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Abstract: Aircraft experience various phases during each flight. Optimal performance, without com-
promise, during various phases can be achieved through adaptability in the wing design. Morphing
wing design encompasses most, if not all, the flight conditions variations, and can respond interac-
tively. In the present work, the dynamic characteristics of a reconfigurable modular morphing wing
of two topological architectures, developed in-house by a research group at Toronto Metropolitan
University (formerly Ryerso University), were investigated. This modular morphing wing, developed
based on the idea of a parallel robot, consists of a number of structural elements connected to each
other and to the wing ribs through eye-bolt joints. Euler–Bernoulli and Timoshenko bending beam
theories, in conjunction with Finite Element Analysis, were exploited. Free vibration of unmorphed
(Original) and morphed configurations subjected to spanwise extensions were studied. The results
of systems’ free vibration analyses were validated against those obtained from Ansys and Dynamic
Stiffness Matrix (DSM) method. The effect of various spanwise extensions, as well as topology on
system’s natural frequencies, was also studied and reported on.

Keywords: numerical modal analysis; morphing wing; finite element analysis; dynamic stiffness
matrix; spherical joints; Timoshenko beam

1. Introduction

In the current evolving design era of seeking high performance along with economical
design intent, adaptability in response to the changing environment is deemed a highly
desired prospect. This concept of adaptability has been successfully implemented in a
number of industries ranging from daily life furniture to transportation. The aerospace
industry has successfully responded to this global trend as well. Fixed wing aircraft have
been considered the culmination of the human dream of flying. However, evolutionary
technological breakthroughs with the passage of time and current trends in marketing
and competitive products have influenced the researchers to investigate novel ways to
design and develop aircraft to accommodate adaptability during different flight phases.
Exposed to various flight phases and gust conditions, logical evolution of aircraft design
leads to what is generally termed as morphing wings. Changing wings in terms of sizes
or orientation is a giant step towards the current adaptability trend. Although still at the
rudimentary stage, morphing wings generally offer adaptability, but not for all varying
situations simultaneously, namely spanwise, dihedral and sweep variations. It is widely
accepted and agreed that hinged devices, such as flaps, ailerons and slats, are not considered
morphing devices.

It has been shown that, with the application of morphing wings, several advantages
can be achieved including high lift-to-drag ratio, manoeuvrability and flight envelop
expansion [1,2]. The idea of morphing wing has already been implemented in some
military aircraft including Grumman F14 Tomcat, Bell Boeing V-22 Osprey, and BAE-
Systems Concorde, equipped with variable sweep-wing, colloquially known as a swing
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wing. It is of prime importance to optimize the morphing wing for conflicting multi-
objectives of weight, aerodynamics, structure and actuation [2]. Morphing imposes a cost
on the system with the advantages they bring in. Table 1 below briefly highlights the
advantages and the challenges in terms of the cost of the system. This cost is generally
associated with the morphing skin requirement to adapt the morphing mechanism and
aerodynamic force distribution [3].

Table 1. Wing Morphing and its effect.

Morphing Type Performance Effects Benefit Cost

Sweep Drag-divergence, Mach
number Maneuvers, high-speed flight Lower lift coefficient, higher

weight
Cant Lateral stability Positive increases roll Decrease maneuverability
Twist Lift, Drag Aerodynamic force control Wing torsional rigidity
Span Aspect Ratio, Wing loading Shorter span maneuverability Wing root moment

In most of the relevant literature, morphing wings have been shown to address a single
rather than combined mechanisms (i.e., Spanwise, Cant, Sweep or Dihedral), except for the
case of a compliant truss wing presented by Ramrakhyani et al. [4]. Finistauri [3], followed
by Moosavian [5], have successfully implemented the parallel robot manipulator concept
in morphing wing design, which can adapt to spanwise, dihedral and sweep mechanisms
simultaneously per the flight condition requirements. Their base design is modular in
nature and the number of modules has been determined based on the optimum mission
requirement eliminating the redesign of wing for different missions. However, their work is
limited to the design of such a morphing wing without any structural and/or aerodynamic
analysis. The present work is aimed at performing the dynamic analysis of the morphing
wing, developed by Moosavian in order to ultimately assess their aeroelastic behavior.
Such analysis is deemed to highlight the main dynamic issues and the resolution of these
wings with the purpose of predicting the fatigue life and reliability of the design.

