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Abstract: This paper presents a novel superposition method for effectively predicting the microscopic
stresses of heterogeneous periodic beam-like structures. The efficiency is attributed to using the
microscopic stresses of the unit cell problem under six generalized strain states to construct the
structural microscopic stresses. The six generalized strain states include one unit tension strain,
two unit bending strains, one unit torsion strain, and two linear curvature strains of a Timoshenko
beam. The six microscopic stress solutions of the unit cell problem under these six strain states have
previously been used for the homogenization of composite beams to equivalent Timoshenko beams
(Acta. Mech. Sin. 2022, 38, 421520), and they are employed in this work. In the first step of achieving
structural stresses, two stress solutions concerning linear curvatures are transformed into two stress
solutions concerning unit shear strains by linearly combining the stresses under two unit bending
strains. Then, the six stress solutions corresponding to six generalized unit beam strains are combined
together to predict the structural microscopic stresses, in which the six stress solutions serve as basic
stresses. The last step is to determine the coefficients of these six basic stress solutions by the principle
of the internal work equivalence. It is found that the six coefficients, in terms of the product of
the inverse of the effective stiffness matrix and the macroscopic internal force column vector, are
the actual generalized strains of the equivalent beam under real loads. The obtained coefficients
are physically reasonable because the basic stress solutions are produced by the generalized unit
strains. Several numerical examples show that the present method, combining the solutions of the
microscopic unit cell problem with the solutions of the macroscopic equivalent beam problem, can
accurately and effectively predict the microscopic stresses of whole composite beams. The present
method is applicable to composite beams with arbitrary periodic microstructures and load conditions.

Keywords: beam; asymptotic homogenization; periodic; Timoshenko; stress

1. Introduction

Composite beam-like structures are widely used in engineering because of their
excellent properties, such as high specific strength, high specific modulus, and corrosion
resistance. The structure formed by the same unit cells lining up in one direction is called
periodic beam structure. With the development of composite materials, these structures
have become more complex than before in terms of material distributions and geometric
configurations, leading to heavy computational loads in finite element analysis. To reduce
the computational burden, many works have focused on homogenization methods to
transform the original highly heterogeneous problem into a homogeneous problem. In
addition to the homogenized or macroscopic solutions, some local or microscopic fields,
e.g., microscopic stresses, are also of concern for failure analysis. Therefore, how to obtain
the microscopic fields of composite beam-like structures based on homogenized solutions
becomes a key problem.

To ensure the accurate construction of microscopic structural fields, obtaining a reason-
able homogeneous structure is the important premise. The Asymptotic Homogenization
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Method (AHM) [1,2], with a strict mathematical theory, has been proved to be very rep-
resentative among various homogenization methods, and it can effectively predict the
equivalent material properties of three-dimensional (3D) composite structures with omnidi-
rectional periodicity. For periodic beam-like structures, the fewer unit cells in the thickness
and width directions make the omnidirectional periodicity generally not hold, and thus
the direct use of the AHM to beam structures may lead to unsatisfied accuracy; refer to
the studies on cell size effects [3–5]. Different from the idea of material homogenization,
Kolpakov [6–8] further extended the AHM to composite beam-like structures with period-
icity only in the axial direction and obtained the equivalent Euler–Bernoulli beam models
with effective sectional stiffnesses. The analytical solutions to unit cell problems, however,
were difficult to achieve due to the complex periodic microstructures, and then a novel
numerical implementation method [5] was proposed for the generalization of Kolpakov’s
method [6–8].

