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Abstract: In this paper, a differential quadrature method of high-order precision (DQ−Pade), which
is equivalent to the generalized Pade approximation for approximating the end of a time or spatial
interval, is used to solve nonlinear fully intrinsic equations of beams. The equations are a set of first-
order differential equations with respect to time and space, and the explicit unknowns of the equations
involve only forces, moments, velocity and angular velocity, without displacements and rotations.
Based on the DQ−Pade method, the spatial and temporal discrete forms of fully intrinsic equations
were derived. To verify the effectiveness and applicability of the proposed method for discretizing the
fully intrinsic equations, different examples available in the literatures were considered. It was found
that when using the DQ−Pade method, the solutions of the intrinsic beam equations are obviously
superior to those found by some other usual algorithms in efficiency and computational accuracy.

Keywords: rotor dynamic response; differential quadrature method; fully intrinsic equation; geomet-
rically exact beam

1. Introduction

Due to the high aspect ratio of a rotor blade, which is usually regarded as a beam-
like structure, beam theory has been a very important part of helicopter rotor dynamics
modeling and analysis. The blade will have medium or large deflection in complex working
environments, which leads to the nonlinear characteristics of the aeroelastic response
analysis of the helicopter rotor. Among the many beam theories describing these nonlinear
behaviors, the large deformation beam theory has attracted the most attention. It has only
a small strain assumption and no restriction on displacements or rotations.

At present, the large deformation beam theory has been applied in many fields, and
lots of beam models have been developed. They can be classified according to their
solution methods. It was found that there are three categories: displacement-based meth-
ods [1], mixed-form methods [2,3] and stress-based methods [4,5]. The main advantage
of displacement-based methods is the ease of applying geometric boundary conditions
with them. However, they are computationally expensive due to the higher-order non-
linear terms. Even with high-order truncation, the complete formula has to be written
over several pages. Mixed-form methods establish the kinematics equation by mixing the
rotation and displacement variables with the generalized velocity and strain measures.
Lagrange multipliers are used to apply the constitutive and kinematic relations to the
governing equations in the mixed formula. Differently from the displacement-based theory
and the mixed formula theory, there is no displacement, nor any rotation variables, in
the stress-based formula. Green and Laws [6] coined the term “fully intrinsic” for this
concept. The fully intrinsic theory was originally proposed by Hegemier and Nair [7].
In 2003, Hodges [4] reconsidered it on the basis of [2] and developed the fully intrinsic
equations of geometrically exact beams, which only include forces, moments, velocity and
angular velocity. The displacements and rotations can be obtained by recovering them
in the post-processing. Due to no truncation in the derivation process, these compact
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equations are complete and accurate, and the maximum nonlinearity (the highest order of
the nonlinear terms in the equations) is only two. Palacios and Cesnik [8] compared the
numerical efficiency and ease of use of these three different methods for the analysis of
aircraft structure, aeroelastic characteristics, and flight dynamics.

Patil and Hodges [9] analyzed the nonlinear aeroelastic characteristic of wings with a
high aspect ratio using the fully intrinsic method. Patil and Althoff [10] presented an energy-
continuous Galerkin method for solving the fully intrinsic equations, which can obtain a
high precision solution with a low computational cost. However, the Galerkin method
was also found to face some difficulties in practical applications, such as time-consuming
integration and an inability to deal with spatial discontinuity. Patil and Hodges [11]
proposed the concept of the variable-order finite-element Galerkin method. They found
that the third-order finite element offers a particularly good balance of accuracy, com-
putational efficiency, and applicability to general problems. Sotoudeh and Hodges [12]
developed an incremental method for solving the fully intrinsic equations of statically
indeterminate structures. They [13] also extended the application of fully intrinsic theory
to more general configurations by establishing different types of fully intrinsic boundary
conditions. Khaneh, Masjedi, and Ovesy [14,15] investigated the static analysis method by
discretizing the fully intrinsic equations using the Chebyshev collocation method. Tashao-
rian et al. [16] established non-local, fully intrinsic equations for non-beam-like structures
whose one-dimensional structure length is close to the two-dimensional cross-section size,
which breaks through the limitation that the fully intrinsic equations can only be used
for modeling slender structures. Byeonguk et al. [17] used the exponential function to
replace the Rodrigues parameters to represent the finite rotation, and realized the absolute
non-singularity expression in the equations, and therefore, the numerical realization of
solving the equations became more compact.

