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Abstract: A high accuracy blade manufacture variation decomposition method was proposed to de-
compose the manufacture variations of compressor blades to systematic variation and non-systematic
variation, which could help to clearly quantify the statistical characteristics of the effect of manufac-
ture variations on the blade aerodynamic performance and to guide the modeling of manufacture
variations in geometric uncertainty quantification and robust design studies. By conducting the
decomposition of manufacture variations with 100 newly manufactured blades of a high-pressure
compressor, it was found that the systematic variation could be modeled by using seven represen-
tative blade geometry design parameters well and the mean value of the non-systematic variation,
which is determined by using the difference between the measured blade and systematically recon-
structed blade, is close to zero. For the standard deviation of decomposed manufacture variations, the
non-systematic variation accounts for about 40% of the whole, indicating that the systematic variation
is the major component of the manufacture variation. However, based on statistical analysis and
sensitivity analysis of the effects of the two types of manufacture variations on blade aerodynamic
performance, it was found that the mean deviation of the blade loss mainly derives from systematic
variations, and the loss dispersion caused by non-systematic variations is significantly greater than
that caused by systematic variations. Furthermore, the blade loss at the high incidence angle is
most sensitive to the inlet metal angle which belongs to the systematic variation. Meanwhile, the
non-systematic variation near the leading-edge is the most sensitive, and it contributes to most of the
performance disperse but only accounts for a geometric variation of about 0.45%.

Keywords: manufacture variations; uncertainty quantification; robust design; sensitive analysis;
axial compressor

1. Introduction

Geometric variations between the manufactured or in-service blades and the ideal
designed blade are inevitable and have a significant effect on the aerodynamic perfor-
mances of blade profiles or compressors or even other turbomachines. As summarized by
Wong et al. [1], the manufacturing variations in a compressor of a jet engine could cause a
10% loss in blade incidence range, i.e., a significant degradation of compressor stall margin,
and a 4% increase in loss, corresponding to 1~2% degradation of compressor efficiency.
Hence, in recent years, the study of the influence of manufacture variations on aero-engine
compressors has been widely concerned [2–5].

Generally, the manufacture variation related researches could be divided into two categories,
i.e., geometric uncertainty quantification (UQ) analysis and robust design analysis [6]. The
UQ analyses mainly concern the aerodynamic change with the variation of blade geometric
variations [7–11], however, the robust design studies focus on the blade design optimization
to the goal of geometric variation insensitivity [12–16].
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For both the UQ analysis and robust design study, blades with geometric variations
should be generated at first, hence the accurate modeling of geometric variations shall
always be a key process to guarantee the reliability of the research. There are four represen-
tative methods to modeling the geometric variations: (1) a supposed geometric tolerance
method, such as the Hicks–Henne bump method [13,17], in which manufacture variations
are modeled as superposing a Hicks–Henne like smooth perturbation along the blade
surface; (2) blade surface point driving method [1,12], in which representative blade surface
points are moved to model the small geometry variations; (3) blade geometric design
parameter variation method [10,11,18,19], in which blade design parameters, such as the
blade chord length, the maximum thickness, the thickness of blade leading-edge, and
even the blade metal angles are changes in a range according to the real measured blades;
and (4) orthogonal decomposition method based eigenmode extraction methods, such as
Principal Component Analysis (PCA) method [8,20–22], in which the complicated real
measured blade geometry variations are reduced into some typical variation modes. For
the above-mentioned geometric modeling methods, features of geometric variations should
always be determined based on real manufacture variations, such as the magnitude of the
profile tolerance and the statistical distribution characteristics of the manufacture variations.
For real geometry variations, the normal distribution could be a reasonable approxima-
tion; however, the variation distribution along the blade surface is very complicated and
may have no regular pattern [23]. Hence, these four types of modeling methods should
be carefully validated at first. Moreover, because of significant nonlinear effects for the
geometric variations on the blade aerodynamic performance [24,25], the accuracy of the
geometric modeling shall be evaluated based on blade performance uncertainty features.
Hence, some performance based geometry modeling methods were proposed recently,
such as the active subspace method [1,26], in which the main variation modes, as extracted
based on PCA or Karhunen–Loeve (K-L) expansion [27] methods, are validated further by
the impact of performance gradient.

The accurate modeling of the manufactured geometric variations is very important for
both UQ analyses and robust design studies. If the manufacture variations are modeled
not accurately enough, the UQ analysis and the robust design results may not be credible
enough to reflect the effects of real geometry variation. For example, the published studies
on geometric sensitivity analyses are usually implemented based on deterministic local
blade geometry variations; however, the real geometry variations could occur on the whole
of the blade surface with some random features, leading to the very complicated correlation
effect for geometry variations at different locations [28], which is rarely considered by tradi-
tional manufacture variation modeling methods. Unfortunately, few studies are concerned
with this problem. Generally speaking, there are two limitations for accurate modeling
of the manufacture variations: (1) the lack of real measured data with sufficient samples
to statistical the manufacture variations at different blade locations and their correlations
and (2) the lack of an appropriate variation decomposition method to decompose the
manufacture variations into variations which could be modeled by reduced order methods
or not.

