics (CFD) simulation.
This may give more accurate results for the overall framework. More design parameters
could also be added in the future. The size and number of engines used is one of the most
important future additions to the SAR helicopter case study. There are also many other
details that could be taken into consideration to provide a more detailed SAR helicopter
case study overall. Resistance to environmental conditions, such as weather and wind,
are important parameters that were not included in the case study presented here. As
another example, the coefficient of power loss and rotor efficiency factor in the range
equation were considered as constants in the case study. These could be determined based
on, for example, flight velocity in a future more detailed study. However, this case study
does provide relatively realistic results despite the simplifications and lack of high-fidelity
models. Consequently, the case study proves that “ballpark” estimates can be obtained for
a design with relatively little detail and at “low” computational cost.

As mentioned in Section 3, the proposed method and workflow for creating an op-
timization framework intended for early design studies was kept domain-neutral. The
workflow in Figure 3 is consequently intended to be applicable to other designs as well,
given that underlying relationships can be determined; for example, by using statistics.
However, its applicability to domains other than SAR helicopters remains to be tested.
More regression analyses using symbolic regression and optimization are topics for future
work. These regression analyses are also domain-neutral and work on any underlying data.
However, expert knowledge from the intended domain can facilitate the creation of regres-
sion models. For example, it might not be obvious to a non-helicopter design expert that
a helicopter disk loading is best correlated against fuel consumption and power. Certain
improvements in the existing regression models for the case study might therefore be in
order. As most of the relationships for the case study in this paper were based on statistics
taken from existing solutions, evaluations of more novel helicopter design solutions might
be subject to significant uncertainties. Consequently, more analytical calculation models
should be included in that case. For example, at the moment, the velocity constraint used
in the case study limits the design space. In reality, workarounds could be performed to
achieve higher cruising speeds without stalling the rotor blades. However, this will not be
captured by the statistical analysis if no such designs are included. Nevertheless, the overall
purpose of the case study was to illustrate how the method and workflow illustrated in
Figure 3 can be used to obtain an optimization framework for early design studies. The
level of detail in the corresponding SAR helicopter case study is therefore regarded as only
one of many possible avenues for future work.

Outlook

One of the most prominent avenues for future work on the overall optimization frame-
work is to investigate the creation of surrogate models from the obtained case study results.
Surrogate models would allow for fewer evaluations during optimizations, but would also
provide “cheap” estimation models from a computational cost perspective. A possible
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surrogate model definition step is planned, and will be added to the method and workflow
presented in Figure 3 in the future. In that case, the outcome of the workflow would not be
a single optimum design for the intended domain, but rather a framework intended for
design and trade space explorations. As mentioned previously, such a framework could
aid in aspects such as decision support, “what-if” investigations, and forecast analyses
from possible future scenario perspectives.

Another topic for future work is to further investigate the results obtained from
the optimization framework using visual analytics (VA). VA is used to create interactive
visualizations from underlying data that can be used to identify hidden relationships and
facilitate decision support [33]. It also supports human reasoning in the analysis of very
large datasets. Consequently, an interactive dashboard with different visualization and
filtering techniques can be employed to give users an intuitive overview of the entire
optimization process. Such an interactive dashboard could also be used in that case as
a design platform where, for example, models can be interactively exchanged for more
detailed ones to determine how the overall optimization results are affected. Underlying
surrogate models would be very beneficial from a computational cost perspective in this
case as well.

6. Conclusions

This work shows how an optimization framework for early design studies can be
created using a proposed method and workflow. A case study for the design of a general-
purpose search and rescue (SAR) helicopter was introduced and used to illustrate this
intended workflow. Analytical relationships, as well as various regression models taken
from statistics on existing helicopters, were used to provide different models for each
helicopter design discipline. The generated models were then interconnected in a mul-
tidisciplinary design optimization (MDO) framework, together with available design
parameters, optimization objectives, and constraints. The subsequent optimization resulted
in a design space of different solutions in which a Pareto front of suitable designs for the
general-purpose SAR helicopter could be identified. Overall, this work illustrates how
optimizations and relatively few details about a domain can be used to make fairly accurate
“ballpark” estimates, which are usually enough at an early conceptual design stage.
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