The fully intrinsic equations developed by Hodges are the differential equations of
first-order partial derivatives in time and space. Usually, two steps are needed to discretize
them: the first is to discretize the equations of motion in the spatial domain to obtain the
first-order partial differential equations about time; the second is to discretize the equations
of motion in the time domain to obtain the algebraic equations, which can be solved directly.
There are four commonly used methods for spatial discretization in the literature which
the reader can consult. The first is the finite difference method. Hodges [2] used the central
difference scheme to discretize the equations in the spatial domain, and mentioned that
this method has second-order accuracy. The second is the Galerkin method, which was
presented by Patil [10] using Legendre polynomials as weighting functions to establish
integral equations. The third method is the Chebyshev collocation method. Khaneh,
Masjedi, and Ovesy [14,15] used this method to discretize static intrinsic equations. The
last method is the differential quadrature (DQ) method that has been used more recently.

It was proposed by Bellman and Casti [18] in 1971. The basic principle is that the
derivative of a function at a specific point can be approximated as a weighted linear
summation of the function values at all discrete points in the entire domain. Bert [19] first
applied the method to the mechanical analysis of structural elements, and found that the
method has the advantages of a simple formula, convenient use, less computation, and high
precision. However, with the deepening of research and applications, researchers found
that when the number of discrete points is large, the numerical ill-condition will appear
when calculating the weighting coefficients. This disadvantage limited the application of
the DQ method. Shu and Richards [20,21] overcame the shortcoming by introducing the
generalized differential quadrature (GDQ) method based on Lagrange polynomial vector
space. By using the GDQ method, the weighting coefficients of arbitrary-order derivatives
are calculated using simple algebraic formulas. A notable feature of the GDQ method is that
there are no limits to the type and number of discrete points. Oleg et al. [22] constructed
a multi-layer wavelet collocation method which uses the Gaussian wavelet function as
the interpolation basis function, and the collocation points are selected by dichotomy.
An adaptive multi-layer wavelet configuration method [23] and a fast, adaptive wavelet
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configuration method [24] were presented by the same group. Chen [25] proposed the
concept of the differential quadrature element method, which discretizes the domain into
several regular sub-domains to deal with irregular boundaries. Wei et al. [26] found that
the differential quadrature element method is more effective at dealing with higher-order
derivative problems. Fung [27,28] pointed out that the accuracy and stability of the DQ
method in the time domain depend on the locations of the sampling discrete points. By
using appropriately distributed discrete points, the accuracy of the end value of the time
interval can be improved to 2N-1 or 2N (N is the maximum order of polynomials), which is
better than the commonly used uniformly spaced point and Chebyshev–Gauss–Lobatto
point distribution. They proved that this terminal approximation is equivalent to the
generalized Pade approximation.

Amoozgar and Shahverdi [29] firstly applied the differential quadrature method to
solve the fully intrinsic equations of a geometrically exact beam. They found that the
GDQ method can obtain more accurate results with a lesser computational cost than the
traditional finite element method. Based on GDQ method, they also analyzed the dynamic
stability of the beam under following forces [30] and the aeroelastic stability of the hingeless
rotor [31]. Tashaorian et al. [16] used the GDQ method for the spatial discretization of
non-local fully intrinsic equations.

For the first-order partial differential equations with respect to time obtained after
the space discretization of the fully intrinsic equations, the difference algorithms [2,10,32]
are commonly used to solve them recursively. These algorithms often need to go through
a time-consuming recursion process when solving the aeroelastic response of the rotor,
especially when solving the steady-state periodic response of the rotor. Borri [33] also
pointed out the shortcomings of these algorithms in solving the steady-state response of
the rotor’s aeroelasticity: since these algorithms are solved step by step, recursively, an
initial value is required. For the nonlinear equations of aeroelasticity, it may be difficult
to find an initial value related to a specific periodic solution. Therefore, he proposed
that in the time-discrete process of the equations of motion, a set of algebraic equations
should be derived by substituting periodic boundary value conditions, so that the nonlinear
steady-state periodic solution of the rotor aeroelasticity can be obtained directly.

In this paper, the space-time discretization of the fully intrinsic beam equations is
carried out on the basis of a differential quadrature method of high-order precision, and the
new calculation formulas for solving the responses of the fully intrinsic dynamic equations
of the beam are presented. The validity and applicability of the formulas proposed in this
paper are verified by static analysis and modal calculation of the cantilever beam, and the
calculation of the beam’s dynamic response, including the transient response and periodic
steady-state response.

2. Fully Intrinsic Beam Equations

Figure 1 shows the undeformed and deformed states of the beam. At each point on
the axis of the undeformed beam, a reference coordinate system b(x1) is introduced. At
each point along the axis of the deformed beam, a reference coordinate system B(x1) is
introduced. All variables involved in the fully intrinsic equations are expressed in the
coordinate system b and B. The equations can be expressed in a compact form as

F′B + (k̃ + κ̃)FB + fB =
.
PB + Ω̃BPB

M′B + (k̃ + κ̃)MB + (ẽ1 + γ̃)FB + mB =
.