In the present work, real manufacture variations obtained from 100 measured blades
for an outer stage of a high-pressure compressor are analyzed in detail. A novel variation
decomposition method is developed to decompose the variations into systematic variation
and non-systematic variation parts. The systematic variation could be considered as
the manufacture uncertainty of the blade geometry design parameters, while the non-
systematic part could deal with some tiny variations which could barely be modeled based
on traditional methods. In order to provide some guidance for the modeling of manufacture
variations, the statistical characteristics of different types of variations are analyzed. Then,
to clarify whether the small-scale non-systematic part could be omitted or not during the
variation modeling, blade performance statistical analysis and sensitivity analysis are also
conducted for different types of variations.
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2. Decomposition Method for Manufacture Variations

The nominal blade used in the present work is a mid-section of a rotor blade in an
outer stage of a high-pressure compressor (inlet Mach number Main = 0.5, Reynolds number
Re = 1.0 × 106, inlet turbulence Tu = 4%, AVDR = 1.0, solidity = 1.12), which has been
manufactured by a numerical control machining process and finished using vibratory
polishing to improve the surface roughness. A set of 100 newly manufactured blades was
measured, and all the measured blade data are shown in Figure 1. It should be noted that,
as shown in Figure 1, the mean blade (blue line) does not coincide with the nominal blade.
This indicates that the mean value of manufacture variations in this study is not zero.
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Figure 1. Nominal blade (red), measured blades (grey), and mean blade (blue) of the mid-height
section from a high-pressure compressor rotor outlet stage.

2.1. Definition of Manufacture Variations

As shown in Figure 2a, the manufacture variation ε is defined as the distance from
the nominal blade (red) to the measured blade (black) in the normal direction n at the
arc-length s on the nominal blade profile. When the profile of the measured blade locates
outside the nominal blade, the manufacture variation is positive (red shades). The negative
deviation is depicted with blue shades, which can also be seen in Figure 2b. Thus, the
measured blade profile xmea is constructed from the nominal blade and the manufacture
variation ε as

xmea(s) = xnom(s) + n(s)εmea(s) (1)

where xnom is the profile coordinate vector of the nominal blade at the arc-length s,
n is the corresponding normal vector, and xmea is the profile coordinate vector of the
measured blade.
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Figure 2. Representative manufacture variation between the measured and nominal blades.

Figure 2b shows the manufacture variation of a certain measured blade near the
leading-edge (LE), in which the abscissa s/s0 represents the normalized arc-length and the
ordinate represents the manufacture variation ε nondimensionalized by blade chord length
c. The corresponding blade profile is shown in Figure 2a. It can be seen from the figure that
the centerline of the measured blade is changed relative to the nominal blade due to the
manufacture variation, which means the inlet metal angle (βLE) of this measured blade is
different from the nominal blade. Meanwhile, the LE shape of the measured blade deviates
from the circle by comparing the profile line (black solid line) with the fitting circular line
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(black dotted line). This indicates that the manufacture variation has two effects on the
blade profile:

1. Systematically changed the profile parameters of the blade, such as the inlet metal
angle and the chord length;

2. Deformed the local geometric profile of the blade.

On this basis, the manufacture variation could be decomposed into systematic varia-
tion and non-systematic variation.

2.2. Systematic Manufacture Variation

In order to evaluate the systematic variation of the blade, this study parameterizes the
blade profile as profile parameter vector p (Equation (2)). The profile parameters used in
this paper are shown in the Table 1.

Table 1. Profile parameters for the systematic variation.

Symbol Profile Parameters

λ Stagger angle
c Chord length

rLE, rTE Radius of LE and trailing-edge (TE)
tmax Maximum thickness

βLE, βTE Inlet and outlet metal angle

p = [λ, c, βLE, βTE, rLE, rTE, tmax] (2)

The systematic variation is defined as the difference of the above parameters between
the measured and the nominal blades:

∆p = pmea − pnom = [∆λ, ∆c, ∆βLE, ∆βTE, ∆rLE, ∆rTE, ∆tmax] (3)

The above profile parameters were obtained by reverse fitting extraction from the
nominal and measured blades. The parameter definitions are shown in Figure 3. The
parameter extraction method references Lang’s work [18]. The centerline was obtained
by solving the tangent circle of the blade profile, and the blade thickness was determined
by the radius of the tangent circle. The camber angle of the centerline is defined as the
angle between the tangent line of the centerline and the abscissa, and it is normalized
by the inlet and outlet metal angle. Therefore, the centerline can be determined by the
inlet and outlet metal angle and the normalized camber angle distribution. Similarly, the
thickness distribution was piecewise normalized by the maximum thickness and the radius
of LE and TE. The blade thickness can be also determined by the above parameters and
the normalized thickness distribution. Therefore, the profile of the nominal blade could be
determined by the profile parameter vector p without changing the normalized camber
angle distribution of the centerline and the normalized thickness distribution in the design
system, as shown in Equation (4).