There are many other methods for the homogenization of sectional stiffnesses of com-
posite beams. The variational asymptotic beam section analysis (VABS) [9–16], based on the
variational idea, is one of the most powerful methods. In the VABS, different order models
with or without the inclusion of shear effects were established to the desired equivalent
Euler–Bernoulli or Timoshenko beam models. Huang et al. [17] starting directly with the
fourth-order ordinary differential equations (for the Euler–Bernoulli problem) with periodic
coefficients and proposed a two-scale asymptotic expansion method for periodic composite
beams. In Huang et al.’s method [17], the deflections were asymptotically expanded and
have been proved to be convergent via the two-scale convergence method [18,19]. For the
achievement of equivalent Timoshenko beam models, shear stiffnesses have been taken into
consideration in works [20–22], based on the strain energy equivalence of unit cells at macro-
and microscales. These three methods [20–22] mainly differed in three aspects, including
the different displacement forms used in microscopic fields, the different generalized beam
strain states used for shear stiffness predictions, and the different boundary conditions
used for solving unit cell problems. These methods [20–22] have their advantages. For in-
stance, Huang et al.’s method [21] with two unit shear strain states has more clear physical
meanings because the corresponding shear strain energies or shear forces are the desired
effective shear stiffnesses, and this method is also more efficient because one can obtain
six internal forces, i.e., six effective stiffnesses at a time. Compared with Huang et al.’s
method [21], the other two methods [20,22] with the use of two linear curvature states are
more accurate because constant shear forces always occur with linear bending moments.

How to obtain the 3D local or microscopic fields of composite beam-like structures
has become a matter of concern after homogenization. With the homogenized sectional
stiffnesses acquired in the VABS, the original heterogeneous 3D problem can be decom-
posed into a two-dimensional (2D) cross-sectional problem and a one-dimensional (1D)
homogeneous beam problem. The 3D displacements, strains, and stresses over the cross
section were then accurately recovered by the relations with the 1D macroscopic quan-
tities [14,15,23–25]. Further, a variational asymptotic dimensional reduction model was
developed for local recovery in fiber-reinforced polymer laminated beams [26]. Liu et al. [27]
proposed a novel approach based on the mechanics of structure genomes for the homoge-
nization (achievement of effective sectional stiffnesses) and dehomogenization (recovery of
local fields) analyses of composite beam-like structures. Kashefi et al. [28] reproduced the
3D local fields for box girder bridge decks based on Giavotto’s beam theory [29]. Dhad-
wal et al. [30] proposed a multifield variational formulation for the accurate recovery of
local stress of multilayered beams. Xu et al. [31,32] successively developed solutions to
Saint–Venant and Almansi–Michell problems of periodic composite beams, and the local
stress components under different load cases were accurately captured, except for several
unsatisfactory results near structural boundaries. Treyssede et al. [33] presented a two-
dimensional formulation for predicting both macroscopic stiffness and microscopic stresses
of helical beam-like structures. Hu et al. [34] recently developed a geometrically nonlinear
refined beam model with the capability of capturing the coupling deformation effects and
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the local deformations near the force point. In addition, Sirimontree et al. [35] recently
studied the structural behaviors of sandwich magneto-electro-elastic cylindrical nanoshells
using the third-order shear deformation assumption, and their research on the influences
of different parameters is of significance for practical application.

The feasibility and validity of the homogenization method recently proposed by
Gao et al. [22] have been verified for periodic beam-like structures. However, the dehomog-
enization analysis for 3D local fields of structures has not been conducted and deserves
research. The main contribution of this paper is to present a novel superposition method
for effectively predicting the microscopic stresses of 3D periodic beams based on the ho-
mogenization method [22]. The novelty of the present superposition method lies in taking
six kinds of microscopic stress solutions of the unit cell problem as the basic stresses and
using the principle of two-scale internal work equivalence to determine the superposition
coefficients. This equivalence principle ensures the accuracy of the present work.

The other parts of this paper are structured as follows: the process of the used effective
stiffness prediction method is reviewed in Section 2, then the formulae for solving the micro-
stresses are established in Section 3, and numerical examples are taken into account to show
the validity of the present method in Section 4; finally, Section 5 gives the conclusions of
this work.