HB + Ω̃BHB + ṼBPB
V′B + (k̃ + κ̃)VB + (ẽ1 + γ̃)ΩB =

.
γB

Ω′B + (k̃ + κ̃)ΩB =
.
κB

(1)
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Figure 1. Sketch map of beam before and after deformation.

Here, ( )′ represents the partial derivative with respect to the reference axis of the
undeformed beam coordinate system, and (·) represents the partial derivative with respect
to time. F(x, t) and M(x, t) represent the force and moment of the beam section, respectively.
P(x, t) and H(x, t) represent the linear momentum and angular momentum of the beam
section, respectively. γ(x, t) and κ(x, t) represent the generalized force and moment strains
of the beam, respectively. V(x, t) and Ω(x, t) represent the linear and angular velocities
of the beam section, respectively. f (x, t) and m(x, t) represent the external force and
moment acting on the beam, respectively. k is the initial twist/curvature of the beam that
expressed in the undeformed coordinate system b. (̃ ) is the cross-product operator, and for
k =

{
k1 k2 k3

}T , the operator can be expressed as

k̃ =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 (2)

The first two equations in Equations (1) are partial differential equations of linear
and angular momentum equilibrium. The latter two are partial differential equations for
the kinematic equations, which were derived from the generalized strain-displacement
and generalized velocity-displacement equations. This process essentially eliminates the
displacement and rotation variables, leaving the equation with only intrinsic quantities.{

γ
κ

}
=

[
R S
ST T

]{
F
M

}
{

P
H

}
=

[
µ∆ −µξ̃

µξ̃ I

]{
F
M

} (3)

Equations (3) are the equations for the beam constitutive relation and the generalized
velocity-momentum relation. R(x), T(x), and S(x) are the flexibility characteristic constants
of the beam profile. This linear constitutive relation is valid for small-strain cases. µ(x),
ξ(x), and I(x) represent the beam’s linear density, centroid offset (the centroid of the
profile relative to the reference axis), and the moment of inertia per unit length, respectively.
Equations (1) and (3) constitute a complete set of differential equations for first-order partial
derivatives in time and space.

3. Space-Time Discretization of Fully Intrinsic Equations
3.1. Discretization in the Spatial Domain

To solve the above equations, space discretization must be carried out first. The
essence of spatial discretization is to eliminate the derivative terms. The DQ method,
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which has received much attention in recent years, approximates the derivative term as
the weighted linear summation of the function values at all discrete points along the
domain. Therefore, the computation of the weight coefficients is very important, which
depends on the distribution of discrete points. The approximate solution at the end of
time interval obtained by the discrete point distribution used in the [27,28] is equivalent
to the approximate solution obtained by using the Pade approximation. Its characteristic
is that the accuracy of the approximate solution at the inner points of the domain is no
different from it is other points on the distribution, both of which are p-order (p is the
maximum order of the polynomials). However, the accuracy at the terminal node can be
improved to 2p where the additional parameter µ = 1 (the format is non-dissipative at the
high-frequency regime).

This paper firstly adopts this discrete points’ distribution to discretize the spatial
domain equations, and this differential discretization method is called the DQ−Pade
method in this paper. The nth derivative of the function f (x) with respect to the spatial
direction x can be expressed as

∂(n) f
∂x(n)

= f (n)x (xi) =
N

∑
k=1

W(n)
ik f (xk), n= 1, . . . , N (4)

Here, W(n)
ik is the weight coefficient, and the algebraic expression is as follows:

W(1)
ik = M(1)(xi)

(xi−xk)M(1)(xk)
, i, k = 0, 1, . . . ., N but i 6= k

W(1)
ii = M(2)(xi)

2M(1)(xk)
, i = 0, 1, . . . ., N

(5)

Among them, M, M(1), and M(2) can be calculated by the respective following formu-
las:

M(ζ) = ζN+1 −W1ζ −W2ζ2 −W3ζ3 − . . .−WNζN

M(1)(ζ) = (N + 1)ζN −W1 − 2W2ζ − 3W3ζ2 − . . .− NWNζN−1

M(2)(ζ) = N(N + 1)ζN−1 − 2W2 − 6W3ζ − . . .− N(N − 1)WNζN−2
(6)

where

Wk =
(−1)N−k N!N!(N + k− 2)!