It is required to investigate the truss analysis of the variable geometry truss mechanism
applied to the re-configurable modular morphing wing design, based on a parallel robot
that efficiently represents the dynamic behavior of the morphing wing design as conceived
by Moosavian [5] and Finistauri [3]. It is imperative to study the structural response after
the morphing mechanism has been implemented. However, current work will treat the
structural members of the morphing mechanism as beams.

Objectives of the current report encompass the following. To:

• Compute the natural frequencies and mode shapes of the modular morphing wing,
neglecting and including shear deformation and rotary inertia effects;

• Compare the in-plane (lead-lag) and out-of-plane (flapping) bending behaviors;
• Investigate the effect of morphed wing shape on the system’s natural frequencies

and modes;
• Study the effect of various topological configurations on the system’s vibrational signature.

2. Theoretical Treatise
2.1. Modular Morphing Wing

The morphing wing analysed in this study is modular in nature. Each module consists
of eight load bearing structural members and two wing ribs. Four of these load bearing
members are active, controlled by actuators, and the other four are passive. Two optimal
topological configurations, obtained through kinematic analysis presented by Finistauri
and Moosavian [3,5], are investigated here. Active structural members are connected
diagonally to the others, as presented in Figures 1 and 2. The two optimal topological
configurations, termed Topology 1 and Topology 2, are illustrated in simplified forms in
Figures 3 and 4, respectively. In each module, eight load bearing structural members are
connected to each other and to the wing ribs through spherical (eye-bolt) joints. Four of
these members are active, controlled by actuators, as shown by the mechanism in Figure 5.
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Figure 1. Reconfigurable modular morphing wing, view 1.

Figure 2. Reconfigurable modular morphing wing, view 2.

Figure 3. Configuration of structural element connections in morphing Wing, Topology 1.
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Figure 4. Configuration of structural element connections in morphing wing, Topology 2.

Figure 5. Mechanism of the reconfigurable morphing wing, Topology 1 [6].

With these optimal topologies, various wing morphing configurations can be achieved
including spanwise extension, dihedral, and sweep motion. A detailed procedure for
obtaining the various morphing configuration is outlined by Moosavian [6].

2.2. Members’ Equations of Motion

Consider a beam in xy plane. By considering beams with considerable lateral dimen-
sions comparable to axial dimension, the cross-section plane does not remain perpendicular
to the neutral axis due to the shear deformation part ζ(x) in addition to bending φ(x). This
type of beam is generally referred to as a Timoshenko beam. Therefore, for a deflected
Timoshenko beam at a section, the slope can be written as [7]:

dv
dx

= φ(x) + ζ(x). (1)

This makes the moment equation as follows:

M(x) = EI
dφ(x)

dx
. (2)
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The relation between shear force and shear deformation can be written as:

V(x) = κs AGζ(x), (3)

where κs A = As is the shear area. As for the solid circular cross-section is 0.9.
The resulting governing equations of the Timoshenko beam with a varying cross-

section can be written as:

Gκs

[
∂A
∂x

(φ(x)− ∂v
∂x

) + A(
∂φ

∂x
− ∂2v

∂x2 )

]
+ ρA

∂2v
∂t2 = q(x, t), (4)

GAκs

[
∂v
∂x
− φ

]
+ E

[
∂I
∂x

∂φ

∂x
+ I

∂2φ

∂x2

]
= ρI

∂2φ

∂t2 . (5)

In the above equation, q is the distributed load on the beam. For a constant thickness
Timoshenko beam, governing Equations (4) and (5) reduce to:

GAκs

[
∂2v
∂x2 −

∂φ

∂x

]
= ρA

∂2v
∂t2 − q(x, t) (6)

EI
[

∂2φ

∂x2

]
+ GAκs

[
∂v
∂x
− φ

]
= ρI

∂2φ

∂t2 . (7)

Therefore, by using the standard Finite Element Methodology (FEM) [8], the stiffness
matrix of the Timoshenko beam element of length L in 2D bending can be obtained from
the static case, and is written as follows:

[k] =
EI

L3(1 + ψ)


12 6L −12 6L
6L (4 + ψ)L2 −6L (2− ψ)L2

−12 −6L 12 −6L
6L (2− ψL2) −6L (4 + ψ)L2

 (8)

where ψ = 12 EI
κs AGL2 .

