
����������
�������

Citation: Xu, R.; Chen, C.; Lu, S.;

Li, Z. Autonomous Recovery from

Spacecraft Plan Failures by

Regulatory Repair While Retaining

Operability. Aerospace 2022, 9, 40.

https://doi.org/10.3390/

aerospace9010040

Academic Editor: Angelo Cervone

Received: 29 November 2021

Accepted: 12 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Autonomous Recovery from Spacecraft Plan Failures by
Regulatory Repair While Retaining Operability
Rui Xu 1,2, Chao Chen 1,2 , Siyao Lu 1,2 and Zhaoyu Li 1,2,*

1 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
xurui@bit.edu.cn (R.X.); p_chenchao@126.com (C.C.); lsylusiyao@bit.edu.cn (S.L.)

2 Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration, Ministry of Industry
and Information Technology, Beijing 100081, China

* Correspondence: lizhaoyu@bit.edu.cn

Abstract: Pre-designed spacecraft plans suffer from failure due to the uncertain space environment.
In this case, instead of spending a long time waiting for ground control to upload a feasible plan in
order to achieve the mission goals, the spacecraft could repair the failed plan while executing another
part of the plan. This paper proposes a method called Isolation and Repair Plan Failures (IRPF) for
a spaceship with durable, concurrent, and resource-dependent actions. To enable the spacecraft to
perform some actions when a plan fails, IRPF separates all defective actions from executable actions
in the pre-designed plan according to causal analysis between the failure state and the established
plan. Then, to address the competition between operation and repair during the partial execution of
the plan, IRPF sets up several regulatory factors associated with the search process for a solution,
and then repairs the broken plan within the limits of these factors. Experiments were carried out in
simulations of a satellite and a multi-rover system. The results demonstrate that, compared with
replanning and other plan-repair methods, IRPF creates an execution plan more quickly and searches
for a recovery plan with fewer explored state nodes in a shorter period of time.

Keywords: plan failure; spacecraft plan; regulatory repair; plan and execution

1. Introduction

A spacecraft plan, which is expected to achieve certain mission goals, is usually pre-
programmed before liftoff or uploaded from ground control during a mission. Nevertheless,
when applied in practice, this established plan has to deal with environmental uncertainties
that can undermine the plan [1], i.e., the plan fails. For example, the Philae could not land at
the original intended site because of the failure of its active descent system and anchoring
harpoons [2]. In such a case, ground control would not be aware of the problem in a timely
manner, nor could they quickly deliberate over a workable solution, taking into account
the delay and accessibility between the spacecraft and the ground.

There are two ways to address plan failures: plan from scratch (i.e., replanning) and
plan repair based on the existing plan. While replanning reuses the planner as a black box
and obtains its output by feeding in a new initial state, plan repair adapts the failed plan
to the new situation, e.g., deleting inapplicable activities and adding appropriate steps.
Although plan repair is not easier than replanning in theory [3], it can find a solution faster
in practice [4–7]. However, to the best of our knowledge, most current research on plan
repair seems to be carried out in systems full of instant operations, and little attention has
been paid to resource management. Since spacecraft actions are durable, concurrent, and
resource-dependent, the existing repair methods are difficult to be applied directly to the
synthesis of a recovery plan in spacecraft systems.

A spacecraft is a complex system composed of multiple subsystems such as attitude
control, communication, and data management. When something goes wrong with one of
these operational subsystems, some of them will be affected, while others will not. If, for

Aerospace 2022, 9, 40. https://doi.org/10.3390/aerospace9010040 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9010040
https://doi.org/10.3390/aerospace9010040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-5662-4053
https://doi.org/10.3390/aerospace9010040
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9010040?type=check_update&version=2

Aerospace 2022, 9, 40 2 of 18

example, the spacecraft cannot turn itself, the communication subsystem will be impacted
by pointing restrictions. However, the data management subsystem will not be affected.
Therefore, instead of waiting a long time for ground control to come up with a new plan
to achieve the unaccomplished mission goal, it is more efficient to allow the spacecraft to
amend the failed plan while performing other activities. Moreover, with multiple spacecraft
systems, it is often more efficient to use another space vehicle to complete the tasks of a
malfunctioning one.

In this paper, we propose a principled approach for spacecraft called Isolate and
Repair Plan Failures (IRPF). IRPF extracts defective actions from the failed plan that are
not suitable for the current operational environment according to the inherent causal chain,
and then repairs an isolated set of actions while executing the remaining executable actions
in the plan. The final recovery plan can then be merged with these available executable
actions at an appropriate time to form a completely new plan, assisting the whole system
in achieving its mission goals. Furthermore, the rationality and effectiveness of the new
plan can be validated and verified by existing tools such as VAL [8].

When a failure happens, the pre-designed spacecraft plan can generally be divided
into three parts: completed, executable, and defective parts. There are two critical issues
for IRPF that must be addressed when connecting the executable and defective parts. In
order to ensure normal operations, it is crucial to accurately identify actions that are no
longer feasible and separate them from the established plan. The other issue is dealing
with the conflict between repair and operations. Since there are limited resources onboard,
and spacecraft actions are durable, concurrent, and resource-dependent, the operational
process may require the same type of resources as the plan-repair process, destroying the
initial conditions and resulting in chaos during the repair process. Besides this, it is time-
consuming to decide on a recovery plan. Moreover, the execution of activities constantly
changes the spacecraft’s status while it is undergoing repair. Therefore, it is difficult for
plan repair to choose an appropriate initial state to start its work.

To overcome the challenges outlined above, we propose a bi-loop recognition method
for the accurate identification of all invalid actions according to a causal analysis. As failed
actions are stripped from the pre-designed plan, the spacecraft can resume the execution of
the remaining executable actions. The broken plan could then be fixed during the partial
execution of the failed plan. Furthermore, to deal with the competition between operations
and repair, a multi-factor regulatory repair method is proposed for the development of a
feasible recovery plan. Test results show that IRPF works well; it enables the spacecraft to
quickly identify unavailable planned actions, obtain a feasible plan that can be put into use
rapidly, and repair invalid actions during operations.

This paper is organized as follows: Section 2 presents some related work; Section 3
defines the plan-repair problem and outlines the structure of IRPF. Then, the following two
sections describe methods for isolation and repair, respectively. Several experiments in the
next section evaluate the effectiveness of IRPF, and a corresponding discussion is presented.
The last section summarizes and outlines future research lines.

2. Related Work

Modern spacecraft operate on a fault-tolerant system supported by a Fault Detection,
Isolation, and Recovery (FDIR) module. When something goes wrong with devices onboard,
FDIR can detect the problem and replace the damaged equipment with redundant backup
equipment [9]. However, these measures are designed for the health and stability of the
spacecraft, not for the mission’s success. A spacecraft plan is responsible for guiding the
space vehicle to achieve its mission goals, and is always pre-designed and stored onboard.
A plan is a course of action for achieving goals, while FDIR usually studies the damage
and repair of hardware. When a plan failure happens in the uncertain space environment,
not necessarily caused by damaged hardware, the spacecraft cannot fulfill all its tasks until
a proper plan is uploaded from ground control.

Aerospace 2022, 9, 40 3 of 18

Onboard planning can actively pursue possible solutions instead of passively wait-
ing for ground control to meet missing goals [10]. Deep Space 1 (DS-1) is the first fully
autonomous spacecraft [11] orbiting the world; it generates its daily operations and re-
sponds to anomalies without human interference based on the framework of the Heuristic
Scheduling Testbed System (HSTS) [12]. It separates planning and execution and follows
the principle of planning before execution. When an exception happens, the spacecraft has
to pause its operations and wait for a new plan from the planner, resulting in the possible
loss of valuable phenomena such as volcanic eruptions. To overcome this, continuous
planning, which interleaves planning and execution [13], is widely used in practical ap-
plications [14–17]. In this way, even if the plan is not generated in its entirety, the actions
committed to its execution can be carried out.