(k− 1)!(k− 1)!(N + 1− k)!(2N)!
· 2(N + µ(k− 1))

1 + µ
, 0 ≤ µ ≤ 1 (7)

The calculation method of discrete points is obtained by the following formula:

ζN −W1 −W2ζ −W3ζ2 − . . .−WNζN−1 = 0 (8)

By taking the root of the above equation, N discrete points can be obtained. Figure 2
shows the distribution at N = 9. As can be seen in the figure, the discrete points are not
evenly distributed, and nodal points (0 or 1) are not included. Therefore, when introducing
boundary conditions V0, Ω0, FL, and ML, Equation (5) should be used to directly calculate
the weight coefficient Wi0 of the start point value or to calculate WiL of end point after some
transformations. Thus, the spatial derivative terms in Equation (1) are written as

V′i =
N
∑

k=1
WikVk + Wi0V0

Ω′i =
N
∑

k=1
WikΩk + Wi0Ω0

F′i =
N
∑

k=1
WikFk + WiLFL

M′i =
N
∑

k=1
Wik Mk + WiL ML

(9)
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By substituting Equation (9) into Equation (1), the spatial discretization of the intrinsic
equations based on DQ−Pade method can be expressed as

N
∑

k=1
WikFk + (k̃i + κ̃i)Fi + fi + WiLFL =

.
Pi + Ω̃iPi

N
∑

k=1
Wik Mk + (k̃i + κ̃i)Mi + (ẽ1 + γ̃i)Fi + mi + WiL ML =

.
Hi + Ω̃i Hi + ṼiPi

N
∑

k=1
WikVk + (k̃i + κ̃i)Vi + (ẽ1 + γ̃i)Ωi + Wi0V0 =

.
γi

N
∑

k=1
WikΩk + (k̃i + κ̃i)Ωi + Wi0Ω0 =

.
κi

(10)

In Equations (9) and (10), the subscripts containing i or k are variables corresponding
to discrete points xi or xk. Arrange the equations with respect to the time term, and then
a set of differential equations with respect to time, which are the same in form as other
spatial discretization methods, is obtained:

Aji
.
qi + Bjiqi + Cjikqiqk + Dj = 0 (11)

where q is the vector of unknown intrinsic variables, A and B are linear coefficient matrices.
C is a nonlinear coefficient matrix. D is the external load vector, which also contains
intrinsic dynamic boundary conditions V0, Ω0, FL, and ML.

It is worth mentioning that the DQ−Pade method can also be used to discretize
the equations of displacements and rotations recovering from the intrinsic variables
(Hodges [5]):

u′ = CT(e1 + γ)− e1 − k̃u
θ′ = (∆ + 1

2 θ̃ + 1
4 θθT)(κ + k− Ck)

(12)

where

C =
[1− (1/4)θTθ]∆− θ̃ + (1/2)θθT

1 + (1/4)θTθ
(13)

The equations after using DQ−Pade discretization can be expressed as

N
∑

k=1
Wikuk + Wi0u0 − CT

i (e1 + γi) + e1 + k̃iui = 0

N
∑

k=1
Wikθk + Wi0θ0 − (∆ + 1

2 θ̃i +
1
4 θiθ

T
i )(κi + ki − Ciki) = 0

(14)

Here, θ is the Rodriguez parameter representing the rotation matrix. u0 and θ0 are
the geometric boundary conditions. The discretized equations are algebraic equations
containing nonlinearity and need to be solved iteratively.

3.2. Discretization in the Time Domain

DQ−Pade was originally derived for the solution of time-domain responses and has
been successfully applied in time-domain problems [20,21]. Therefore, it is naturally used
in this paper to discretize the first-order partial differential equation with respect to time
obtained after space discretization. Compared with the traditional recursive method, this
paper presents the global format of the DQ−Pade method, which can get the responses of
all discrete time points at once.

If there are M + 1 time points (t0, t1, . . . , tM) in a time domain T, ti(i = 1, . . . , M)
is the best approximation of the time discrete point calculated by Equations (7) and (8).



Aerospace 2022, 9, 596 7 of 19

Additionally, t0 is the start point of the time domain T. Thus, the time derivative term
.
q in

the discrete Equation (11) can be discretized by the DQ−Pade method:

.
q(t) =

M

∑
k=1

Wikqk + Wi0qinitial
0 (15)

where the weight coefficients W can be calculated using Equation (5)–(8); qinitial
0 is the initial

condition. Substitute Equation (15) into (11). Then, the following equation is obtained:

A
M

∑
k=1

Wikqk + AWi0qinitial
0 + Bqi + C(qi)qi + Di = 0, i = 1, . . . , M (16)

Equation (16) can also be written in matrix form as
AW11 + B + C(q1) AW12 AW13 . . . AW1M

AW21 AW22 + B + C(q2) AW23 . . . AW2M
AW31 AW32 AW33 + B + C(q3) . . . AW3M

...
...

...
. . .