The consistent mass matrix for the Timoshenko beams, including rotary inertia effect,
can be obtained using the energy based formulation as presented by Davis et al. [9],
as follows:

m = ρA[X]−t[H][X], (9)

where [H] is given below:

[H] =


L7

252 + γ( L5

20 + L3β
3 + L

β2 )

L6

72 + γ( L4

8 + L2β
2 ) L5

20 + γL3

3 Symmetrical
L5

30 + γ( L3

6 + L) L4

8 + γL2

2
L3

3 + γL
L4

24
L3

6
L2

2 L,

 (10)

and [X] is given as:

[X] =
EI

L3(1 + ψ)


0 0 0 1
β 0 1 0
L3

6
L2

2 L 1
L2

2 + β L 1 0,

 (11)

with β = EI
κs AG and γ = I

A .
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By ignoring shear deformation and rotary inertia, Timoshenko beams are reduced to
Euler–Bernoulli beams.

2.3. Beams with Hinged Nodes

A beam that has an internal hinge behaves as two beams connected at the hinge with a
two-valued slope at the hinge in both transverse directions and a two-valued twisting angle.
The bending slope of each beam at the hinge can be obtained from the deflections at the
hinged node of the corresponding beam. Following the procedure outlined by Logan [8]
by partitioning the original elemental matrix, if the hinged node is the second node (right
node) of a beam element, the condensed stiffness matrix, [Kc2], of that element can be
obtained as follows:

[kc2] =


k11 −

k2
14

k44
k12 − k14k42

k44
k13 − k14k43

k44

k21 − k24k41
k44

k22 −
k2

24
k44

k23 − k24k43
k44

k31 − k34k41
k44

k32 − k34k42
k44

k33 −
k2

34
k44

,

 (12)

where kij are original components of the stiffness matrix of the Timoshenko beam element
in 2D bending. For the first node (left node) of the beam element to be hinged, then the
condensed stiffness matrix [Kc1] of that element can be obtained as follows:

[kc1] =


k11 −

k2
12

k22
k13 − k12k23

k22
k14 − k12k24

k22

k31 − k32k21
k22

k33 −
k2

23
k22

k34 − k32k24
k22

k41 − k42k21
k22

k43 − k42k23
k22

k44 −
k2

24
k22

.

 (13)

The condensed mass matrices can be obtained in a similar way.

2.4. Conventional Modal Analysis

Modal analysis is performed using the conventional FEM based on the equations of
motion written as:

[M]d̈ + [K]d = 0, (14)

where d is the displacement vector, with di for the nodal DOFs written as:

di =

[
vi
φi,

]
(15)

and [M] and [K] are the assembled mass and stiffness matrices of the system, respectively.
Here, the 2 DOF per node is assumed for simplicity. The following harmonic solutions ((16)
and (17)) are used for the governing Equations (6) and (7),

v = voe−iωt (16)

φ = φoe−iωt. (17)

By using these harmonic solutions and letting q = 0, along with stiffness and mass
matrices of the Timoshenko beam, the system’s linear eigenvalue problem (18) is obtained
as given below.

[K−ω2M]d = 0. (18)

Therefore, circular natural frequency ω (eigenvalue) and corresponding mode shape (eigen-
vector) d can be obtained by solving the linear eigensystem by solving Equation (18).
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2.5. Modal Analysis by Dynamic Stiffness Matrix Method

By applying the continuous mass and stiffness distribution along the beam, the analyt-
ical solution, the Dynamic Stiffness Matrix (DSM) methodology outlined by Wittrick and
Williams [10,11], results in the following nonlinear eigensystem.

[K(ω)]d = 0. (19)

Graphically (plotting |K(ω)| for various values of ω), by finding the zero–crossings
obtained either by the determinant |K(ω)| = 0 or |K(ω)| = ∞, natural modes of the system
can be extracted. DSM for the bending of the Timoshenko beam is given by Banerjee [12].
Axial and torsional components of DSM are given by Peng [13] and Anusmita [14], re-
spectively. Mode finding techniques (i.e., bisection technique) proposed by Wittirck and
Williams [10] can also be employed to obtain the free vibration frequencies and modes of
the beam. The number of modes passed by a set frequency ω = ω? can be computed by:

j = jo + sgn{K}, (20)

where jo are the natural frequencies lying between 0 and ω? when all the elements are
subjected to fixed–fixed boundary conditions, and sgn{K} is the number of negative signs
on the main diagonal of upper triangular matrix K∆ of the DSM, K(ω) is obtained by
Gaussian elimination method without row or column interchange. The detailed procedure
of finding the required natural frequencies using DSM is explained in detail by Williams
and Wittrick ([10,11]).