Ponzoni Carvalho Chanel et al. [18] proposed a flexible algorithmic framework called
AMPLE (Anytime Meta PLannEr) for the support of continuous planning in robot ap-
plications. In AMPLE, there are two parallel threads: the planning thread, as a server,
responds to planning requests and outputs planning results for a certain amount of time,
and the execution thread, as a client, generates planning requests according to the current
execution status and the future evolution of the system. A probabilistic model is used to
anticipate the next execution state, forming belief states for next-stage planning in order to
provide possible initial states. However, AMPLE cannot deal with concurrent actions and
is restricted to simple action execution schemes.

When a plan failure happens, Cashmore et al. [19] have considered replanning in
the context of plan execution. They used timed initial literals (TILs) to capture the effects
and conditions of non-interruptible actions and the ability of the output of the “bailout
action generator” to replace failed interruptible actions. After that, the replanning problem
was framed as a situated temporal planning problem and could be solved by the already
existing situated temporal planning method [20]. Nevertheless, their approach only dealt
with a particular execution segment rather than continuous execution, and discarded the
remainder of the original plan.

Fickert et al. [21] studied methods for the determination of the initial state of a new
plan search during a continual online planning task. They proposed the multiple initial
state technique (MIST) for dealing with the replanning of a newly generated goal during
the execution of the original plan. MIST samples a set of potential states called “reference
states” in uniform intervals from the executing plan to serve as initial state speculations
for replanning. If a solution is not found when the next reference state is executed, the
previous planning efforts will be abandoned, and the initial state will be replaced with
a new reference state for searching. Besides this, MIST designs a time-aware evaluation
expression to prioritize nodes in the search process, considering both the time consumption
of the planning process and the makespan of the resulting plan. However, because actual
actions are durable and resource-dependent, it is not easy to predicate the content of
reference states according to a time uniform distribution.

Compared with planning or replanning, plan repair is more prevalent in plan failure
handling due to its shorter solution time [22,23]. There is much research work on plan
repair in the literature, which can be roughly divided into five categories [24]: the rule
matching method [25], the local adjustment method [26], the unrefinement and refine-
ment method [27], the state transition method [28] and the new problem construction
method [29,30]. However, most of these seem to assume that the agent keeps static when
resuming the failed plan, which is discontinuous. The agent has to stop its execution and
wait for the generation of a recovery plan whenever a plan failure happens. Therefore, it
is imperative to research the plan-repair problem of spacecraft while executing durable,
concurrent, and resource-dependent actions.

Aerospace 2022, 9, 40 4 of 18

3. Preliminaries
3.1. Plan-Repair Problem

Like replanning, plan repair is also a reasoning process about a course of action, i.e.,
a plan, for achieving a set of goals under assigned constraints. The difference lies in that
replanning starts from scratch, while plan repair is based on an existing plan. Moreover,
the reasoning process is based on actions abstracted from reality.

Definition 1 (operator). An operator o is an action framework without instantiated parameters,
which can be expressed as o = <n(o), p(o), d(o), pre(o), eff(o)>, where n(o) represents its unique
name, p(o) includes its parameters, and d(o) shows the duration time of o, while pre(o) indicates the
mandatory requirements for execution, and eff(o) describes how o changes the world after completion,
including positive effects e+f f (o) and negative effects e−f f (o).

A durable operator can be divided into three parts for capturing information at
different times: a beginning part o→, an intermediate part o↔, and an end part o←. o→ is
described by the conditions and immediate effects of the starting action part, while o↔
usually contains the persistent conditions and o← covers the preconditions and final effects
of the end of the action.

Definition 2 (plan). A plan P = {a1, a2, · · · , an} is a time-ordered set of instantiated operators,
i.e., actions. For any action a in P, it can be expressed as a = {na, ta, pa, da}, where na refers to its
unique name, ta shows when it starts the operation, pa gives its parameters, and da specifies its
duration time.

When put into practical use, the derived plan is fragile and cannot adapt to the
uncertain space environment and anomalous events, such as an abrupt storm or a failure
of the magnetorquer, which indicate a plan failure. In such a case, we can define the
plan-repair problem as follows:

Definition 3 (plan-repair problem). A plan-repair problem Π is a six-tuple, i.e., Π = {P, F, V, O,
IΠ, GP}, where,

– P is the failed plan.
– F is a set of Boolean propositions that qualitatively describe the relationship between objects

in the spacecraft system. The value of any element in the set is either true or false. In the
proposition (on_board cam sat), for example, it shows whether the camera cam is installed on
the spacecraft sat.

– V is a set of numerical fluents that quantitively describe the relationship between objects in the
spacecraft system. As an example, the fluent (=(fuel sat) 500) indicates that there are 500 units
of fuel on the spacecraft sat.

– O contains uninstantiated operations that model the way that the spacecraft changes the world
and its effects.

– IΠ depicts the spacecraft’s state when P fails. It is represented by a subset from F, which is true
in that state, and an assignment of real values to all the numeric fluents in V.

– GP depicts the mission goal that has not yet been achieved.

Then, plan repair is a method for the synthesis of a series of operators from O and their
instantiation under the constraints of F and V so that the space vehicle can reach the goal
state GP from the specified initial state IΠ. After a recovery plan is given, its executability
can be verified and validated by checking the constraint satisfiability of all the planned
actions, which is integrated into the tool VAL [8].

3.2. Structure of the Isolate and the Repair Plan Failure Method

To facilitate the recovery of the damaged plan while remaining operational, the ex-
ecutable parts whose conditions are all met should be selected from the failed plan to

Aerospace 2022, 9, 40 5 of 18

continue their work. A plan-repair method can then be applied to the inexecutable parts.
Our proposed method IRPF has a structure as shown in Figure 1. At first, based on the
causal analysis between the spacecraft state and the established plan, IRPF separates exe-
cutable actions and inexecutable actions from the failed plan. Then, under the consideration
that the executable parts may change the initial state of repair, IRPF tries to solve the plan-
repair problem while remaining operational. After a recovery plan is given, actions not
performed in the executable part are merged with the recovery plan. After that, the failed
plan can be updated into a new feasible spacecraft plan. Since the update step is relatively
easy, this paper ignores it and focuses on isolation and repair.

Aerospace 2022, 9, x FOR PEER REVIEW 5 of 19

3.2. Structure of the Isolate and the Repair Plan Failure Method
To facilitate the recovery of the damaged plan while remaining operational, the exe-

cutable parts whose conditions are all met should be selected from the failed plan to con-
tinue their work. A plan-repair method can then be applied to the inexecutable parts. Our
proposed method IRPF has a structure as shown in Figure 1. At first, based on the causal
analysis between the spacecraft state and the established plan, IRPF separates executable
actions and inexecutable actions from the failed plan. Then, under the consideration that
the executable parts may change the initial state of repair, IRPF tries to solve the plan-
repair problem while remaining operational. After a recovery plan is given, actions not
performed in the executable part are merged with the recovery plan. After that, the failed
plan can be updated into a new feasible spacecraft plan. Since the update step is relatively
easy, this paper ignores it and focuses on isolation and repair.

Figure 1. Sketch of IRPF. All rectangular boxes in the figure represent actions.