...
AWM1 AWM2 AWM3 . . . AWMM + B + C(qM)





q1
q2
q3
...

qM



+



AW10 · qinitial
0

AW20 · qinitial
0

AW30 · qinitial
0

...
AWM0 · qinitial

0


+



D1
D2
D3
...

DM


= 0

(17)

The above equation can be written in a simplified form:

Atotal · qtotal + A0 · qinitial
0 + Dtotal = 0 (18)

This is the initial value formula for the time-discrete solution based on the DQ−Pade
method. Given the initial condition qinitial

0 , the responses at all discrete time points can be
solved at one time.

If the time domain T is a period, the steady-state periodic response of the intrinsic
equations is required. For this case, it is difficult to give the initial value qinitial

0 satisfying
the final steady-state periodic response when Equation (18) is still used. Therefore, it is
necessary to deduce the discrete formula with consideration of the periodic boundary
condition

q0 = qT (19)

Here, qT can be obtained by polynomial interpolation:

qT = L0(1)q0 + L1(1)q1 + . . . + LM(1)qM (20)

where Lk is the Lagrange interpolation polynomial. Substitute Equation (19) into (18) to get

qboundary
0 = l1q1 + . . . + lMqM , li = Li/(1− L0) (21)

qboundary
0 is the constraint condition of periodic boundary value problems. Bring it into

Equation (16) and write it in matrix form:
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AW11 + B + C(q1) AW12 AW13 . . . AW1M

AW21 AW22 + B + C(q2) AW23 . . . AW2M
AW31 AW32 AW33 + B + C(q3) . . . AW3M

...
...

...
. . .

...
AWM1 AWM2 AWM3 . . . AWMM + B + C(qM)





q1
q2
q3
...

qM



+


AW10 · l1 AW10 · l2 AW10 · l3 . . . AW10 · lM
AW20 · l1 AW20 · l2 AW20 · l3 . . . AW20 · lM
AW30 · l1 AW30 · l2 AW30 · l3 . . . AW30 · lM

...
...

...
. . .

...
AWM0 · l1 AWM0 · l2 AWM0 · l3 . . . AWM0 · lM





q1
q2
q3
...

qM


+



D1
D2
D3
...

DM


= 0

(22)

Similarly, the equation can be simplified as

Atotal · qtotal + A0 · q
boundary
0 + Dtotal = 0 (23)

Equation (23) is the periodic boundary value formula based on the DQ−Pade method
for a time discrete solution. Like the initial value formula of Equation (17) and (18), the
derived algebraic equations contain nonlinear terms, C. Therefore, it is necessary to solve
the algebraic equations via nonlinear iteration, e.g., a Newton iteration method. To get the
function’s values at other points along the domain, Lagrange polynomial interpolation can
be used.

3.3. DQ−Pade Element Method

It can be seen in the space discrete equation, Equation (10), and the time discrete
equation, Equations (18) and (23), that the coefficient matrixes of the equations are fully
matrixes (each element of a matrix has a nonzero value). When dealing with large-scale
problems, such as rapid changes or discontinuities in spatial or time domains, the quantity
of discrete points needs to be increased, and then the cost of storing and operating the
coefficient matrix will increase rapidly, reducing the computational efficiency. Another
reason that can be seen in Equation (8) is that when the discrete number N is large, it
is difficult to find the root of the formula, which leads to a decrease in the calculation
accuracy of the weight coefficient. Meanwhile, there are more nodal points in the domain,
which is beneficial to the accuracy of the DQ−Pade method to some extent. Therefore, it
is necessary to divide the entire time/space domain into multiple sub-domains, similarly
to the finite element method. Additionally, the sub-domains are connected through the
weight coefficients of the public points.

If M elements are divided in the spatial domain, the spatial discrete Equation (10) is
transformed into

N
∑

k=1
WikFm

k + (k̃m
i + κ̃m

i )Fm
i + f m

i + WiL(
N
∑

k=1
Lk(0)Fm+1

k ) =
.
P

m
i + Ω̃

m
i Pm

i

N
∑

k=1
Wik Mm

k + (k̃m
i + κ̃m

i )Mm
i + (ẽ1 + γ̃m

i )Fm
i + mm

i + WiL(
N
∑

k=1
Lk(0)Mm+1

k ) =
.