2. The Homogenization Method for Periodic Timoshenko Beams

This section briefly reviews the homogenization (or effective stiffness prediction)
method [22] proposed for periodic beam-like structures. In this method, a heterogeneous
3D structure can be treated as a homogeneous Timoshenko beam with equivalent stiffnesses,
see the sketch of the homogenization process in Figure 1.
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The generalized constitutive relationship of a homogenized Timoshenko beam is
defined as:

F = Dε1D →



N1
M3
M2
T1
Q2
Q3

 =



D11
D22

D33
D44 D45 D46
D54 D55
D64 D66





ε1
κ3
κ2
κ1
γ12
γ13

 (1)

where F and ε1D respectively denote the generalized internal forces and beam strains. Note
that, in this work, only the most common tension-bending (D12, D13) and shearing-torsion
(D45, D46) coupling stiffnesses are considered besides the diagonal stiffnesses Dαα (α = 1, 2,
3, 4, 5, 6), and the tension-bending coupling terms (D12, D13) can be eliminated by setting
the coordinate origin at the centroid of a unit cell. These are the reasons why we are using
the form of the constitutive Equation (1) in this work.
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To determine the effective stiffnesses Dαβ (α, β = 1, 2, 3, 4, 5, 6) of composite Timo-

shenko beams, six generalized beam strain states ε
[α]
1D or ε

[β]
1D were considered as:

ε1D =



ε1
κ3
κ2
κ1
γ12
γ13

, ε
[1]
1D =



1
0
0
0
0
0

, ε
[2]
1D =



0
1
0
0
0
0

, ε
[3]
1D =



0
0
1
0
0
0

, ε
[4]
1D =



0
0
0
1
0
0

, ε
[5]
1D =



0
y1
0
0

C12
0

, ε
[6]
1D =



0
0
y1
0
0

C13

 (2)

where C12 and C13 are constant shear strains determined by equilibrium equations of beams,
and the results are C12 = D22/D55 and C13 = D33/D66. The six 3D homogenized elastic
strains ε

0[α]
3D or ε

0[β]
3D matching to ε

[α]
1D or ε

[β]
1D are:

ε0
3D =



ε0
11

ε0
22

ε0
33

2ε0
23

2ε0
13

2ε0
12

, ε
0[1]
3D =



1
0
0
0
0
0

, ε
0[2]
3D =



y2
0
0
0
0
0

, ε
0[3]
3D =



y3
0
0
0
0
0

, ε
0[4]
3D =



0
0
0
0
−y2
y3

, ε
0[5]
3D =



y1y2
0
0
0
0

C12

, ε
0[6]
3D =



y1y3
0
0
0

C13
0

 (3)

With the given homogenized strain states ε
0[α]
3D (or ε

0[α]
mn ), the elastic tensor Eijmn (i, j,

m, n = 1, 2, 3 for 3D problems), and the constraint conditions (including periodicity and
normalization) in [22], one can solve the following self-equilibrium equation of a unit cell
problem within the cell domain V to obtain the perturbed elastic strains ε

1[α]
mn :

σ
[α]
ij,j = 0 in V

σ
[α]
ij nj = 0 on Snp

σ
[α]
ij = Eijmnε

[α]
mn

ε
[α]
mn = ε

0[α]
mn + ε

1[α]
mn

(4)

where Snp represents the non-periodic faces of a unit cell. The detailed procedure for solving
Equation (4) can be found in Section 2.2 of reference [22]. Then, the six corresponding
microscopic strains ε

[α]
mn and microscopic stresses σ

[α]
ij are obtained.