4. Isolation of Defective Actions by the Bi-Loop Recognition Method
It is necessary to diagnose whether a plan failure is caused by abnormal spacecraft

functions, environmental changes, or a combination of the two if a space vehicle cannot
perform its intended actions while remaining operational [31,32]. However, it is not
within the scope of this study to diagnose whether the spacecraft’s function is abnormal.
Thus, this paper assumes that all plan failures are caused by the environment, which
means that when the plan failure occurs, all functions of the spacecraft are normal, and
the failure is because the execution conditions of the action are no longer satisfied. Then,
defective actions can be analyzed from the spacecraft’s state after a failure by inspecting
the causal relationship between actions in the failed plan. In addition to the explicit cau-
sality between action execution and spacecraft state, there is also a causal relationship be-
tween limited onboard storage and resource consumption caused by alternate operations.
Therefore, a bi-loop recognition method was designed which first verifies the execution
conditions of a single action and then forms a plan in order to separate all defective actions
from the failed plan.

The bi-loop recognition method can be found in Algorithm 1. It takes a failed plan
and the system state after failure as the input, and outputs executable actions, defective
actions, and the corresponding open conditions caused by environmental changes. Con-
sidering that the execution conditions of spacecraft actions include not only logical condi-
tions (e.g., the camera needs to be calibrated before imaging operations) but also numeri-
cal conditions (e.g., the power onboard needs to be greater than a certain value for imag-
ing operations); therefore, there are two successive for loops in this algorithm. The first
loop is designed from both logical and numerical conditions to validate the availability of
a single action in the pre-designed plan under the failure state (lines 2–9). In the second

Figure 1. Sketch of IRPF. All rectangular boxes in the figure represent actions.

4. Isolation of Defective Actions by the Bi-Loop Recognition Method

It is necessary to diagnose whether a plan failure is caused by abnormal spacecraft
functions, environmental changes, or a combination of the two if a space vehicle cannot
perform its intended actions while remaining operational [31,32]. However, it is not within
the scope of this study to diagnose whether the spacecraft’s function is abnormal. Thus,
this paper assumes that all plan failures are caused by the environment, which means that
when the plan failure occurs, all functions of the spacecraft are normal, and the failure
is because the execution conditions of the action are no longer satisfied. Then, defective
actions can be analyzed from the spacecraft’s state after a failure by inspecting the causal
relationship between actions in the failed plan. In addition to the explicit causality between
action execution and spacecraft state, there is also a causal relationship between limited
onboard storage and resource consumption caused by alternate operations. Therefore, a
bi-loop recognition method was designed which first verifies the execution conditions of
a single action and then forms a plan in order to separate all defective actions from the
failed plan.

The bi-loop recognition method can be found in Algorithm 1. It takes a failed plan and
the system state after failure as the input, and outputs executable actions, defective actions,
and the corresponding open conditions caused by environmental changes. Considering
that the execution conditions of spacecraft actions include not only logical conditions
(e.g., the camera needs to be calibrated before imaging operations) but also numerical
conditions (e.g., the power onboard needs to be greater than a certain value for imaging
operations); therefore, there are two successive for loops in this algorithm. The first loop is
designed from both logical and numerical conditions to validate the availability of a single
action in the pre-designed plan under the failure state (lines 2–9). In the second loop, to
further identify the resource shortage problem caused by alternate operations, numerical
conditions are taken into account to determine defective actions (lines 10–16).

Aerospace 2022, 9, 40 6 of 18

In the first loop, it is straightforward to judge the feasibility of an action according
to the satisfaction of its logical and numerical conditions. However, for actions in the
failed plan, their logical conditions can be provided not only by the environment but also
by the actions scheduled before it. Therefore, actions whose logical conditions cannot
be supported by the environmental state or by their previous actions can be considered
defective (lines 3–4). On the other hand, those individuals whose conditions are met are
considered executable (line 7).

Note that an operator is divided into three parts: the beginning, the intermediate
part, and the end. It is essential to check conditions in order to determine whether a
part is available in a specified situation. Since the three parts are consecutive and jointly
represent an action, if the conditions of any of the three parts are not met, the action cannot
be completed. As a result, when evaluating the condition satisfiability of the beginning
part, the conditions of all the three parts should be considered together. Similarly, when
evaluating the condition satisfiability of the intermediate part, the conditions of the end
part should also be considered.

The continuous execution of consumable actions may exhaust the limited resources
onboard. Therefore, actions without sufficient resources in the executable action set are
filtered out and put into the affected action set in the second loop. To this end, the resources
consumed by operational actions (not the real consumption value but the estimated con-
sumption level in the model) are accumulated to the level of resources required in the
current state and settled. When resources generated for the next activity are not sufficient,
the next activity is deemed defective (line 11). In this process, resources are assumed to
be step resources: the resource conditions for the action are required in its beginning and
intermediate parts, while the actual consumption of resources occurs during the end part.

It is easy to determine which conditions of an action are not satisfied in the current state
during the whole verification process. These unsatisfied conditions are stored and regarded
as open conditions (line 5 and line 13) for providing attainable goals for subsequent repair
work. After this, with these actions identified as defective and executable, the spacecraft
can selectively execute them without affecting the overall continuity.

Algorithm 1 Bi-loop recognition of defective planned actions

Input: a failed plan P and current system state S
Output: affected actions Ai and their reasons R, executable actions Ae
1. Ai ← ∅ , R← ∅ , Ae ← ∅
2. for action a in P do B Availability of an action

3.
if the logical conditions of a cannot be satisfied by S and previous scheduled

actions in P, or the numerical conditions of a cannot be met by S, then
4. Ai ← a
5. R← gather the unsatisfied conditions of a
6. else
7. Ae ← a
8. end if
9. end for
10. for action b in Ae do B Availability of a course of action

11.
if the application of b and its previous actions in Ae under S results in

insufficient resources, then
12. Ai ← b
13. R← gather the unsatisfied conditions of b
14. Ae ← remove b from Ae
15. end if
16. end for
17. return Ai, R, and Ae

Aerospace 2022, 9, 40 7 of 18

5. Multi-Factor Regulatory Repair

With the support of a planning algorithm, the spacecraft can autonomously obtain a
course of action, i.e., a plan, under a given initial state and goal state. However, when the
spacecraft cannot perform all planned actions, it is difficult to determine the optimal initial
state and goal state for plan repair in advance. The reason is fourfold:

(1) Planned actions are concurrent. The executed actions will change the spacecraft’s
state and affect the occurrence time of the recovery actions. For example, the data
transmission and imaging operations in Figure 2 depend on the effects of the respective
previous turning operation. So, before repairing them, it is necessary to determine
where the spacecraft is pointed.

(2) Planned actions are resource-dependent and arranged with limited resources. As a
result, the resources change with the execution of actions, limiting the repair action’s
selection and use.

(3) Both executed processes and the plan-repair process take time. Suppose a solution
is not found before the selected initial state is reached. In that case, the subsequent
recovery plan based on the expired initial state will no longer be applicable, which
will require a new round of plan repair.

(4) In addition to mission goals, open conditions of planned actions could also serve as
repair goals. Furthermore, improper goal selection will waste plan-repair efforts and
increase the repair workload.

Aerospace 2022, 9, x FOR PEER REVIEW 7 of 19

11.
 if the application of b and its previous actions in Ae under S results in in-
sufficient resources, then

12. iA b←

13. R ← gather the unsatisfied conditions of b

14. eA ← remove b from Ae

15. end if
16. end for
17. return Ai, R, and Ae

5. Multi-Factor Regulatory Repair
With the support of a planning algorithm, the spacecraft can autonomously obtain a

course of action, i.e., a plan, under a given initial state and goal state. However, when the
spacecraft cannot perform all planned actions, it is difficult to determine the optimal initial
state and goal state for plan repair in advance. The reason is fourfold:
(1) Planned actions are concurrent. The executed actions will change the spacecraft’s

state and affect the occurrence time of the recovery actions. For example, the data
transmission and imaging operations in Figure 2 depend on the effects of the
respective previous turning operation. So, before repairing them, it is necessary to
determine where the spacecraft is pointed.