3. Methodology

In this work, two modules of the morphing wing are considered for the modal analysis.
Each load bearing structural member in a module is modeled as a beam. Each beam is
divided into a number of Timoshenko or Euler–Bernoulli beam elements (Equations (8) with
six degrees of freedom per node, and (9)). The spherical (eye-bolt) joints between wing rib
and load bearing structural members (beams) are modeled as hinged joints in 3D to transmit
only the linear motions along three coordinate axes, by suppressing the transfer of rotational
motions between the connected structural members (Equations (12) and (13)). Based on
the Timoshenko beam theory and the hinged joint in 3D (representing the spherical joint)
analysis and DSM with spherical joints, presented in the previous section, modal analysis
of the modular morphing wing with two modules will be performed. However, modules
can be added per mission requirements. The following are the assumptions applied here:

• Wing ribs can be represented by five structural beam elements connecting eight other
beam/bars in each module;

• Stiffness of structural members representing wing ribs is of the order of 1000 of that of
structural members of the module;

• All structural beams are initially straight and un-stressed;
• Plane section remains plane during bending, but is no longer perpendicular to the

neutral axis;
• All structural elements are perfectly elastic, homogeneous and isotropic;
• Upon the spanwise expansion, the diameter of each structural member can be assumed

uniform and computed based on the constant mass of the member.

Conventional Finite Element Analysis (FEA) using Timoshenko and Euler–Bernoulli
beam theories is applied to form the assembled stiffness and mass matrices of the morphing
wing. For the end elements of each beam, condensed stiffness and mass matrices are
applied using the hinged nodal analysis presented previously. Fixed boundary conditions
are applied for the right end of the first module, representing attachment to the fuselage.
The eigenvalue problem, presented in Equation (18), is solved to perform the modal
analysis of the assembled mass and stiffness matrices of the whole system. Therefore,
the first few frequencies and the corresponding mode shapes are obtained. To validate
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the conventional FEA approach, Dynamic Stiffness Matrix (DSM) is applied to compute
the matrix K(ω) for the whole system by assembling individual matrices. To obtain any
natural frequency number and its value, a high frequency is given as a set frequency. Then,
by the application of the bi-section method, any required natural frequency is computed,
within a given tolerance, below the set frequency by using Equations (19) and (20). This
obtained frequency is also checked by plotting the |K(ω)| against ω and finding the zero–
crossings. After validation of the computed natural frequencies, various parametric analysis
are performed for observing the effect of material, spanwise expansion and the effect of
topology of the modular design (configuration of connecting beams with each other in
module) using the conventional FEA approach. For spanwise expansion cases, the total
mass of the beams will remain unchanged due to the telescopic characteristic of the beams
used here. However, the stiffness of each beam will vary and is computed. The effect of
beams extension will be incorporated by changing the effective diameters of beams while
keeping the mass constant.

4. Numerical Simulations and Discussions

Modal analysis of a reconfigurable modular design of a morphing wing is presented.
Before presenting the results of the modular wing, a simple simulation of two beams
connected through a hinged node is simulated here. Based on this simple case, more
complex cases of a frame of beams will be presented.

4.1. Modal Analysis of Two Beams Connected by a Hinged Joint

Two horizontal Euler–Bernoulli beams, made of steel (Table 2) and 0.254 m long with
a diameter of 0.0254 m, are connected by an hinged node at the middle. Fixed–Fixed beam
analysis with a hinged node at their joint is executed here. Each beam is discretized into
30 finite elements, and each node has 6-DOF. Therefore, a spherical joint at their interface is
simulated by employing hinged node in 3D. FEM–based modal analysis is performed, and
the first computed 10 modes are tabulated in Table 3. The results are also validated against
those obtained from commercial software, Ansys.

Table 2. Mechanical Properties of Steel.

Material Density Modulus of
Elasticity Poisson Ratio Shear Modulus

kg/m3 Pa Pa

Low Carbon
Steel 7750.4 1.8616 × 1011 0.3 7.16 × 1010

Table 3. Natural Frequencies, ω(rad/s), of Two Euler–Bernoulli Beams Analysis with Hinged node.

Mode 1 2 3 4 5 6 7 8 9 10

FEM 1781.8 1781.8 7441 7452.5 11159 11182 19234 19234 24118 24257
Ansys 1684.94 1684.94 7223.50 7223.50 10,213.30 10,213.30 18,794.43 18,794.43 22,369.11 22,369.11

Difference
(%) 5.75 5.75 3.01 3.17 9.26 9.48 2.34 2.34 7.82 8.44

The first four mode shapes of the above-mentioned case are also shown in Figures 6–9,
where ordinate and abscissa axes are in meters. It is clear from these figures and Table 3
that beams present repeated modes in horizontal and vertical planes. Therefore, it can
be observed that the existence of the hinged node represents the fixed–fixed case as two
cantilever beams. However, their natural frequencies become different compared to the
corresponding independent cantilever case. This is due to the translatory motion transfer
across the spherical joint.
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Figure 6. Mode 1 (out–of–plane/flapping) of two Euler–Bernoulli Beams connected through
hinged joint.