Finally, the diagonal effective stiffnesses can be calculated by:

Dαα =
1
l

∫
V

ε
[α]
ij Eijmnε

[α]
mndV, α = 1, 2, 3, 4 (5)

D55 =
lD2

22∫
V ε

[5]
ij Eijmnε

[5]
mndV− l3D22/12

(6)

D66 =
lD2

33∫
V ε

[6]
ij Eijmnε

[6]
mndV− l3D33/12

(7)

And the shearing-torsion couplings Dα4 (α = 5, 6) are achieved with:[
D54
D64

]
=

1
l

[∫
V σ

[4]
12 dV∫

V σ
[4]
13 dV

]
(8)

where l denotes the cell length. For structures with other types of couplings, more strain
states need to be considered to establish all the relationships between the effective stiffnesses
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according to the similar solution process given in Section 2 in [22]. It should also be noted
that the formulae for calculating microscopic stresses in Section 3 still hold when off-
diagonal terms exist.

With the attained effective stiffnesses, one can obtain the generalized solutions of
the macroscopic equivalent beam. This homogenization method works well for stiffness
problems (including frequency and mode shapes), but it cannot be used for stress-related
strength analysis.

To predict the microscopic stresses of the original 3D heterogeneous beam structure,
the above attained σ

[α]
ij of the unit cell problems serve as six basic stress solutions in the

present prediction. In addition, to make the physical meanings of the basic stress solutions
more clear, the last two linear curvature states in Equation (2) are replaced by two unit
shear states, then their corresponding microscopic strains and stresses become:

ε
[5]∗
1D =

[
0 0 0 0 1 0

]T ⇒
 ε

[5]∗
mn =

(
ε
[5]
mn − y1ε

[2]
mn

)
/C12

σ
[5]∗
ij =

(
σ
[5]
ij − y1σ

[2]
ij

)
/C12

(9)

ε
[6]∗
1D =

[
0 0 0 0 0 1

]T ⇒
 ε

[6]∗
mn =

(
ε
[6]
mn − y1ε

[3]
mn

)
/C13

σ
[6]∗
ij =

(
σ
[6]
ij − y1σ

[3]
ij

)
/C13

(10)

In addition, we define ε
[α]∗
1D = ε

[α]
1D, ε

[α]∗
mn = ε

[α]
mn, and σ

[α]∗
ij = σ

[α]
ij for α = 1, 2, 3, 4 for later

derivation clarification, and these field variables with the superscript “[α]∗” (α = 1, 2, 3, 4,
5, 6) respectively correspond to six generalized unit beam strain states. For instance, ε

[5]∗
1D

stands for the unit shear strain state of a Timoshenko beam, while ε
[5]∗
mn and σ

[5]∗
ij denote the

microscopic elastic strains and stresses under this unit shear strain state.

3. The Formulae for Calculating Microscopic Stresses

For predicting the microscopic stresses of a 3D heterogeneous structure with the
microscopic stresses of unit cell problems, we propose a multiscale model as follows:

σij(x1, y) = aα(x1)σ
[α]∗
ij (y) = a1σ

[1]∗
ij + a2σ

[2]∗
ij + · · ·+ a6σ

[6]∗
ij (11)

where x1 is the macroscopic coordinate for equivalent beams, and y = (y1, y2, y3) are
the microscopic coordinates for 3D unit cells. The two-scale equivalence of the internal
virtual work at a structural level is employed to determine the coefficients aα, i.e., a =

[a1 a2 a3 a4 a5 a6]
T.

The internal virtual work of the macroscopic beam is
∫

L
(
FTδε1D

)
dx1, while the in-

ternal virtual work of the 3D heterogeneous structure is
t

Ω
〈
σT

3Dδε3D
〉
dx1dx2dx3. The

equivalence between them gives:∫
L

(
FTδε1D

)
dx1 =

y

Ω

〈
σT

3Dδε3D

〉
dx1dx2dx3 (12)

where L and Ω respectively denote the structural length and the region; 〈·〉 is the average
operator defined over the unit cell domain V as:

〈·〉 = 1
|V|

∫
V
(·)dV =

1
|V|

y

V
(·)dy1dy2dy3 (13)

Let the virtual strains δε1D and δε3D be:{
δε1D = ε

[β]∗
1D

δε3D = ε
[β]∗
3D

(14)
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Substituting Equation (14) into Equation (12) yields:∫
L