(2) Planned actions are resource-dependent and arranged with limited resources. As a
result, the resources change with the execution of actions, limiting the repair action’s
selection and use.

(3) Both executed processes and the plan-repair process take time. Suppose a solution is
not found before the selected initial state is reached. In that case, the subsequent
recovery plan based on the expired initial state will no longer be applicable, which
will require a new round of plan repair.

(4) In addition to mission goals, open conditions of planned actions could also serve as
repair goals. Furthermore, improper goal selection will waste plan-repair efforts and
increase the repair workload.

Figure 2. Sketch of difficulties in the repairing of defective actions while performing other actions
in a simple imaging task example (the red cross indicates a plan failure. Orange oval actions are
executable, and gray rectangle actions are defective. At the same time, the top red line represents
the predicted execution state evolution of the spacecraft. The middle red line shows the process of
the plan repair within a time limit. The bottom blue line indicates the expected state, which provides
a goal reference for the plan repair. When a plan failure happens, it is difficult to decide which initial
state would be more appropriate for plan repair and what would be the optimal goal of the repair).

Figure 2. Sketch of difficulties in the repairing of defective actions while performing other actions
in a simple imaging task example (the red cross indicates a plan failure. Orange oval actions are
executable, and gray rectangle actions are defective. At the same time, the top red line represents the
predicted execution state evolution of the spacecraft. The middle red line shows the process of the
plan repair within a time limit. The bottom blue line indicates the expected state, which provides a
goal reference for the plan repair. When a plan failure happens, it is difficult to decide which initial
state would be more appropriate for plan repair and what would be the optimal goal of the repair).

5.1. Factor Estimation

Plan repair is time-consuming. Before a repair takes effect, it is necessary to estimate
the solvability of the repair problem. In general, it is enough if the goal is reachable.
However, this is not the case for repairs carried out during operations. While actions are
executed, the spacecraft’s state changes all the time. Therefore, the plan-repair problem is
dynamic. The solvability of the problem cannot be judged simply by the goal reachability.
To this end, a time limit factor ∆t and a time tolerance factor tr are designed, along with the
goal reachability factor h.

The value is calculated heuristically for h, the distance estimation between the specified
goal state and the selected initial state. In this paper, a relaxed heuristic called a Temporal
Relaxed Planning Graph (TRPG) [33] was used to address the fact that spacecraft activities

Aerospace 2022, 9, 40 8 of 18

are durable, concurrent, and resource-dependent. Then, the length of the relaxed plan
given by TRPG was used to acquire the distance estimation.

For ∆t, which stands for the maximum time limit for plan repair, its value is defined by
the time difference between the failure and the selected initial state. If there is no recovery
plan in the chosen initial state, a new possible initial state takes over, and the value of ∆t is
updated accordingly.

For tr, which represents an estimation of the time taken to repair, the following
equation can give its value based on a phenomenon called search vacillation [34], where
there is a gap between the node generation and node expansion.

tr = h · t · d (1)

where h is the goal distance estimation, t is the average expansion time of each step, and
d is the average number of state nodes between node generations and its corresponding
expansion, which is called “expansion delay” in [34].

Considering all of the above factors, only if there is a possible solution and enough
time can a repair search be carried out, to reduce unnecessary search time. Otherwise, the
repair search process is rendered meaningless due to the fact that a suitable solution cannot
be found within a limited time.

5.2. Searching for a Recovery Plan

The spacecraft’s state changes while executing the executable part of a failed plan.
Moreover, plan repair is time-consuming. Therefore, the initial state of the plan-repair
search should be selected from the future state of the spacecraft. Besides this, multiple
inexecutable actions produce different open conditions that can be potentially repaired.
Despite this, not all of these actions will be used to restore operations, so reasonable
strategies should be developed for determining a repair goal. As soon as an initial state
and a goal state have been determined, the forward search mechanism is used to determine
a recovery plan between the two states.

A predicated state candidate set from the executable part is extracted chronologically
to represent possible plan repair initial states. In particular, it is extracted neither at the end
of a failed action (e.g., I0 in Figure 2) or an incomplete action (e.g., I1 in Figure 2), nor at
the boundary of an unexecuted action (e.g., I2 and I3 in Figure 2, respectively). There are
logical and numerical elements in the state representation, and resources are expressed in
a numerical form and are assumed to be step resources. By aggregating the effects of the
actions that end at the same time, the state of the next execution can be determined from
the state of the last execution. In this way, a queue of future execution state estimations is
obtained, which constitutes the possible initial states for plan repair.

For the goal state of the plan repair, a candidate set of expected states are extracted
from defective actions to provide available repair goal references. This either gathers the
effects of actions that have started but not finished (such as G0 in Figure 2) or collects the
conditions of actions yet to be executed (such as G1 and G2 in Figure 2). As planned actions
are executed in succession, if only the conditions of one defective action are taken into
consideration during repair, an operational failure may occur again if the conditions for the
next action are not met—even if the repair succeeds. Thus, the conditions for all subsequent
defective actions need to be considered when developing a repair goal. By preserving the
precedence links between each defective action in the failed plan, we construct multiple
repair goals in accordance with the execution order in the failed plan—such as G0–G2 in
Figure 2—so that even if the last goal cannot be reached, other options are still available.

Moreover, a state may contain many elements that have no relation to plan repair. For
example, when adjusting the attitude pointing of the spacecraft, the status of the inertial
navigation device is irrelevant. Thus, if the whole expected state is regarded as a goal
for repair, the repair efficiency will undoubtedly be reduced due to the additional search
for meaningless parts of the state. We can increase the efficiency of the plan repair by

Aerospace 2022, 9, 40 9 of 18

replacing the defective actions’ conditions with the open conditions from the last section
when building repair goals.

As shown in the planner POPF2 [35], a forward search manner is adopted after the
determination of an appropriate initial state and goal state for plan repair. This manner
realizes state transition by repeatedly searching for available actions and applying them
until all constraints are consistent and the goal state is reached, as shown in Figure 3. States
in the search process are collected in two sets: open and close. States to be extended are
collected by the set open, while states that have been extended are in the set close. Each
search cycle begins with an element from the set open and ends with a state in the set
close, after it has been applied. In each cycle, the priority of the elements in the set open is
determined by the TRPG heuristic. The state with the minimum evaluation value in the set
open, which is the closest to the goal state, has the highest priority.

Aerospace 2022, 9, x FOR PEER REVIEW 9 of 19

consideration during repair, an operational failure may occur again if the conditions for
the next action are not met—even if the repair succeeds. Thus, the conditions for all sub-
sequent defective actions need to be considered when developing a repair goal. By pre-
serving the precedence links between each defective action in the failed plan, we construct
multiple repair goals in accordance with the execution order in the failed plan—such as
G0–G2 in Figure 2—so that even if the last goal cannot be reached, other options are still
available.

Moreover, a state may contain many elements that have no relation to plan repair.
For example, when adjusting the attitude pointing of the spacecraft, the status of the iner-
tial navigation device is irrelevant. Thus, if the whole expected state is regarded as a goal
for repair, the repair efficiency will undoubtedly be reduced due to the additional search
for meaningless parts of the state. We can increase the efficiency of the plan repair by
replacing the defective actions’ conditions with the open conditions from the last section
when building repair goals.

As shown in the planner POPF2 [35], a forward search manner is adopted after the
determination of an appropriate initial state and goal state for plan repair. This manner
realizes state transition by repeatedly searching for available actions and applying them
until all constraints are consistent and the goal state is reached, as shown in Figure 3. States
in the search process are collected in two sets: open and close. States to be extended are
collected by the set open, while states that have been extended are in the set close. Each
search cycle begins with an element from the set open and ends with a state in the set close,
after it has been applied. In each cycle, the priority of the elements in the set open is deter-
mined by the TRPG heuristic. The state with the minimum evaluation value in the set
open, which is the closest to the goal state, has the highest priority.