H
m
i + Ω̃

m
i Hm

i + Ṽm
i Pm

i

N
∑

k=1
WikVm

k + (k̃m
i + κ̃m

i )V
m
i + (ẽ1 + γ̃m

i )Ω
m
i + Wi0(

N
∑

k=0
Lk(1)Vm−1

k ) =
.
γ

m
i

N
∑

k=1
WikΩm

k + (k̃m
i + κ̃m

i )Ω
m
i + Wi0(

N
∑

k=1
Lk(1)Ω

m−1
k ) =

.
κ

m
i

(24)

The boundary conditions can be expressed as
N
∑

k=0
Lk(1)Vm−1

k = V0,
N
∑

k=1
Lk(1)Ω

m−1
k = Ω0, when m = 1

N
∑

k=1
Lk(0)Fm+1

k = FL,
N
∑

k=1
Lk(0)Mm+1

k = ML, when m = M
(25)
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When M elements are divided in the time domain, the initial value Equation (17) is
transformed into



AW11+B + C(q1
1) · · · AW1N

...
. . .

...
AWN1 · · · AWNN+B + C(q1

N)
AW10 · L1(1) · · · AW10 · LN(1) AW11+B + C(q2

1) · · · AW1N
...

. . .
...

...
. . .

...
AWN0 · L1(1) · · · AWN0 · LN(1) AWN1 · · · AWNN+B + C(q2

N)
. . .

. . . AW10 · L1(1) · · · AW10 · LN(1) AW11+B + C(qM
1 ) · · · AW1N

...
. . .

...
...

. . .
...

AWN0 · L1(1) · · · AWN0 · LN(1) AWN1 · · · AWNN+B + C(qM
N )



·



q1
1
...

q1
N

q2
1
...

q2
N
...

qM
1
...

qM
N



+



D1
1 + AW10 · qinitial

0
...

D1
N + AWN0 · qinitial

0
D2

1
...

D2
N
...

DM
1
...

DM
N



= 0

(26)

and the boundary value formula, Equation (22), is transformed into



AW11+B + C(q1
1) · · · AW1N AW10 · L1(1) · · · AW10 · LN(1)

...
. . .

...
...

. . .
...

AWN1 · · · AWNN+B + C(q1
N) AWN0 · L1(1) · · · AWN0 · LN(1)

AW10 · L1(1) · · · AW10 · LN(1) AW11+B + C(q2
1) · · · AW1N

...
. . .

...
...

. . .
...

AWN0 · L1(1) · · · AWN0 · LN(1) AWN1 · · · AWNN+B + C(q2
N)

. . .
. . . AW10 · L1(1) · · · AW10 · LN(1) AW11+B + C(qM

1 ) · · · AW1N
...

. . .
...

...
. . .

...
AWN0 · L1(1) · · · AWN0 · LN(1) AWN1 · · · AWNN+B + C(qM

N )



·



q1
1
...

q1
N

q2
1
...

q2
N
...

qM
1
...

qM
N



+



D1
1

...
D1

N
D2

1
...

D2
N
...

DM
1
...

DM
N



= 0

(27)

The main diagonal matrix block in Equation (26) and (27) is the coefficient matrix of
each element, and the sub-diagonal matrix is the connection coefficient matrix formed by
each element through the public point (the connecting point of two elements). The matrix
block in the upper right corner of the Equation (27) is a connected coefficient matrix formed
by the periodic boundary condition. The initial value condition is reflected in the first
sub-vector in the total load vector of Equation (26).

It can be seen in the matrix form that the coefficient matrix of the equations after
dividing is characterized by a sparse banded distribution. Compared with the method of
forming full matrix coefficients without dividing elements, the DQ−Pade element method
can improve the calculation speed of the matrix and reduce the storage cost, thereby
improving the calculation efficiency. The accuracy and efficiency of the method are verified
by the following examples.
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4. Numerical Results

To verify the applicability and validity of the proposed time/spatial discretization
formula for intrinsic beam equations, two examples are considered. Firstly, the spatial
discrete formula is verified by static analysis and modal calculation of the cantilever beam.
Another example is calculating the dynamic response of a rotating cantilever beam to verify
the accuracy and efficiency of the proposed time-discrete formula.

4.1. Static Analysis and Modal Calculation of the Cantilever Beam

Firstly, the static analysis of the following force applied to the tip of the cantilever
beam is considered. Then, the velocity condition is applied to its root to calculate its
natural frequency [10]. The structural characteristics of the cantilever beam are shown in
Table 1. For static analysis, apply a following force Ftip = 3EI/L2 at the tip. Simitses and
Hodges [34] gave the exact solution of the dimensionless equation (made by FtipL) for the
bending moment at the root Mroot = 0.8104403623. Due to static analysis, time-dependent
terms are eliminated in Equation (9), and it can be simplified to

N
∑

k=1
WikFk + κ̃iFi + WiLFL = 0

N
∑

k=1
Wik Mk + κ̃i Mi + ẽ1Fi + WiL ML = 0

Table 1. The structural characteristics of the cantilever beam.