xnom = f (pnom) = f ([λ, c, βLE, βTE, rLE, rTE, tmax]nom) (4)

Due to the small magnitude of the manufacture variation, high accuracy of blade
profile parameter extraction is required. Meanwhile, the measured blade profile has some
disadvantages, such as the discontinuity of the curve, as shown in Figure 2, which makes
it difficult to improve the extraction accuracy. Therefore, the accuracy of the parameter
extraction method adopted in this paper has been verified.

More than 100 sets of the blade with known parameters were selected to verify the
extraction method. The accuracy verification results are shown in Table 2, where std means
standard deviation. The parameters related to geometric dimensions, such as the chord
length and the radii of the LE and the TE, are percentages relative to themselves.
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Table 2. The profile parameters extraction error.

Profile Parameters Extraction Error (Mean ± 2Std)

Stagger angle (◦) 0.005 ± 0.008
Chord length (%) 0.002 ± 0.002

Inlet metal angle (◦) −0.005 ± 0.006
Outlet metal angle (◦) −0.002 ± 0.011

Radius of LE (%) 0.001 ± 0.001
Radius of TE (%) 0.001 ± 0.001

Maximum thickness (%) 0.012 ± 0.063

It can be seen that the extraction errors of all parameters are very small. Taking
the stagger angle λ as an example, the extraction error is centered on the mean value of
0.005◦, and the dispersion (with double standard deviation as the evaluation criterion) is
±0.008◦. Similar to the stagger angle, the mean value and the standard deviation of other
parameters are close to zero. Even for the maximum thickness with the largest error, the
mean extraction error is only 0.012% and the dispersion is only 0.063%. Therefore, the
extraction method in this paper meets the research needs of the systematic variation.

2.3. Non-Systematic Manufacture Variation

The extraction of non-systematic variation is based on the systematically reconstructed
blade. The non-systematic variation εnon is defined as the distance between the systemati-
cally reconstructed blade and the corresponding measured blade, which can be expressed as

xmea(s) = xsys(s) + n(s)εnon(s) (5)

According to Equation (4), the nominal blade profile can be determined by the
profile parameter vector pnom. Similarly, the blade profile with systematic variation,
i.e., systematically reconstructed blade, can also be reconstructed by pnom and ∆p:

xsys = f (pnom +∆p) (6)

Figure 4 shows an example of the above approach. In this figure, the blue line is the
systematically reconstructed blade, which is reconstructed from the systematic variation ex-
tracted from the corresponding measured blade (black line). As can be seen in Figure 4, the
systematically reconstructed blade has a different βLE and rTE relative to the nominal blade.
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It also has non-systematic variations (red and blue shades) relative to the corresponding
measured blade.
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In summary, the calculation process of non-systematic variation is shown in Figure 5,
which is briefly described below:

• Step 1: Extract systematic variations ∆p;
• Step 2: Use parametric modeling to reconstruct the systematic blade profile xsys;
• Step 3: Calculate the variation εnon between the systematic blade and the correspond-

ing measured blade.
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Figure 6 presents a comparative example of the manufacture variation εmea and the
non-systematic variation εnon obtained by the above method for a certain measured blade.
The abscissa s/s0 represents the normalized arc-length, s/s0 < 0 means the suction surface
and, otherwise, the pressure surface. It can be seen that the non-systematic variation is
closer to zero than the manufacture variation. The maximum values of both are located
near LE, while the non-systematic variation is about 40% of the manufacture variation. The
corresponding deformation of the LE geometry caused by the non-systematic variation is
shown in Figure 4a, i.e., the discrepancy between the measured blade and the systematic
blade. Since the systematic blade is reconstructed by using high-precision systematic varia-
tion, which is very close to the measured blade, the non-systematic variation can indicate
the local geometric variation of the measured blade profile (especially the asymmetry of
shapes of the LE and the TE).
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3. Statistic Characteristics for Different Type of Manufacture Variation

By decomposing the manufacture variations into systematic and non-systematic varia-
tions, the effect of manufacture variations on blade profile can be demonstrated from two
different aspects. The statistical characteristics of systematic and non-systematic variations
are shown below.

3.1. Systematic Maufacture Variation

As mentioned above, at least 100 sets of newly manufactured blades were measured in
this study, and the manufacture variations of all blades were decomposed using the above
method. The systematic variation matrix ∆P of measured blades has been obtained as

∆P =


∆λ1 ∆c1 · · · ∆tmax,1
∆λ2 ∆c2 · · · ∆tmax,2

...
...