Figure 3. Schematic diagram of a search for a recovery plan.

Recall that repair goals are a chronological set of preconditions or effects that contain
the open conditions of all subsequent defective actions. In TRPG, when backtracking, the

Figure 3. Schematic diagram of a search for a recovery plan.

Recall that repair goals are a chronological set of preconditions or effects that contain
the open conditions of all subsequent defective actions. In TRPG, when backtracking, the
heuristic values of all subsequent repair goals can be obtained at once when estimating
the goal distance for the action with the earliest execution time, thereby reducing the time
consumed by frequent heuristic calls. However, time continues to run out while searching
for a recovery plan. Within the time limit, if a recovery plan cannot be found to resume the
broken plan, the selected initial state will become unsuitable and will no longer be applied.
Afterward, a new initial state or a revised goal state should be chosen for a potential
repair search.

5.3. The Algorithm for Multi-Factor Regular Repair

When defective actions are not to be executed, the state evolution of the spacecraft
depends on the executing component. Moreover, the system state determines a repair plan,
including its contents and corresponding start times. In our opinion, it is better to obtain a
feasible recovery plan and update the old plan before performing the following executable

Aerospace 2022, 9, 40 10 of 18

actions. If such a recovery plan does not exist, a new initial state is established until the
repair solution is discovered or the executable part is completed. To find a feasible solution
in such a complex situation, a limited search algorithm is developed. The limitations
contain three factors, which can be found in Algorithm 2.

Algorithm 2 Multi-factor regulatory repair

Input: defective actions Ai and their reasons R, executable actions Ae
Output: a recovery plan PR
1. PR ← ∅
2. calculate the possible initial states set IS from Ae
3. for a state S in IS, do
4. ∆t← the time span between the failure and S B∆t: time limit
5. for action {a} that co-occurs in Ai do
6. G← gather the open conditions of all actions no earlier than {a}
7. h← get the distance estimation from S to G B goal reachability
8. if h < 0 then
9. continue
10. end if
11. tr ← estimate the time taken to repair
12. if tr > ∆t then B time tolerance
13. continue
14. end if
15. PR ← search for a path from S to G
16. if PR is not empty
17. return PR
18. end if
19. end for
20. end for
21. return PR

Algorithm 2 calculates the possible initial states and goal states of the plan repair by
taking the result of Algorithm 1 as the input. It then attempts to find a way to link them,
and if such a path exists, it outputs a recovery plan. If the goal is judged to be unreachable
(lines 8–10) or the repair time exceeds the maximum time limit (lines 12–14), the selected
initial state or goal state is not appropriate. Otherwise, the forward search method finds
a path from the specified initial state to the chosen target state (line 15). The algorithm
outputs a meaningful result only when there is a non-empty recovery plan (lines 16–18).

6. Experimental Evaluation and Discussion
6.1. Setup of the Experiment

To validate the proposed approach for resuming a failed spacecraft plan, we selected
two typical mission scenarios, a satellite system and a multi-rover system, as test domains.
While rovers are more concerned with ensuring sufficient energy supply for daily activities,
satellites are more constrained by time window constraints such as communication and
observation windows. Both are modelled in the Planning System Definition Language
(PDDL) 2.2 [36] that originated from the International Planning Competition (IPC). The
tests were based on a pre-calculated plan given by a planner.

To simulate possible failures, the spacecraft’s state was manually changed at different
time instants of the existing plan, including lost facts, altered resource levels, and their
combination. Formally, a plan failure can be described as f = <t, e> where t indicates the
time at which the failure happens and e signifies the nature of the failure. For example,
f 1 = <10.5, (not (camera_calibrated cam))> represents the state at t = 10.5 s in which the camera
cam is not calibrated. f 2 = <100, (< (fuel sp) 20)> indicates that less than 20% of the total fuel
of the spacecraft sp is available at t = 100 s. When the spacecraft’s state is modified, the
operational environment of the planned actions is changed. IRPF then strips inexecutable
actions from the infeasible plan and searches for a recovery plan under various constraints,

Aerospace 2022, 9, 40 11 of 18

including resource limitations, deadlines, and the precedence order of actions when part of
the existing plan is executed.

We implemented our method IRPF based on the POPF2 planner [35] and compared
our approach to three other methods:

(1) Replanning from a static state where all activity executions are stopped immediately
after a failure (Replan is used to refer to this method from now on. We reused POPF2
with no modification to implement it).

(2) Replanning from a dynamic state where all activities in progress are finished and
new actions are forbidden after a plan failure (ReplanDynamic is used to refer to this
method from now on. It is the same idea as Cashmore [19], but we implemented it
on POPF2).

(3) Repairing without isolation and continued operability (CommonRepair is used to
refer to this method from now on. It regards the modified state as the initial state of
plan repair and acquires the goal state for recovery by regression of the remaining plan.
The same idea as Guzman [28], but we added the processing of durable, concurrent,
and resource-dependent actions. We also implemented it on POPF2).

We set up a variety of test problems on which to run the above methods. The problems
cover all three types of plan failures: lost facts, altered resource levels, and their combination.
Additionally, we established two metrics to evaluate the performance of the different
methods: One was the total time taken to perform the process from outage to recovery
after a plan failure. For simplicity, we assume it is approximately the period between a
plan failure and an updated plan. The other was the search performance achieved when
synthesizing a solution, represented by search time and the number of explored state nodes.

We ran all the tests on a laptop (Intel Core i5-4200 CPU @ 1.60 GHz) with a time limit
of 600 s and no memory limit (the computer had 8 GB of RAM). The test results of each of
the problems were the average values of three trials, taken as the statistical value.

6.2. A Satellite

The satellite can turn itself in order to perform several observational tasks with varying
slew times and calibration times, with a limited data capacity and observation time window
constraints, and transmit the acquired image data back to the ground station during the
data transmission window. The results of the run time (in seconds), the search time for a
recovery plan (in milliseconds), and the number of explored nodes are shown in Figure 4.

As we can see in Figure 4a, regardless of the type of input plan failure, i.e., lost
facts, altered resource levels, and their combination, both repair methods were effective in
resuming the execution of the spacecraft, extending fewer nodes and solving the problem
in a shorter time than replanning methods. Especially for the 6th, 8th, 15th, 17th, and 20th
scenarios, both replanning methods failed to solve them in the limited solving time, i.e.,
600 s. In contrast, both methods of repair produced a recovery plan quickly. Plan repair
consists of searching for the missing action sequence in order to connect the failure state to
the established plan. However, replanning entails creating a new plan to achieve mission
goals. Consequently, plan repair generally has a relatively simple goal with a shorter path
length, resulting in a shortened run time for resumed operability and fewer explored nodes
than with replanning.

A revised plan is urgently required for spacecraft to continue achieving their mission
goals following an operational failure. Instead of waiting for a recovery plan before
resuming operations, IRPF quickly identifies the actions not affected by the failure so that
the spacecraft will not be interrupted for too long. For clarity, we divided the run time of
IRPF into two parts: IRPF (isolation) for identifying executable planned actions and IRPF
(repair) for finding a recovery plan during dynamic operability. As shown in Figure 4a, the
average operational recovery time of the spacecraft in IRPF (IRPF (isolation)) was much
shorter than the other three compared methods.