Figure 7. Mode 2 (in–plane/lead–lag) of two Euler–Bernoulli Beams connected through hinged joint.

Figure 8. Mode 3 (out–of–plane/flapping) of two Euler–Bernoulli Beams connected through
hinged joint.
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Figure 9. Mode 4 (in–plane/lead–lag) of two Euler–Bernoulli Beams connected through hinged joint.

4.2. Modal Analysis of the Two-Module Morphing Wing, Topology 1

Based on the initial simple case of two beams connected by a spherical joint at their
interface, now simulations are executed for the morphing wing’s modal analysis in the
original configuration (i.e., without expansion of morphed shape). As also discussed earlier
in this paper, each wing design is composed of two modules, each composed of eight
structural beams and two ribs. Each rib is also represented by five beams, i.e., there are
26 beams in total. Diameter of each beam in um-morphed configuration is 0.0254 m. The
distance between two wing ribs is 0.254 m and the distance between two horizontal beams
(in x-y plane) along the z-axis is 0.3048 m (refer to Figure 3). Each mode shape is presented
individually for clarity, as combining five mode shapes of these 26 beams would make
the presentation very complicated, as each mode shape becomes indiscernible from other
mode shapes. Moreover, the 3-dimensional motion (lift, bending, and twisting) will be
completely masked by mode shape overlapping.

4.2.1. Application of Euler–Bernoulli Beam Theory

Euler–Bernoulli beam analysis is performed here. Mechanical properties for these
beams are the same as those used in the previous subsection. First, to obtain a bench
mark simulation of the response of beams, no hinged node is considered. Therefore, no
slope discontinuity is expected at the nodes. Each load carrying beam is discretized into
30 elements (for converged solution, shown later) and each node has 6-DOF. The results of
conventional FEM–based modal analysis are presented here. The first ten modes obtained
from conventional FEM and validated by DSM are tabulated in Table 4. Differences less
than 0.02% are observed. The un-morphed wing with two modules, without deformation,
is presented in Figure 10. The two vertical rectangular members with five beams (four
on circumference and one diagonal) represent simplified wing ribs. The first five mode
shapes of the wing (presented in Figure 10) are presented in Figures 11–15. All the x, y, z
coordinates are in meters. Evident from these figures, vertical and horizontal motion
of wing rib is observed in the first mode. However, horizontal motion is predominant.
Twisting and bending coupling is also observed in the second mode. Vertical motion along
with bending in internally diagonal beams is observed in the third mode. Interestingly,
the fourth and fifth modes clearly present flexural motion in internal diagonal beams.
Graphical representation of the change of sign (zero–crossing) of the determinant, |k(ω)|
using DSM is depicted in Figure 16. Only the 10th and the 9th natural frequencies are
represented here for the sake of brevity. The 9th natural frequency is shown in Figure 16b
extracted by the detailed section given in Figure 16a. In finding the zero–crossing, the
magnitude of |k(ω)| is of no importance. Since, in DSM, the determinant |k(ω)| changes
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sign either at |k(ω)| = 0 or at |k(ω)| = ∞, a multiplying factor of 10−7 is used to limit the
magnitude of |k(ω)|.

Table 4. Natural Frequencies, ω(rad/s) of Euler–Bernoulli Beam Analysis with no spherical joint in
Topology 1, Original Configuration.

Mode 1 2 3 4 5 6 7 8 9 10

FEM 1909.5 3471.1 3590.5 4307.4 4372.5 4395.3 4419 4429.5 4507.7 4850.5
DSM 1910.4 3474.1 3586.4 4309.1 4372.6 4387.2 4411.6 4421.4 4509.3 4841.3

Difference
(%) 0.05 0.09 0.119 0.04 0.0023 0.18 0.17 0.18 0.035 0.19

Figure 10. Un–morphed wing in Topology 1 with no hinged ends; original configuration.

Figure 11. Mode 1 of Euler–Bernoulli Beams in Topology 1 with no hinged ends; original configuration.
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Figure 12. Mode 2 of Euler–Bernoulli Beams in Topology 1 with no hinged ends; original configuration.