...
∆λn ∆cn · · · ∆tmax,n

 (7)

where n is the total number of the measured blades.
Table 3 shows the statistical results of the systematic variation matrix ∆P. As shown

in Table 3, the mean ∆λ is close to zero, and the dispersion (2std) is far less than ∆βLE
and ∆βTE. The mean value and dispersion of ∆βLE and ∆βTE are obviously larger. The
dispersion of the ∆βTE is greater than ∆βLE, and the mean value of the ∆βLE is greater than
∆βTE. It is worth noting that the |mean/2std| of the ∆βLE is equal to 1.67, which indicates
that βLE of all the measured blades is significantly large. The mean value and dispersion
of ∆c and ∆tmax are small. ∆rLE has a large dispersion. The mean value of ∆rTE makes
the trailing-edge obviously thicker, while the dispersion of ∆rTE is significantly large. In
summary, on average, systematic variations mainly lead to larger inlet and outlet metal
angle of measured blades, a thinner leading-edge, and a thicker trailing-edge.

Table 3. Systematic variations of measured blades.

Delta Profile Parameters Mean ± 2Std |Mean/2Std| p-Value *

∆λ (◦) −0.01 ± 0.45 0.02 0.91
∆c (%) 0.29 ± 0.30 0.96 0.76

∆βLE (◦) 3.31 ± 1.98 1.67 0.77
∆βTE (◦) 2.10 ± 3.35 0.63 0.27
∆rLE (%) −2.00 ± 11.40 0.18 1.00
∆rTE (%) 11.90 ± 16.54 0.72 1.00
∆tmax (%) 0.34 ± 2.50 0.13 0.75

* Kolmogorov–Smirnov test [29].



Aerospace 2022, 9, 542 8 of 21

In addition to the mean value and standard deviation, the distribution form of varia-
tions is also important, therefore the Kolmogorov–Smirnov test for systematic variations is
carried out. As shown in Table 3, the p-values of all systematic variations are significantly
greater than 0.05, which means they all belong to normal distribution at a confidence level
of 95% [29].

To further illustrate the distribution characteristics of systematic variations, a
quantile–quantile (Q-Q) plot is drawn in Figure 7 [30]. Figure 7a shows the Q-Q plot
of ∆βLE , the abscissa is the actual measured value of ∆βLE , and the ordinate is the
fitting value of the normal distribution. The closer the points in the figure are to the
reference line y = x (red line), the closer the distribution is to the normal distribution.
In Table 3, the p-value of ∆βLE is 0.77, and the points in Figure 7a are all near the
reference line, indicating that the distribution of ∆βLE is indeed close to the normal
distribution. Meanwhile, although the p-value of ∆βTE is only 0.27, most points in
Figure 7b are also near the reference line, which proves that ∆βTE also roughly meets
the normal distribution.
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Figure 7. Quantile–quantile plot for systematic variations.

3.2. Non-Ystematic Maufacture Variation

By using the method suggested in Section 2, the non-systematic variation with the
systematic variation excluded can be obtained for any measured blade. This section aims
to present the statistical characteristics of the non-systematic variations.

Figure 8a shows the comparison between the manufacture variation and the non-
systematic variation in normalized arc-length coordinates, where the red shades represent
the double std of the non-systematic variations and the black shades represent that of
the manufacture variations. As shown in Figure 8a, the mean value of non-systematic
variations is closer to zero and less dispersed than manufacture variations. On average,
the std of non-systematic variations is about 40% of the manufacture variations. Figure 8b
shows the comparison with the mean variation superposed on the nominal blade profile. It
can be seen that the mean manufactured blade still increases the inlet metal angle at the LE,
while the mean value of the non-systematic variation is close to zero, and only changes the
shape of the LE of the blade profile locally.
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Figure 8. Comparison of the statistical characteristics between the manufacture and non-system-
atic variations.

4. Effect of Manufacture Variations on Blade Aerodynamic Performances

This section aims to obtain the statistical characteristics for the influence of manu-
facture variations on blade aerodynamic performance, and further to obtain that of the
systematic and non-systematic variations on blade performance after the variation decom-
position and, on this basis, to determine the difference and connection between them.

4.1. Computational Method

Numerical simulation was used to determine the influence of manufacture variations
on blade aerodynamic performances. The flow solutions were calculated using the Multiple
Blade Interacting Stream-tube Euler Solver (MISES) code, which was developed by Mark
Drela in MIT [31,32]. In MISES, the inviscid, steady Euler equations on a two-dimensional
H-grid with a coupled integral compressible boundary layer were calculated. The grid
dynamically adapts to the solution ensuring that side edges of any element are on stream-
lines. In addition, the first grid point adjacent to the surface is located at the displacement
thickness of the boundary layer away from the wall. MISES is very easy to use, has been
extensively calibrated in subsonic and transonic flows [24,33], and it possesses the char-
acteristics of fast calculation speed and high accuracy. Therefore, MISES has been widely
used in the study of the blade geometric variations [17,27].