Parameter Value

Span 16 m
Chord 1 m

Mass density 0.75 kg/m
Moment of inertia (50% chord) 0.1 kg m

Spanwise elastic axis 50% chord
Center of gravity 50% chord
Bending rigidity 2 × 104 Nm2

Torsional rigidity 1 × 104 Nm2

Bending rigidity (chordwise) 4 × 106 Nm2

Shear/extensional rigidity ∞

Table 2 lists the results of the root bending moment calculated by different DQ methods.
The GDQ method is the discretization method based on Lagrange polynomial space that
was used to calculate weight coefficients in [29]. The wavelet-differential quadrature (WDQ)
method is a DQ method based on the adaptive multi-layer wavelet collocation method
in [27,28]. The number of discrete points is determined by the wavelet resolution layer j and
the translation factor N (n = 2j+1 + 2N + 1), and N = 2, j = 0 ∼ 4 is taken here. The results
of the central difference method (CDM) used by the Hodges [4] are also listed in this table.

Table 2. Results of the root bending moment calculated by different DQ methods.

Method n = 3 n = 4 n = 5 n = 6 n = 7

CDM 0.795943708 0.804111347 0.806942329 0.808227074 0.808914563
GDQ 0.628913129 0.848504651 0.803100361 0.809702945 0.810900600
WDQ - - - - 0.811791100

Present 0.806762171 0.809924405 0.810414363 0.810437905 0.810440225

n = 8 n = 9 n = 10 n = 13 n = 21

0.809324779 0.809589080 0.809769336 0.810064442 0.810305505
0.810379136 0.810430350 0.810445453 0.810440413 0.810440363

- 0.810440438 - 0.810440087 0.810440342
0.810440354 0.810440362 0.810440363 0.810440356 0.812366715
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From Table 2 and Figures 3 and 4, it can be clearly seen that the DQ methods has
better accuracy than the CDM. Compared with the other two DQ methods, the DQ−Pade
method has obvious advantages in convergence speed. With the same computational cost,
the accuracy of this method is at least three orders of magnitude higher than those of the
other two methods. To achieve the minimum error magnitude of 10−10, only nine discrete
points are needed in this method. The computational cost is much lower than 16 points for
the GDQ method and 37 points for the WDQ method.
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However, it can be seen in Figure 3 that when the number of discrete points exceeds
9, the calculation accuracy of this method decreases as the number of discrete points
increases. The reason is that with the increase in the number of discrete points, it will be
difficult to calculate the distributed discrete points, resulting in a decrease in the accuracy
of calculating discrete weight coefficients. Figure 4 shows the error curve of calculating
the bending moment at the root by dividing different discrete element numbers. It can be
seen in the figure that dividing discrete elements can effectively improve the calculation
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accuracy and restrain the divergence of error. At the same time, it is worth noting that as
the number of element (M) increases, the rate of error convergence decreases. Additionally,
it is observed that when the number of discrete points in single element exceeds 10, the
accuracy usually decreases. Therefore, it is recommended to divide the sub-domains as
little as possible in the entire domain, and discretize points in any sub-domain no more
than 10 times.

If the intrinsic dynamic boundary conditions of the rotating cantilever beam [10] are

VT
0 = [0, 51.03, 0], ΩT

0 = [0, 0, 3.189], FT
L = [0, 0, 0], MT

L = [0, 0, 0]

Wright [35] gave an exact solution for the bending frequency in this case:

ω1st,bending = 5.703, ω2nd,bending = 18.72, ω3rd,bending = 44.50

Table 3 lists the frequency results of CDM, DQ−Pade, and the GDQ method. The CDM
is sensitive to the calculation step, so it needs more discrete points. It was found that the
frequency results had considerable accuracy when the number of discrete points exceeds
150. Compared with the GDQ method, our method still has the prominent characteristics
of low cost and high precision, so it is an ideal choice for the spatial discretization of the
fully intrinsic equations.

Table 3. Results of a beam rotating at natural frequency.

Frequency n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

1st bending/Present 5.7024 5.7024 5.7024 5.7024 5.7024 5.7024
1st bending/GDQM 5.6983 5.7027 5.7023 5.7024 5.7024 5.7024
1st bending/CDM 6.5402 6.3841 6.2779 6.2005 6.1417 6.0953

2nd bending/Present 18.7226 18.7229 18.7229 18.7229 18.7229 18.7229
2nd bending/GDQM 18.7054 18.7208 18.7226 18.7228 18.7229 18.7229
2nd bending/ CDM 19.7283 19.7155 19.6650 19.6021 19.5377 19.4790

3rd bending/Present 44.7008 44.5122 44.4997 44.4985 44.4985 44.4985
3rd bending/GDQM 42.3069 42.2699 44.4587 44.5012 44.4983 44.4984
3rd bending/CDM 35.3993 39.3702 41.2891 42.3684 43.0291 43.4587

4.2. Dynamic Response of the Rotating Beam

In the second example, the dynamic response analysis of rotating cantilever beam is
considered, including transient and steady-state responses. The length of the beam is 1
m, and the rotational speed is 70 rad/s. The material properties of the beam are shown in
Table 4 [32].