(
FTε

[β]∗
1D

)
dx1 =

y

Ω

〈
σT

3Dε
[β]∗
3D

〉
dx1dx2dx3 (15)

Then, inserting Equation (11) into Equation (15) gives:∫
L

(
FTε

[β]∗
1D

)
dx1 =

y

Ω
aα

〈
σ
[α]∗T
3D ε

[β]∗
3D

〉
dx1dx2dx3 (16)

According to the internal virtual work equivalence at a unit cell level [36], one has:〈
σ
[α]∗T
3D ε

[β]∗
3D

〉
= lDαβ/V (17)

Then: ∫
L

(
FTε

[β]∗
1D − Dαβaα

)
dx1 = 0 (18)

To make Equation (18) hold for arbitrary real loads, we let:

FTε
[β]∗
1D − Dαβaα = 0 (19)

Equation (19) holds for β = 1, 2, · · · , 6, which means:
FTε

[1]∗
1D − Dα1aα = 0

FTε
[2]∗
1D − Dα2aα = 0

...
FTε

[6]∗
1D − Dα6aα = 0

(20)

Or: [
ε
[1]∗
1D ε

[2]∗
1D · · · ε

[6]∗
1D

]T
F−Da = 0 (21)

Because
[
ε
[1]∗
1D ε

[2]∗
1D · · · ε

[6]∗
1D

]
is the identity matrix, Equation (21) changes to:

F = Da (22)

Then we can obtain:
a = D−1F = ε1D (23)

With the obtained a, we can calculate the microscopic stresses with Equation (11).

4. Numerical Examples

In this section, several numerical examples are given to validate the effectiveness
of the present method in predicting the microscopic stresses of composite beams. The
coordinate origins of these symmetric structures are set at the center of the left ends, and
“FEM” is used to denote the reference solutions obtained by the finite element software
Comsol Multiphysics.

4.1. A Sandwich Beam with Square Cores

Consider a periodic sandwich beam [15], as illustrated in Figure 1. The parameters
related to the unit cell are l = 1.5 m, b = 1.5 m, a = 1 m, t = 0.1 m, 2h = 3 m. The length
of this beam is L = 60 m (40 unit cells). The material parameters for surface parts are
E1 = 70 GPa and ν1 = 0.34, while core parts are E2 = 3.5 GPa and ν2 = 0.34. The unit cell is
discretized by 18,400 quadratic hexahedral elements, and the whole structure has a total of
736,000 elements for direct analysis.

The left end of the beam is fixed, and the right end is free. There is a bending moment
M2 = 1.60 × 105 N·m acting on the free end. The present microscopic stress components
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σ11, σ22, and σ33 at the line (x1 = 30 m, x2 = 0) are compared with those of the VABS [15]
and the FEM in Figures 2–4, and the comparisons show the present results have good
agreement with the referenced ones, validating the accuracy of this proposed method.
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4.2. A Three-Way Perforated Beam

In Figure 5, a three-way perforated cantilever beam is considered. The geometric
parameters of one unit cell are a = 1.2 m, l = b = h = 2 m. The length of the beam with 20 unit
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cells is L = 40 m. The material parameters are E = 206 GPa and ν = 0.3. The unit cell is
discretized by 2816 quadratic hexahedral elements, while the whole structure for obtaining
reference solutions has a total of 56,320 elements.
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Both top and front surfaces of this beam are subjected to distributed loads, as q3 = −1000 Pa
(along the x3 direction) on the top and q2 = 2000 Pa (along the x2 direction) at the front. The
stress components σ11, σ12, and σ13 of the present method and the FEM are compared. The
comparison results for Line A (x1 = 20 m, x2 = 0.8 m) are in Figures 6–8, while those for
Line B (x1 = 10 m, x3 = 0.8 m) are in Figures 9–11. It can be seen that the present results are
in excellent agreement with the reference results.
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4.3. A Honeycomb-Core Sandwich Beam