The computational grid settings are shown in Table 4, and the transition model in this
paper was the modified Abu-Ghannam–Shaw bypass transition model. Figure 9 shows
the comparison of MISES computational results and experimental results for different LE
geometries [34]. The static pressure rise coefficient Cp is defined as

Cp =
p–pin

p0,in–pin
(8)

where p0,in represents the total pressure evaluated at blade row inlet, pin represents the
static pressure evaluated at blade row inlet, and p represents the local static pressure. It can
be seen that MISES can well simulate the effect of small geometric variations on the flow
details of blade surface.

Table 4. MISES grid parameters.

Grid Parameters Settings

Local/average spacing ratios at LE, TE 0.1, 0.9
Type of grid topology at inlet and outlet grid Both the periodic H-type grid

Number of inlet points 50
Number of outlet points 30
Number of streamlines 20
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Figure 9. Comparison of blade surface pressure coefficient distribution on blade surface and near
leading-edge region.

4.2. Statistic Characteristics of the Influence of Manufacture Variations

Figure 10a presents the profile loss characteristics of the nominal blade and all the
measured blades, as well as the mean value and std for the profile losses of the measured
blades at each inlet flow angle. The profile loss coefficient was defined as

ω =
p0,in–p0,out

p0,in–pin
(9)

where p0,in represents the total pressure evaluated at blade row inlet, p0,out represents the
total pressure evaluated at blade row outlet, and pin represents the static pressure evaluated
at blade row inlet. It can be seen from Figure 10a that the dispersion (2std) of the profile
loss is the minimum at the inlet flow angle with the minimum profile loss. The inlet flow
angle with the minimum loss of the nominal blade is defined as the reference inlet flow
angle αref, the corresponding loss as the reference loss ωreference, and

ωrel = ω/ωreference (10)

What is more noteworthy in Figure 10a is that, under the condition of positive inlet
flow angle, not only is the mean loss of the measured blade greater than that of the nominal
blade, but almost all the measured blades have greater losses. Similarly, under the condition
of negative inlet flow angle, the mean loss and almost all the measured blade profile losses
are smaller than the nominal blade. This indicates that the losses of the measured blades
are systematically deviated from the nominal blade due to manufacture variations.
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Figure 10. Effect of the variations on the blade profile loss.

Figure 10b presents the loss characteristics of systematic blades, which were decom-
posed and reconstructed by the corresponding manufacture variations. It presents the
influence of systematic variations on the blade profile loss. It can be seen from the figure
that the influence of systematic variation is similar to that of the whole manufacture varia-
tion, that is, the blade profile loss is systematically increased under the condition of positive
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inlet flow angle, while it is opposite under the negative inlet flow angle. Associating with
the characteristics of the systematic variation in Table 3, this is possibly because the mean
value of systematic variation also deviates significantly from the nominal blade (especially
the inlet metal angle). This correlation will be discussed in a later section.

Figure 10c shows the loss characteristics of non-systematic blades, which were ob-
tained by superimposed the corresponding non-systematic variations on the nominal blade
profile. It can be seen from the figure that the mean loss of non-systematic blades almost
coincides with the nominal blade, but the dispersions (2std) of the positive and negative
inlet flow angle are much higher than that of systematic blades.

In order to further illustrate the above characteristics, the loss statistical characteristics
of variation blades are exhibited in Figure 11. The negative/positive range is defined as the
condition in which the loss is 1.5 times the reference loss [17].
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Figure 11. Statistical characteristics for the effect of the variations on the blade profile loss.

Figure 11 illustrates the mean and std of the difference between variation blades and
the nominal blade. The ∆ωrel is defined as:

∆ωrel = ωrel, variation − ωrel, nominal (11)

where ωrel, variation can be the relative loss of measured, systematic, and non-systematic
blades. When ∆ωrel equals zero, it means that the loss of the variation blade is equal to the
nominal blade.

Figure 11a presents the mean ∆ωrel of variation blades. The following characteristics
can be seen from the figure:

1. When the inlet flow angle αin > 60◦, the mean ∆ωrel of systematic blades is basically
consistent with that of measured blades;

2. When the inlet flow angle αin < 60◦, the mean ∆ωrel of systematic blades deviates
from that of measured blades.

3. When the inlet flow angle αin > 60◦, the mean loss of non-systematic blades approx-
imates to that of the nominal blade. When αin < 60◦, it deviates from that of the
nominal blade.

In summary, it can be considered that the systematic ωrel deviation of measured blades
described above is caused by systematic variations in most inlet flow angle conditions.