Under the changing spacecraft state, IRPF is able to devise a recovery plan based on
the execution of unaffected actions. As shown in IRPF (repair) in Figure 4a, although IRPF

Aerospace 2022, 9, 40 12 of 18

took a slightly longer time than CommonRepair to solve most problems, the difference in
time was not overwhelming. This is reasonable because compared with CommonRepair,
the initial state of IRPF is not fixed. As a result, IRPF then has to take additional time
to predict the future state of the spacecraft based on the executing actions. Nevertheless,
the longest-run time of IRPF (repair) is less than 1 s, which is shorter than the duration
of all actions in the spacecraft system. Thus, IPPF can output a new feasible plan before
executing actions are complete. However, CommonRepair may not be able to provide an
effective solution in time. For example, the solution times for problem 6 and problem 15
were 3.984 and 4.982 s, respectively—considerably longer than those of IRPF.

Aerospace 2022, 9, x FOR PEER REVIEW 13 of 19

(a)

(b) (c)

Figure 4. Comparison of test results of different methods in the satellite system, including (a) run
time, (b) search time, (c) number of explored nodes.

When part of the plan is executed, there are multiple initial and goal states of repair.
In order to evaluate the rationality of the design of multiple regulatory factors such as
time limits and time tolerance, we depicted the search time actually spent on determining
the repair solution in Figure 4b and the number of expansion nodes during searching in
Figure 4c. As can be seen from the figures, IRPF has a shorter search time, and fewer ex-
panded nodes than other methods, which shows that unnecessary searching is avoided
by using the regulatory search.

To view the performance results in Figure 4 more intuitively, the results are summa-
rized statistically in Table 1. According to the data, our proposed method, IRPF, performs
admirably across a range of dimensions. The data also supports our above analysis. That
is, (1) in both metrics, the performance of plan repair was significantly better than replan-

Figure 4. Comparison of test results of different methods in the satellite system, including (a) run
time, (b) search time, (c) number of explored nodes.

When part of the plan is executed, there are multiple initial and goal states of repair.
In order to evaluate the rationality of the design of multiple regulatory factors such as
time limits and time tolerance, we depicted the search time actually spent on determining

Aerospace 2022, 9, 40 13 of 18

the repair solution in Figure 4b and the number of expansion nodes during searching in
Figure 4c. As can be seen from the figures, IRPF has a shorter search time, and fewer
expanded nodes than other methods, which shows that unnecessary searching is avoided
by using the regulatory search.

To view the performance results in Figure 4 more intuitively, the results are summa-
rized statistically in Table 1. According to the data, our proposed method, IRPF, performs
admirably across a range of dimensions. The data also supports our above analysis. That is,
(1) in both metrics, the performance of plan repair was significantly better than replanning;
(2) our method, IRPF, output a recovery plan more quickly; (3) IRPF avoided extensive
search processes by expanding fewer nodes and conducting searches over a shorter period
of time.

Table 1. Summary of statistics for the performance of different methods in the satellite system.

Methods
Run Time (s) Search Time (s) Explored Nodes

µ 1 σ 2 µ σ µ σ

IRPF 0.017045 0.00678 0.006141 0.005627 17.25 17.678
CommonRepair 0.472188 1.38177 0.46785 1.374523 899.85 2626.195

Replan 151.8533 265.4573 - 3 - 1519.13 427.035
ReplanDynamic 151.7658 265.512 - - 1519.13 427.035

1 The average of all test problem results. 2 The standard deviation of all test problem results. 3 Since the run time
of replanning is much higher than that of plan repair, we are not interested in its search time, so here it is vacant.

6.3. A Multi-Rover System

When a spacecraft resumes operability in a previous system, it either repeats a failed
operation, develops a recovery plan in order to reach the subsequent repair goals, or
resupplies insufficient energy, which is completed by itself. To evaluate the performance of
IRPF in multiple vehicles, we designed some test problems from multi-rover systems in
IPC. There are three rovers in the system; each can independently traverse the surface of
Mars, take pictures in different modes such as color, high, and low resolution, recharge,
collect soil and rock samples, and transmit all the exploration data back to the lander. All
these system operators are durable and resource-dependent. Results are shown in Figure 5
and Table 2.

Recovery plans indicate that other rovers can complete the original mission objectives
if a rover is unable to fulfill them. The statistics in Table 2 show that IRPF outperforms the
other three comparison methods in terms of both these test metrics. Regarding the run time
of the methods when generating a solution, we can see in Figure 5a that IRPF took less time
to identify available actions in the failed plan than the run time of CommonRepair. However,
its time taken to recover defective actions was slightly higher than CommonRepair in some
cases (e.g., problem 1, 2, 3, 5) and lower in other cases (e.g., problem 4, 8). Nevertheless, the
average total run time of IPRF was one order of magnitude less than that of CommonRepair,
and three orders of magnitude smaller than that of the two replanning methods. As for
the search performance, it can be seen from Figure 5b,c that IRPF had a greater advantage
in the execution of the plan—especially when the plan was about to be completed (e.g.,
problems 15–20). This is reasonable because when a failure happens before the execution of
the plan, the repair goal of the IRPF is more complicated than that of CommonRepair; the
supporting conditions of the defective actions stripped from the plan are no longer met by
the environment or by previous executable actions. IRPF then has more open conditions
than other methods, which results in more nodes being explored and longer repair search
times. However, during the execution process, especially when the plan is about to end,
IRPF’s repair goals become almost the same as CommonRepair. At the same time, the initial
state of IRPF is closer to the goal because it is extracted from the evolution of executable
actions. In this case, IRPF has a shorter search time and fewer exploration nodes.

Aerospace 2022, 9, 40 14 of 18Aerospace 2022, 9, x FOR PEER REVIEW 15 of 19

(a)

(b) (c)

Figure 5. Comparison of test results of different methods in the rover system, including (a) run time,
(b) search time, (c) number of explored nodes.

Table 2. Summary of statistics for the performance of different methods in the multi-rover system.

Methods
Run Time (s) Search Time (s) Explored Nodes
μ σ μ σ μ σ

IRPF 0.041915 0.047918 0.035936 0.049353 76.65 95.4354
CommonRepair 0.113925 0.084681 0.087426 0.067032 232.4 164.6513

Replan 95.00949 224.1889 - - 1952.273 3462.318
ReplanDynamic 70.90196 199.1456 - - 301 303.6852

It is worth noting from Table 2 that in the test problems, ReplanDynamic had fewer
explored nodes and lower run times than Replan on average. This confirms the conclusion
drawn in [19] that multi-agent replanning is more advantageous if the expected effects of

Figure 5. Comparison of test results of different methods in the rover system, including (a) run time,
(b) search time, (c) number of explored nodes.

Table 2. Summary of statistics for the performance of different methods in the multi-rover system.

Methods
Run Time (s) Search Time (s) Explored Nodes
µ σ µ σ µ σ

IRPF 0.041915 0.047918 0.035936 0.049353 76.65 95.4354
CommonRepair 0.113925 0.084681 0.087426 0.067032 232.4 164.6513

Replan 95.00949 224.1889 - - 1952.273 3462.318
ReplanDynamic 70.90196 199.1456 - - 301 303.6852

It is worth noting from Table 2 that in the test problems, ReplanDynamic had fewer
explored nodes and lower run times than Replan on average. This confirms the conclusion
drawn in [19] that multi-agent replanning is more advantageous if the expected effects of
the action that has started but not been completed is taken into consideration. Nevertheless,

Aerospace 2022, 9, 40 15 of 18

it is still less efficient than plan repair. Besides this, the two replanning methods cannot
output a solution for some problems, e.g., problems 7 and 14, within the limited solving
time—but the two plan-repair methods can. This is because in comparison with the long-
distance search performed during replanning, the state difference between the initial state
and the goal state is minor, and the length of the solution is shorter, so that the recovery
plan can be found in a limited time.

6.4. Discussion

The results of the two above test domains demonstrate that plan repair performs
better than replanning in dealing with plan failures, regardless of whether replanning is
undertaken from a static state or from the effects of unfinished actions. Compared with the
non-isolated version of the repair method CommonRepair, our proposed method, IRPF, has
a lower run time for resuming the execution of missing goals, and is capable of completing
searches in a shorter time, with fewer explored nodes.