Figure 13. Mode 3 of Euler–Bernoulli Beams in Topology 1 with no hinged ends; original configuration.

Figure 14. Mode 4 of Euler–Bernoulli Beams in Topology 1 with no hinged ends; original configuration.
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Figure 15. Mode 5 of Euler–Bernoulli Beams in Topology 1 with no hinged ends; original configuration.

Figure 16. Dynamic Stiffness Matrix plot of Euler–Bernoulli Beams in Topology 1 with unhinged ends
using DSM; original configuration (a) a selected region of natural frequencies showing zero–crossing
at the 10th natural frequency (b) a detailed section showing zero–crossing at the 9th natural frequency.

After obtaining the frequency results with fixed–to–rib boundary conditions (i.e., with
no hinge–noded end) and validating them against DSM, Euler–Bernoulli beams with both
ends hinged (spherical joint) to the wing ribs are simulated in the un–morphed (base)
configuration. Thirty elements per beam are considered for obtaining the converged
solution, which will be shown later in this paper. The first ten natural frequencies are given
in Table 5. Natural frequencies are reduced as compared to those without hinged nodes.
It is noteworthy that differences with respect to DSM increased overall but still remains
less than 2%. Convergence will shown later in this section. The un–morphed wing with
two modules and hinged (spherical) joints, without deformation, is presented in Figure 17.
Comparing the modes shapes (presented in Figures 18–22) with those with no hinged ends,
it is found that first mode shape qualitatively is the same in both cases, regardless of the
magnitude, namely the coupled bending in both horizontal and vertical plane. However,
internal diagonal beams undergo flexural motion in this case. Additionally, the second and
third modes show some bending coupling along with more pronounced flexural motion
in internal beams of the modules. No twist-bending coupling is observed in the first five
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modes. Graphical representation of the change of sign (zero–crossing) of the determinant,
|k(ω)| using DSM is depicted in Figure 23. Only the 10th and the 9th natural frequencies are
represented here for the sake of brevity. The 9th natural frequency is shown in Figure 23b
obtained by the detailed section given in Figure 23a. Again, it is clear from the flexural
motion of beams represented here that the structural load bearing members cannot be
treated as truss elements.

Table 5. Natural Frequencies, ω(rad/s) of Euler–Bernoulli Beam Analysis with Hinged ends in
Topology 1, Original Configuration.

Mode 1 2 3 4 5 6 7 8 9 10

FEM 1549.6 1917.6 1923.6 1937.1 1945.7 1950.5 1953.3 1954.1 2498.5 2922.1

DSM 1533.7 1914.6 1923.3 1938 1946.8 1949.7 1949.7 1952.6 2465.3 2881.3

Difference
(%) 1.04 0.16 0.02 0.05 0.06 0.04 0.18 0.08 1.35 1.42

Figure 17. Un–morphed wing in Topology 1 with hinged ends; original configuration.

Figure 18. Mode 1 of Euler–Bernoulli Beams in Topology 1 with hinged ends; original configuration.
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Figure 19. Mode 2 of Euler–Bernoulli Beams in Topology 1 with hinged ends; original configuration.

Figure 20. Mode 3 of Euler–Bernoulli Beams in Topology 1 with hinged ends; original configuration.

Figure 21. Mode 4 of Euler–Bernoulli Beams in Topology 1 with hinged ends; original configuration.
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Figure 22. Mode 5 of Euler–Bernoulli Beams in Topology 1 with hinged ends; original configuration.

Figure 23. Dynamic Stiffness Matrix plot of Euler–Bernoulli Beams in Topology 1 with hinged ends
using DSM; original configuration (a) a selected region of natural frequencies showing zero–crossing
at the 10th natural frequency (b) a detailed section showing zero–crossing at the 9th natural frequency.

4.2.2. Application of Timoshenko beam Theory

After Euler–Bernoulli beam analysis, Timoshenko beams are applied as the structural
members for each module in the morphing wing by considering hinged ends (spherical
joints) at both ends of all beams. Each beam is discretized into 30 elements (converged
solution) and 6 DOF is applied at each node as before. Modal analysis is performed for this
case and validated with the corresponding DSM case. Results are tabulated for the first ten
modes in Table 6.

Table 6. Natural Frequencies, ω(rad/s) of Timoshenko beam Analysis with Hinged ends in Topology
1, original configuration.