Figure 11b presents ∆ωrel std of variation blades. The following characteristics can be
seen from the figure:

4. ∆ωrel std of measured blades in the positive range is approximately coincident with
that of non-systematic blades, and is about twice the std of systematic blades.

5. ∆ωrel std of measured blades in the negative range is closer to that of systematic
blades, while the std of non-systematic blades is obviously larger.
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To sum up, in the positive range, the non-systematic variation determines the loss
dispersion of the variation blades, while in the negative range, the loss dispersion is closer
to that caused by systematic variations.

On this basis, in order to verify whether the effects of systematic and non-systematic
variations on losses can be linearly superimposed, the loss deviations of each systematic
and non-systematic blade were processed as:

∆ωrel, (systematic + non-systematic), i = ∆ωrel, systematic, i + ∆ωrel, non-systematic, i (12)

where ∆ωrel, sys, i represents the loss deviation of the systematic blade No. i, and ∆ωrel, non, i
represents the loss deviation of the corresponding non-systematic blade. Therefore,
∆ωrel, (sys + non), i represents the linear superposition of the loss deviation between the
systematic blade and the corresponding non-systematic blade. The mean value and the std
of ∆ωrel, (sys + non) have been illustrated in Figure 11 (green line).

It can be seen from Figure 11 that the mean loss deviation of the linear superposition
is consistent with that of the measured blade when the inlet flow angle is greater than 60◦.
However, the std obtained by the linear superposition is different from that of the measured
blade. Therefore, the effects of systematic and non-systematic variations on blade losses
have a weak linear additivity, which requires further modification and research.

In conclusion, systematic variations mainly determine the mean loss deviation of blades,
while non-systematic variations have a large impact on the loss dispersion. Therefore, the
influences of these two decomposition variations will be respectively described below.

4.3. Blade Design Parameter Based Sensitivity Analysis for Systematic Variations

As shown in Table 3, seven parameters were parameterized for the blade profile when
extracting systematic variation. Therefore, systematic variation is further decomposed into
variations of these seven independent parameters in this section.

Table 5 shows the range selected when each systematic variation parameter is changed
independently. Based on this, the loss of a series of variation blade is calculated. Similar
to other researchers’ studies, the effect of these parameters on profile loss has strong
linear characteristics [10,11,18,19]. Therefore, in order to avoid redundancy, only the most
remarkable influence parameter of inlet metal angle variation is presented in Figure 12.

Table 5. Selected range for the independent parameters of the systematic variation.

Delta Profile Parameters Top and Bottom Limitation

∆λ (◦) −0.5~+0.5
∆c (%) −0.63~+0.6

∆βLE (◦) −5.0~+5.0
∆βTE (◦) −5.5~+5.5
∆rLE (%) −13.8~+13.8
∆rTE (%) −31.1~+31.1
∆tmax (%) −2.9~2.9

Figure 12a is the schematic diagram of the blade profile with the changing of the inlet
metal angle, where +5◦ represents that the blade profile is bent 5◦ to the suction surface.
Figure 12b shows the variation rule of ∆ωrel with ∆βLE at the selected three inlet flow
angles, which αin = 59.6◦ means that the inlet flow angle is at the negative incidence limit,
and αin = 63.0◦ means the minimum loss condition, and αin = 66.5◦, positive incidence limit.
It can be seen from Figure 12b that, as mentioned above, ∆ωrel has a strong linear effect
with the change of ∆βLE.

On this basis, the sensitivity analysis is conducted on the profile loss to each systematic
variation at several inlet flow angles, and the results are shown in Table 6. The “before
regression” line indicates the sensitivity obtained by independently changing the systematic
variation parameters. The “post regression” line indicates the sensitivity of correction using
linear regression, i.e., by using least square fitting for all the sensitivity coefficients.
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Figure 12. Effect of inlet metal angle variations on blade profile and profile losses.

Table 6. Sensitivity of the profile loss to the systematic variations (before or after regression).

Inlet Flow Angle Condition Regression or Not ∆βLE ∆βTE ∆λ ∆c ∆rLE ∆rTE ∆tmax

αin = 63.0◦ sensitivity before regression −0.009 0.000 0.036 0.018 0.427 0.871 0.043
post regression 0.000 0.001 −0.009 −0.046 0.574 0.852 0.051

αin = 59.6◦ sensitivity before regression −0.074 0.005 0.394 0.050 2.191 1.387 0.006
post regression −0.048 0.003 −0.105 −0.215 5.543 0.621 −1.139

αin = 66.5◦ sensitivity before regression 0.059 0.000 −0.351 −0.026 −1.075 −0.410 −0.268
post regression 0.065 0.007 0.038 −0.381 2.093 −0.352 −1.346

After obtaining the sensitivity of the profile loss to each systematic variation parameter,
the sensitivity can be used to estimate the profile loss:

∆ωrel,estimate = k1∆λ + k2∆c + k3∆βLE + k4∆βTE + k5∆rLE + k6∆rTE + k7∆tmax (13)

where the ki represents the sensitivity in Table 6.
Through Equation (13) and the extracted value of the systematic variations, the profile

loss of each systematic blade can be estimated, thus obtaining Figure 13. The abscissa is
the calculated value of the loss deviation for each systematic blade, and the ordinate is the
estimated value using Equation (13). The red line is the result of the linear fitting, and R2 is
the coefficient of determination. As can be seen from the fitting results in Figure 13, there
is a certain linear relationship between the loss deviation estimated by the sensitivity and
that of systematic blades.