Although there are many plan-repair methods in the literature, they do not explain
how they can be applied to the real world. In these cases, it appears that the agent will
not be able to proceed until the repair plan has been provided. As such, the agent will not
operate continuously but intermittently. In light of the fact that spacecraft have a variety of
subsystems, this study proposes a method, IRPF, of repairing them in terms of plan failures.
Through this method, the spacecraft can continue to operate while undergoing repair work.
To take this method one step further, the CubeSat, with its low cost and short development
cycle, can serve as a technical demonstration tool. When combined with the reliability
design method [37,38], CubeSat can carry out space missions such as Earth science [39] and
deep space exploration [40]. As such, we believe that this method can enhance the use of
plan repair in practice.

In contrast to the common method of repairing from a fixed initial state, the IRPF
method must take into account the impact of executable activities on state evolution in
order to extract the initial state from a predictable future, which means that the initial state
of IRPF is not fixed. Moreover, as time passes during the repair process, the system state
continuously changes, causing a sense of urgency; the repair work must be completed
before the predicted initial state. Otherwise, this initial state will become unsuitable, and
the newly found plan will no longer be applicable. As a result, the initial state of IRPF is
dynamic as well.

However, our approach has some limitations. Firstly, the prediction of the system
state is based on the established plan without consideration of the impact of dynamic
changes in the surrounding environment. As a result, our method cannot be applied in
environments with high dynamic uncertainty, such as the descent and landing on Mars.
A possible solution would be to consider the dynamic establishment and prediction of
the environmental model in conjunction with the spacecraft model in order to provide a
more accurate prediction state for repairs. Secondly, our method only accounts for a single
decision center. Even with multi-rovers, this method is also centralized, which limits its
application to distributed agents, which require negotiation and cooperation. Decoupling
a joint multi-agent, splitting it into independent agents, and then using our method for
repairs may be a solution.

7. Conclusions

It is challenging to ensure the success of a pre-designed plan in the uncertain space
environment. In this paper, a novel plan-repair method, IRPF, is proposed for plan failures
of spacecraft in the process of continuous operability. There are two main contributions
to this paper: Firstly, by splitting the failure plan according to causality, IRPF identifies
predictable initial states of repair from executable actions in the plan. Secondly, IPRF uses
the three regulatory factors of goal reachability, time limits, and time tolerance to estimate
repair costs. This reduces the probability of repair failure due to the fact that the predicated
initial state is no longer applicable due to the execution of the ongoing actions.

Aerospace 2022, 9, 40 16 of 18

The empirical evaluation of our approach indicates that, compared with other methods
including replanning and plan repair, IRPF allows spacecraft to resume operations more
quickly and generates a feasible recovery plan while the spacecraft is operating. Besides this,
our approach avoids extensive search processes by expanding fewer nodes and conducting
searches over a shorter period of time.

It should be pointed out that our method predicts the future state of the spacecraft
system according to the executable actions in the established plan. Therefore, the appli-
cation environment of this method cannot be highly dynamic. In future work, we will
investigate how to popularize our method through the modeling and analysis of changes
in the environment, as well as the impact of such changes on the system.

Author Contributions: Conceptualization, R.X.; methodology, C.C.; software, C.C. and S.L.; valida-
tion, Z.L.; formal analysis, R.X. and Z.L.; data curation, C.C.; writing—original draft preparation,
writing—review and editing, C.C.; supervision, R.X.; funding acquisition, R.X. and Z.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2019YFA0706500; the National Natural Science Foundation of China, grant
numbers 61976020 and 62006019; the Industrial Technology Development Program, grant numbers
JCKY2018602B002 and JCKY2019602D022.

Data Availability Statement: All data generated or analyzed during this study are included in the
manuscript. The source codes used during the research are available from the corresponding author
on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D. Planning under continuous time and resource uncertainty: A

challenge for AI. In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence (UAI’02), Alberta, Canada, 1–4
August 2002; Darwiche, A.F.N., Ed.; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2002.

2. Ulamec, S.; O’Rourke, L.; Biele, J.; Grieger, B.; Andrés, R.; Lodiot, S.; Muñoz, P.; Charpentier, A.; Mottola, S.; Knollenberg, J.; et al.
Rosetta Lander—Philae: Operations on comet 67P/Churyumov-Gerasimenko, analysis of wake-up activities and final state. Acta
Astronaut. 2017, 137, 38–43. [CrossRef]

3. Nebel, B.; Koehler, J. Plan reuse versus plan generation: A theoretical and empirical analysis. Artif. Intell. 1995, 76, 427–454.
[CrossRef]

4. Bechon, P.; Lesire, C.; Barbier, M. Hybrid planning and distributed iterative repair for multi-robot missions with communication
losses. Auton. Robot. 2020, 44, 505–531. [CrossRef]

5. Mohalik, S.K.; Jayaraman, M.B.; Badrinath, R.; Feljan, A.V. HIPR: An Architecture for Iterative Plan Repair in Hierarchical
Multi-agent Systems. J. Comput. 2018, 13, 351–359. [CrossRef]

6. Fox, M.; Gerevini, A.; Long, D.; Serina, I. Plan Stability: Replanning versus Plan Repair. In Proceedings of the 26th International
Conference on Automated Planning and Scheduling (ICAPS 2006), London, UK, 12–17 June 2006; Long, D.S.S., Borrajo, D.,
McCluskey, L., Eds.; AAAI Press: Palo Alto, CA, USA, 2006.

7. Chen, C.; Xu, R.; Zhu, S.; Li, Z.; Jiang, H. RPRS: A reactive plan repair strategy for rapid response to plan failures of deep space
missions. Acta Astronaut. 2020, 175, 155–162. [CrossRef]

8. Howey, R.; Long, D.; Fox, M. VAL: Automatic plan validation, continuous effects and mixed initiative planning using PDDL. In
Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2004, Boca Raton, FL, USA,
15–17 November 2004; IEEE Computer Society: Washington, DC, USA, 2004.

9. Kirschenbaum, L. A Generic Spacecraft FDIR System. In Proceedings of the 2021 IEEE Aerospace Conference, AERO 2021, Big
Sky, MT, USA, 6–13 March 2021; IEEE Computer Society: Washington, DC, USA, 2021.

10. Martin, A.V.; Cheng, K.; Zheng, Z.; Kress-Gazit, H.; Mehta, A.; Selva, D.; Sun, Y. Decentralized context-based onboard planning
for earth observation missions. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, Online, 11–15, 19–21 January 2021;
AAAI: Palo Alto, CA, USA, 2021.

11. Muscettola, N.; Nayak, P.P.; Pell, B.; Williams, B.C. Remote agent: To boldly go where no AI system has gone before. Artif. Intell.
1998, 103, 5–47. [CrossRef]

12. Muscettola, N. HSTS: Integrating Planning and Scheduling. In Intelligent Scheduling; Morgan Kaufmann: Burlington, MA,
USA, 1994.

13. Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; Sherwood, R. CASPER: Space exploration through continuous planning. IEEE
Intell. Syst. 2001, 16, 70–75.

http://doi.org/10.1016/j.actaastro.2017.04.005
http://doi.org/10.1016/0004-3702(94)00082-C
http://doi.org/10.1007/s10514-019-09869-w
http://doi.org/10.17706/jcp.13.3.351-359
http://doi.org/10.1016/j.actaastro.2020.05.011
http://doi.org/10.1016/S0004-3702(98)00068-X

Aerospace 2022, 9, 40 17 of 18

14. Sherwood, R.; Govindjee, A.; Yan, D.; Rabideau, G.; Chien, S.; Fukunaga, A. Using ASPEN to automate EO-1 activity planning. In
Proceedings of the IEEE Aerospace Conference, Dayton, OH, USA, 17 July 1998; IEEE: Snowmass, CO, USA, 1998; Volume 3,
pp. 145–152.