Mode 1 2 3 4 5 6 7 8 9 10

FEM 1528.9 1915.7 1927.2 1932.4 1937.7 1967.6 1974.5 1975.4 2462.6 2862.4
DSM 1530.8 1905.8 1911.6 1926.3 1935.1 1938 1940.9 1940.9 2453.6 2872.6

Difference
(%) 0.12 0.52 0.82 0.32 0.13 1.53 1.73 1.78 0.37 0.36
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Plot of the DSM simulations showing the representative 10th and 9th natural frequen-
cies, depicted by zero–crossings of the curve, is presented here in Figure 24.

Figure 24. Mode Plot of Timoshenko beams in Topology 1 with hinged ends using DSM; original
configuration (a) a selected region of natural frequencies showing zero–crossing at the 10th natural
frequency (b) a detailed section showing zero–crossing at the 9th natural frequency.

The un–morphed wing with two modules and hinged (spherical) joints, without
deformation, is presented in Figure 25. The first five mode shapes are presented here
in Figures 26–30. Comparing with the corresponding Euler–Bernoulli beam case, it is
observed that mode shapes are similar. However, it is found that natural frequencies
are reduced in Timoshenko beam analysis. Moreover, this reduction increases with the
increasing mode number. Natural frequencies are very close to each other though repeated
modes are not observed. The differences with respect to DSM modes are very small in the
converged solution, and is of the order of 1.8%. This reduction in natural frequencies is
attributed to the inclusion of shear deformation and rotary inertia in the analysis.

Figure 25. Un–morphed wing in Topology 1 with hinged ends; original configuration.
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Figure 26. Mode 1 of Timoshenko beams in Topology 1 with hinged ends; original configuration.

Figure 27. Mode 2 of Timoshenko beams in Topology 1 with hinged ends; original configuration.

Figure 28. Mode 3 of Timoshenko beams in Topology 1 with hinged ends; original configuration.
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Figure 29. Mode 4 of Timoshenko beams in Topology 1 with hinged ends; original configuration.

Figure 30. Mode 5 of Timoshenko beams in Topology 1 with hinged ends; original configuration.

4.3. Convergence

A convergence study has been carried out for the Timoshenko beam-based modular
wing model of topology 1 undergoing spanwise morphing of 12%. Results of the simula-
tions for the first ten modes are plotted below in Figure 31. It is found that 30 elements per
beam are sufficient for the converged solution.

4.4. Effect of Spanwise Expansion

An analysis of the effect of spanwise expansion on the natural frequencies has been
conducted here. The material used was steel as before, and the number of elements in
each beam was 30. Each of two modules expands half of the required expansion. For
every expansion case of the morphing wing, the diameter (therefore, area and moment of
inertia) of each structural beam was calculated by keeping its corresponding mass constant.
First, the effect on the first ten modes has been investigated and tabulated in Table 7.
The morphed wing with two modules and hinged (spherical) joints for the representative
expansion of 12% is depicted in Figure 32. Corresponding mode shapes for the first five
modes undergoing the expansion of 12% are presented in Figures 33–37. It is found that
spanwise expansion stiffness of the system decreases as evident by the lower natural
frequencies compared to the un-morphed (original) configuration.
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Figure 31. Convergence of natural frequencies of Timoshenko beams in Topology 1 with hinged ends.

Table 7. Natural Frequencies, ω(rad/s) of Timoshenko beam Analysis with Hinged ends in Topology
1, 12% spanwise expanded configuration

Mode 1 2 3 4 5 6 7 8 9 10

FEM 1276.6 1690.3 1702.2 1703 1710.5 1735.7 1741.8 1742.6 2080.4 2376.8

Figure 32. 12% Spanwise Expanded wing in Topology 1 with hinged ends; morphed configuration.

Moreover, the first ten natural frequencies for various expansion cases, ranging from
0 to 20% are extracted and presented in Table 8 and Figure 38. As can be observed, this
variation is almost linear for the expansion cases studied here. It is also evident that natural
frequencies corresponding to mode 2 to mode 8 are very close.
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Figure 33. Mode 1 of Timoshenko beams in Topology 1 with hinged ends; spanwise
expanded configuration.

Figure 34. Mode 2 of Timoshenko beams in Topology 1 with hinged ends; spanwise
expanded configuration.

Figure 35. Mode 3 of Timoshenko beams in Topology 1 with hinged ends; spanwise
expanded configuration.
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Figure 36. Mode 4 of Timoshenko beams in Topology 1 with hinged ends; spanwise
expanded configuration.