Table 4. Material properties of the beam.

Parameter Value

Mass per unit length 0.2 kg/m
Moment of inertia per unit length Ixx 10−4 kg·m
Moment of inertia per unit length Iyy 10−6 kg·m
Moment of inertia per unit length Izz 10−4 kg·m

Extensional rigidity K11 106 N
Shear rigidity K22 1020 N
Shear rigidity K33 1020 N

Torsional rigidity K44 50 N·m2

Bending rigidity K55 50 N·m2

Bending rigidity (chordwise) K66 1000 N·m2

A periodic excitation force F = 50 sin(20t) N is applied in the flapping direction at the
tip of the beam. The transient response results of DYMORE with a calculation step size
of 0.001 s is given in [32]. This present method had the same calculation cost: 125 time
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elements and 8 time points in each element, denoted as M125−N8. Tip displacement, tip
rotation angle, root force, and bending moment are shown in Figures 5–8, respectively.
From these figures, it can be seen that the present method is in good agreement with the
calculation results of DYMORE. Even for axial forces with insufficient calculation accuracy
in [32], this method can still achieve satisfactory accuracy.
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With the same rotational speed, a periodic harmonic force is applied in the direction
of tip flapping:

F = 10 sin(70t) + 5 sin(2 · 70t) + 2 sin(3 · 70t) N

The authors of [32] used the backward second-order Euler method to calculate the time
domain response. We took the Euler method as a reference for the steady-state response.
Figures 9–12 shows the steady-state periodic response curves of tip displacements, rotations,
root forces, and moments calculated by the two methods. In the figures, the steady-state
period formula of the DQ−Pade element method uses a combination of eight time elements
divided in one period and nine distribution points used in each element (M8−N9), both
of which use the same time element step size, t = 2π/70/72 (one time element per 5◦). It
can be seen in the figures that the two curves basically coincide, and both can well meet
the periodic condition. When the calculation step size is 5◦, the Euler method required six
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periods, and it took 114 s, to reach the so-so periodic boundary condition (absolute error <
1). When calculating 15 cycles, which took 286 s, the periodic boundary value condition
converged to the order of 10−2. The results of Euler method in the figures are given for this
condition.
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The steady-state periodic boundary value formula of the DQ−Pade method itself
satisfies the periodic boundary conditions. At the same calculation cost, i.e., calculating 72
time discrete points in a cycle, the calculation accuracy and calculation time were compared,
with different combinations of discrete element numbers and discrete point numbers (M ×
N = 72). Taking M36−N10 (one time element per 1◦) as a reference, and taking the bending
moment of the beam root as an example, Figure 13 shows the convergence of different
combinations. It can be seen that the combination of fewer discrete elements and more
discrete points distributed in each element can obtain the best accuracy. Table 5 gives the
calculation times of different combinations. The combination with the best accuracy took
the longest, but this was still far less than the calculation time of the Euler method. The
reason is that each time discrete point has a state quantity that contains all the structural
degrees of freedom, and the increase in discrete points in the time element leads to the
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multiplication of the matrix operation cost. Therefore, it is needed to make a balance
between accuracy and computational efficiency.
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Table 5. The calculation times of different combinations of discrete elements and points.

M/N 36/2 24/3 18/4 12/6 9/8 8/9

CPU Time 23.01 s 25.17 s 28.84 s 38.88 s 53.66 s 63.12 s

5. Conclusions

In this paper, a new method based on the DQ−Pade method was proposed to solve the
nonlinear fully intrinsic equations of geometrically exact beams. Starting from the spatial
and temporal discretization of the fully intrinsic equations, the DQ−Pade method was
used to re-deduce the spatial discretization equations of the fully intrinsic beam equations,
and the static analysis and modal calculation of the beam were investigated. It was found
that the accuracy and efficiency of this method are better than those of the traditional
GDQ method. In terms of time discretization, a calculation formula of initial value and
steady-state periodic boundary value is proposed, based on the DQ−Pade method. With
the consideration of the efficiency and accuracy of the DQ−Pade method, the DQ−Pade
element method was further proposed. The results show that the method is very effective,
and it has outstanding performance in terms of accuracy and efficiency, which makes a
good foundation for the subsequent rotor vibration load prediction and aeroelastic stability
analysis.
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