For instance, the coefficient R2 = 0.55 when αin = 59.6◦, which means that at least 55%
of the systematic loss deviation is determined by the linear superposition of parameter
sensitivities. However, at the same time, it is worth noting that no matter the inlet flow
angle state, the intercept of the fitting line is not zero, nor is the slope one. This indicates
that although independent parameter sensitivities can indicate the trend of the systematic
loss deviation, there are still some problems in quantitatively estimating the systematic loss
deviation according to independent parameter sensitivities. There is a coupling relation-
ship between each systematic variation parameters and therefore the sensitivity needs to
be modified.

Because of a partial linear relationship between ∆ωrel of systematic blades and system-
atic variation parameters, which has been presented in Figure 13, based on Formula (12), a
linear regression between ∆ωrel of systematic blades and systematic variation parameters
based on Equation (13) is conducted, so as to modify the sensitivity of each parameter. The
results of the linear regression are shown in Figure 14. The ordinate is ∆ωrel obtained by
using linear regression relationship, and the red line is the y = x reference line. Meanwhile,
sensitivities of systematic parameters obtained by linear regression are listed as “post
regression” results in Table 6.
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Figure 13. The relationship between ∆ωrel obtained by the sensitivity analysis and ∆ωrel of
systematic blades.
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Figure 14. Linear regression for ∆ωrel of systematic blades.

As shown in Figure 14, the estimation of ∆ωrel obtained by linear regression is not
only close to y = x reference line, but also the correlation coefficient R2 is greater than
0.85. Therefore, regression sensitivities of systematic variation parameters can be used to
estimate the statistical characteristics of ∆ωrel of systematic blades [35].
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The sensitivities of systematic variation parameters before and after regression are
compared in Table 6. The sensitivity changes before and after regression represent the
effect of the parameter coupling relationship. The remarkable characteristic of the coupling
relationship is that the sensitivities of the inlet metal angle and the stagger angle are
obviously reduced, and the sensitivities of the chord length, the radii of the LE and the TE,
and the maximum thickness are improved.

Figure 15 presents the contribution of each systematic variation parameter to the mean
value and std of ∆ωrel using the sensitivity obtained by linear regression. As can be seen
from Figure 15a, the effect of the inlet metal angle on the mean ∆ωrel is much higher than
that of other parameters. This is mainly because, as shown in Table 3, the mean variation of
the inlet metal angle is very large, which can be seen from its |mean/2std| being much
higher than other parameters.
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Figure 15. Effect of the ∆ωrel statistical characteristics to the systematic variations.

Meanwhile, it can be seen from Figure 15b that in the condition of αin = 63.0◦, the
radius of the TE makes the largest contribution to ∆ωrel std. In other conditions, the
contributions of the outlet metal angle, the chord length, and the radius of the TE to std
are small, while the contributions of the inlet metal angle, the radius of the LE, and the
maximum thickness are obviously larger than other parameters. It is also worth noting that
when αin = 59.6◦, the contribution of the radius of the LE to std is even greater than that of
the inlet metal angle.

Obviously, the contribution of systematic variations to the mean value and std of
∆ωrel is not only related to their sensitivities, but also directly related to their manufacture
statistical characteristics. Thus, Figure 15 does not clearly indicate the comparison of the
sensitivity between each of the systematic variation parameters.

At the same time, due to the different units of each systematic variation parameter,
the sensitivity values in Table 6 have no comparative significance with each other.
Therefore, in order to compare the sensitivity between each systematic variation pa-
rameter, the upper and lower limits that can be allowed in manufacture processing for
each parameter are selected to evaluate the effect of each parameter on ∆ωrel std. Thus,
Figure 16 is obtained.

Figure 16 shows that the radius of the TE is the most sensitive parameter when
αin = 63.0◦. In other conditions, the inlet metal angle is the most sensitive parameter, espe-
cially in the condition of positive inlet angle of αin = 66.5◦. Its sensitivity is far greater than
other parameters. Meanwhile, the sensitivities of the radius of the LE and the maximum
thickness are obviously greater than other parameters. The sensitivity of the radius of the
LE is relatively higher at αin = 59.6◦, i.e., at negative inlet flow angle condition.
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Figure 16. Sensitivity of ∆ωrel to systematic variations.