Figure 37. Mode 5 of Timoshenko beams in Topology 1 with hinged ends; spanwise
expanded configuration.

Table 8. Change of Natural Frequencies, ω(rad/s) of Timoshenko beam Analysis with Hinged ends
in Topology 1, with spanwise expansion

Mode Number
Expansion (%)

0 2 5 10 15 20

Mode 1 1528.9 1483.4 1417.7 1315.2 1221.3 1135.4
Mode 2 1915.7 1876.4 1818.8 1726.2 1637.9 1553.9
Mode 3 1927.2 1888.1 1830.8 1738.7 1648.6 1562.9
Mode 4 1932.4 1892.4 1833.6 1738.9 1650.8 1567.3
Mode 5 1937.7 1897.9 1839.7 1746.5 1657.9 1573.6
Mode 6 1967.6 1927.2 1867.8 1772.5 1681.8 1595.7
Mode 7 1974.5 1933.9 1874.4 1778.7 1687.7 1601.2
Mode 8 1975.4 1934.8 1875.2 1779.6 1688.5 1602
Mode 9 2462.6 2392 2291.7 2137.8 1998.4 1871.2

Mode 10 2862.4 2774 2647.2 2450.6 2271 2106.7
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Figure 38. Changes in natural frequencies of Timoshenko beams with spanwise expansion.

4.5. Effect of Topology

All the analyses presented above were conducted on one topological configuration of
the module (Topology 1). In this section, the modal analysis is conducted on a Topology 2
for the un-morphed configuration, shown in Figure 4 and represented here by a simplified
line diagram in Figure 39. The first ten natural frequencies of Topology 2 are given in
Table 9 for the same material and mechanical properties as those used in Topology 1. By
comparing with Table 6, it is clear that this configuration of beam arrangement exhibit natu-
ral frequencies very close to those of Topology 1. Mode shapes are shown in Figures 40–44.
It is clear here that vertical bending is small compared to the horizontal plane bending as
in the case of Topology 1. However, it is observed that the second mode in fact represents
twisting-bending coupling along with internal beam flexing. This coupling was not evi-
dent in Topology 1. However, the higher modes exhibit internal beam flexing as was also
observed in Topology 1.

Figure 39. Un–morphed wing in Topology 2 with hinged ends; original configuration.
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Table 9. Natural Frequencies, ω(rad/s) of Timoshenko beam Analysis with Hinged ends in Topology
2, original configuration.

Mode 1 2 3 4 5 6 7 8 9 10

FEM 1547.3 1892.4 1923 1928.4 1937.8 1964.7 1974.5 1975.2 2480.1 2703.4

Figure 40. Mode 1 of Timoshenko beams in Topology 2 with hinged ends; original configuration.

Figure 41. Mode 2 of Timoshenko beams in Topology 2 with hinged ends; original configuration.

Figure 42. Mode 3 of Timoshenko beams in Topology 2 with hinged ends; original configuration.
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Figure 43. Mode 4 of Timoshenko beams in Topology 2 with hinged ends; original configuration.

Figure 44. Mode 5 of Timoshenko beams in Topology 2 with hinged ends; original configuration.

5. Conclusions

Morphing wing aircraft have been reported to offer a high lift-to-drag ratio, a high
performance in varying flight conditions, and enhancement in maneuverability and flight
envelope. Notwithstanding these prospects, a cost is associated with it. Therefore, an
optimum solution is sought for the conflicting outcomes. To this end, a consummate study
of dynamic characteristics of the morphing wing must be conducted and comprehended.
In this work, a special reconfigurable modular morphing wing design, developed in-house
at Toronto Metropolitan University (formerly Ryerson University), has been studied. This
modular design consists of a number of structural members connected through hinge
joints. It is shown here that structural members/elements undergo bending, thereby truss
element analysis is evidently a non-conservative approach. The effect of spanwise extension
reported here exhibits a reduction in the natural frequencies of the system. It was also
shown that the presented topology leads to unsymmetrical bending; vertical bending
(flapping) is considerably high in amplitude compared to in-plane bending (lead-lag).
Based on the two topological configurations studied here, it can be deduced that topology
does not offer any considerable effect on the natural frequencies and mode shapes of
the system. It can be concluded that the representation of a wing by one single beam or
plate structural member does not provide the full dynamic characteristics of a wing. It
is also deduced that, before deciding the number of modes to be included for a dynamic
or aeroelastic analysis, more than ten modes and mode shapes must be computed and
included to provide reliable aeroelastic characteristics of the wing.
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