In this example, a honeycomb beam is considered in Figure 12. The geometric pa-
rameters of honeycomb [4] are l =

√
3 m, b = 1 m, l1 =

√
3/3 m, t = 1/6 m, h f = 0.2 m,

hc = 2 m. This beam consists of 20 unit cells. The material parameters are E1 = 7 GPa,
ν1 = 0.34 (surface material); E2 = 3.5 GPa, ν2 = 0.34 (core material). The unit cell is dis-
cretized by 7328 quadratic hexahedral elements, and the whole structure has a total of
146,560 elements.

Aerospace 2022, 9, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 10. Distribution of 𝜎ଵଶ of the three-way perforated beam at Line B. 

 
Figure 11. Distribution of 𝜎ଵଷ of the three-way perforated beam at Line B. 

4.3. A Honeycomb-Core Sandwich Beam 
In this example, a honeycomb beam is considered in Figure 12. The geometric param-

eters of honeycomb [4] are 𝑙 = √3 m, 𝑏 = 1 m, 𝑙ଵ = √3/3 m, 𝑡 = 1/6 m, ℎ௙ = 0.2 m, ℎ௖ =2 m. This beam consists of 20 unit cells. The material parameters are E1 = 7 GPa, ν1 = 0.34 
(surface material); E2 = 3.5 GPa, ν2 = 0.34 (core material). The unit cell is discretized by 7328 
quadratic hexahedral elements, and the whole structure has a total of 146,560 elements. 

 
Figure 12. Honeycomb-core sandwich beam and its unit cell. 

The beam, with the left end clamped, is subjected to a distributed load q = −1000 Pa 
at the free-end surface. The microscopic stresses 𝜎ଵଵ and 𝜎ଵଷ at Line C (x1 = 4.5√3 m, x2 

Figure 12. Honeycomb-core sandwich beam and its unit cell.

The beam, with the left end clamped, is subjected to a distributed load q = −1000 Pa at
the free-end surface. The microscopic stresses σ11 and σ13 at Line C (x1 = 4.5

√
3 m, x2 = 0),

Line D (x1 = 23
√

3/3 m, x2 = 0), and Line E (x1 = 59
√

3/6 m, x2 = 0.5 m) (see their positions
in a unit cell in Figure 12) are calculated by the present method. These three lines are
selected according to their proximity to the structure boundary, and to better show the
validity and applicability of the present method. The comparison results with those of
FEM are displayed in Figures 13–18. The good coincidence with the FEM validates that
the present method is capable of solving the microscopic stresses of composite beams with
complex microstructures.
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5. Conclusions

This work extended a recently proposed homogenization method to local or micro-
scopic stress analysis of 3D periodic beam-like structures; to realize this homogenization to
dehomogenization process, a novel superposition method was proposed. In this method,
six kinds of microscopic stress solutions of the unit cell problem used for the effective
stiffness prediction (or homogenization) of composite beams were transformed into corre-
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sponding microscopic stresses under six generalized unit beam strain states, and then they
were regarded as basic stress solutions in the superposition. In addition, the internal work
equivalence at the structural level, including the original 3D heterogeneous structure and
the homogenized 1D beam structure, was employed to determine the six superposition
coefficients, and they were proved to be equal to the actual generalized beam strains.

The six microscopic stress solutions of the 3D unit cell problem serving as the basis
have clear physical meanings because they were generated by the six generalized unit
beam strains, including one tension, two bendings, one torsion, and two shearings. This
further illustrates the reasonableness of the six superposition coefficients.

The structural microscopic stresses obtained by the present method have been com-
pared with those of the 3D finite element method, and they were fairly consistent for
several examples with different microstructures and loads, demonstrating the validity and
capability of the proposed method. Furthermore, this method has a superiority in efficiency
because only one unit cell rather than the entire structure composed of all unit cells was
employed for reaching the desired microscopic stresses.
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