4.4. Region Decomposition Based Sensitivity Analysis for Non-Systematic Variations

Previous studies show that the manufacture variation of the LE has the most significant
effect on the profile loss. In this section, the blade surface is further decomposed into
different regions to reveal the effect of non-systematic variations on the profile loss at
different locations. As shown in Figure 8a, the std of non-systematic variations has several
“nodes” close to zero. Therefore, these “nodes” are used to divide the blade into eight
regions as shown in Figure 17.
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The multipliers in Equation (14) were used to extract the non-systematic variations in
different regions. The variations in each region were superimposed on the nominal blade
profile, so as to obtain eight groups of variation blades. Each group of blades represents the
non-systematic variations in its own region.

Multiper =


1 inside the region
0 outside the region

smooth transition region boundary
(14)

Figure 18 shows the calculation results of the effect of non-systematic variations on
the profile loss in different regions. And Figure 18a shows the effect of LE variations on the
profile loss. It can be seen that, similar to the effect of the whole non-systematic variations,
the mean loss caused by LE variations is approximately coincident with the loss of the
nominal blade, and the std of the loss caused by the LE variation is large.

In addition to the LE region, the mean loss of non-systematic variations in other
regions is also consistent with the loss of the nominal blade. ∆ωrel std due to non-systematic
variations in each region is illustrated in Figure 18b. It can be seen that the std caused by LE
variations is significantly greater than that of other regions. Thus, the profile loss is most
sensitive to non-systematic variations in the LE region. It should be noted that, according
to the std of non-systematic variations obtained in Figure 8a, the most sensitive LE region
only accounts for a geometric variation of about 0.45%.
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As shown in Figure 18b, ∆ωrel std generated by non-systematic variations in other
regions is close to zero. On this basis, ∆ωrel std caused by non-systematic variations
superimposed on the LE only and on the whole blade is compared in Figure 19. It can
be seen that in the positive range, ∆ωrel std caused by the LE variations and the whole
non-systematic variations approximately coincides, but in the negative range, it deviates
greatly. Thus, the coupling of non-systematic variations in different regions is stronger
under the condition of negative inlet flow angle.
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5. Conclusions

A high accuracy blade manufacture variation decomposition method was proposed to
decompose the manufacture variation to systematic variation and non-systematic variation.
Thus, the statistical characteristics of the effect of manufacture variations on the blade
aerodynamic performance can be quantified more clearly. The extraction of systematic
variations is based on the reverse fitting of the measured blades by using blade design
geometric parameters, while the extraction of non-systematic variation is the geometric
variation between the measured blade and the systematic blades reconstructed.

The proposed manufacture variation decomposition method was applied to a set of
100 newly manufactured blades of a high-pressure compressor. The mean value and the
standard deviation were used to analyze the statistical characteristics of the variations.
Based on the results of the variation decomposition, the effects of different variation
types on the blade performance and their coupling effect were analyzed. The following
conclusions could be drawn:
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(1) The proposed decomposition method could decompose the systematic variation into
seven parameters used during blade geometry design process. Among them, the
mean value of the inlet metal angle deviates from the design value obviously, and
the relative deviations of the radii of the leading-edge and the trailing-edge have a
great dispersion. This indicates that the manufacture variation caused a significant
variation in the blade geometry, and even the inlet metal angle was systematically
deflected. In addition, the distribution of all the systematic variations is close to the
normal distribution.

(2) The non-systematic variation is the distance between the measured blade and the
systematic blade obtained by parametric reconstruction using the systematic variation.
That is, the non-systematic variation is a part of the manufacture variation after
eliminating the systematic variation. The mean value of the non-systematic variation
is close to zero. The standard deviation of the non-systematic variation accounts for
about 40% of the whole manufacture variation. This indicates that the systematic
variation is the major component of the manufacture variation.

(3) The mean deviation of the measured blade ωrel is mainly caused by systematic
variation. The dispersion of ∆ωrel caused by non-systematic variation is obviously
greater than that caused by systematic variation. In the positive range, the non-
systematic variation determines the loss dispersion of the variation blades, while in
the negative range, the loss dispersion is mainly caused by the systematic variations.
In addition, the effects of systematic and non-systematic variations on ∆ωrel have a
weak linear superposition effect, which requires further study and should be a caution
for the related blade uncertainty quantification and robust design analyses.

(4) The systematic variations have a strong linear effect on the profile loss, and their
coupling relationship can be modified by linear regression. Among the systematic
variations, the profile loss is most sensitive to the inlet metal angle, and then followed
by the radius of the leading-edge.

(5) The non-systematic variation in the leading-edge region has the most significant effect
on the profile loss, which is much higher than that in other regions.
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