15. Lemai, S. IxTeT-eXeC: Planning, Plan Repair and Execution Control with Time and Resource Management. Ph.D. Thesis, Institut
National Polytechnique de Toulouse—INPT, Toulouse, France, 2004.

16. Troesch, M.; Mirza, F.; Hughes, K.; Rothstein-Dowden, A.; Bocchino, R.; Donner, A.; Feather, M.; Smith, B.; Fesq, L.; Barker, B.;
et al. MEXEC: An Onboard Integrated Planning and Execution Approach for Spacecraft Commanding. In Proceedings of the
International Symposium on Artificial Intelligence, Robotics and Automation in Space, Pasadena, CA, USA, 19–23 October 2020.

17. Wang, D.; Russino, J.A.; Basich, C.; Chien, S. Using Flexible Execution, Replanning, and Model Parameter Updates to Address
Environmental Uncertainty for a Planetary Lander. In Proceedings of the International Symposium on Artificial Intelligence,
Robotics and Automation for Space, i-SAIRAS, Pasadena, CA, USA, 19–23 October 2020.

18. Ponzoni Carvalho Chanel, C.; Albore, A.; T’Hooft, J.; Lesire, C.; Teichteil-Konigsbuch, F. AMPLE: An anytime planning and
execution framework for dynamic and uncertain problems in robotics. Auton. Robot. 2019, 43, 37–62. [CrossRef]

19. Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Magazzeni, D.; Ruml, W. Replanning for situated robots. In Proceedings of the
29th International Conference on Automated Planning and Scheduling (ICAPS’19), Berkeley, CA, USA, 11–15 July 2019.

20. Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Magazzeni, D.; Ruml, W. Temporal planning while the clock ticks. In Proceedings
of the 28th International Conference on Automated Planning and Scheduling (ICAPS’18), Delft, The Netherlands, 24–29 June 2018.

21. Fickert, M.; Gavran, I.; Fedotov, I.; Hoffmann, J.; Majumdar, R.; Ruml, W. Choosing the Initial State for Online Replanning. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI-21), Virtual, 2–9 February 2021.

22. Coskun, A.; O’Kane, J.M. Online plan repair in multi-robot coordination with disturbances. In Proceedings of the IEEE
International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019.

23. Holler, D.; Bercher, P.; Behnke, G.; Biundo, S. HTN Plan Repair via Model Transformation. In KI 2020: Advances in Artificial
Intelligence, Proceedings of the 43rd German Conference on AI, Bamberg, Germany, 21–25 September 2020; Schmid, U.K.F., Wolter, D.,
Eds.; Springer: Cham, Switzerland, 2020.

24. Xu, R.; Chen, C.; Cui, P.Y.; Zhu, S.Y.; Xu, F. Research on Spacecraft Autonomous Mission Plan Repair. J. Astronaut. 2019, 40,
733–741. (In Chinese)

25. Hammond, K.J. Explaining and repairing plans that fail. Artif. Intell. 1990, 45, 173–228. [CrossRef]
26. Scala, E.; Micalizio, R.; Torasso, P. Robust plan execution via reconfiguration and replanning. AI Commun. 2015, 28, 479–509.

[CrossRef]
27. van der Krogt, R.; de Weerdt, M. Plan Repair as an Extension of Planning. In Proceedings of the 15th International Conference

on Automated Planning and Scheduling (ICAPS 2005), Monterey, CA, USA, 5–10 June 2005; Biundo, S.M.K., Rajan, K., Eds.;
Association for the Advancement of Artificial Intelligence (AAAI): Palo Alto, CA, USA, 2005.

28. Guzman, C.; Castejon, P.; Onaindia, E.; Frank, J. Reactive execution for solving plan failures in planning control applications.
Integr. Comput. Aided Eng. 2015, 22, 343–360. [CrossRef]

29. Scala, E. Plan repair for resource constrained tasks via numeric macro actions. In Proceedings of the 24th International Conference
on Automated Planning and Scheduling (ICAPS 2014), Portsmouth, NH, USA, 21–26 June 2014; Chien, S.A., Do, M.B., Fern, A.,
Rum, W., Eds.; AAAI: Palo Alto, CA, USA, 2014.

30. Talamadupula, K.; Smith, D.E.; Cushing, W.; Kambhampati, S. A Theory of Intra-Agent Replanning; Tempe Department of Computer
Science and Engineering, Arizona State University: Tempe, AZ, USA, 2013.

31. Micalizio, R. Action failure recovery via model-based diagnosis and conformant planning. Comput. Intell. 2013, 29, 233–280.
[CrossRef]

32. Das, D.; Banerjee, S.; Chernova, S. Explainable AI for robot failures: Generating explanations that improve user assistance in
fault recovery. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Virtual, online, 9–11
March 2021.

33. Coles, A.; Coles, A. A temporal relaxed planning Graph heuristic for planning with envelopes. In Proceedings of the 27th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS’17), Pittsburgh, PA, USA, 18–23 June 2017; Barbulescu, L.F.J.,
Mausam, S.F., Eds.; AAAI: Palo Alto, CA, USA, 2017.

34. Burns, E.; Ruml, W.; Do, M.B. Heuristic search when time matters. J. Artif. Intell. Res. 2013, 4, 697–740. [CrossRef]
35. Coles, A.; Coles, A.; Fox, M.; Long, D. Forward-chaining partial-order planning. In Proceedings of the 20th International

Conference on Automated Planning and Scheduling (ICAP2010), Toronto, ON, Canada., 12–16 May 2010; Brafman, R.I.G.H.,
Hoffmann, J., Kautz, H.A., Eds.; AAAI: Palo Alto, CA, USA, 2010.

36. Edelkamp, S.; Hoffmann, J. PDDL2.2: The Language for the Classical Part of the 4th International Planning Competition; University of
Freiburg: Freiburg im Breisgau, Germany, 2004.

37. Menchinelli, A.; Ingiosi, F.; Pamphili, L.; Marzioli, P.; Patriarca, R.; Costantino, F.; Piergentili, F. A Reliability Engineering
Approach for Managing Risks in CubeSats. Aerospace 2018, 5, 121. [CrossRef]

38. Kiesbye, J.; Messmann, D.; Preisinger, M.; Reina, G.; Nagy, D.; Schummer, F.; Mostad, M.; Kale, T.; Langer, M. Hardware-In-The-
Loop and Software-In-The-Loop Testing of the MOVE-II CubeSat. Aerospace 2019, 6, 130. [CrossRef]

http://doi.org/10.1007/s10514-018-9703-z
http://doi.org/10.1016/0004-3702(90)90040-7
http://doi.org/10.3233/AIC-140629
http://doi.org/10.3233/ICA-150493
http://doi.org/10.1111/j.1467-8640.2012.00444.x
http://doi.org/10.1613/jair.4047
http://doi.org/10.3390/aerospace5040121
http://doi.org/10.3390/aerospace6120130

Aerospace 2022, 9, 40 18 of 18

39. Danielsen, A.S.; Johansen, T.A.; Garrett, J.L. Self-Organizing Maps for Clustering Hyperspectral Images On-Board a CubeSat.
Remote Sens. 2021, 13, 4174. [CrossRef]

40. Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci.
2017, 88, 59–83. [CrossRef]

http://doi.org/10.3390/rs13204174
http://doi.org/10.1016/j.paerosci.2016.11.002

	Introduction
	Related Work
	Preliminaries
	Plan-Repair Problem
	Structure of the Isolate and the Repair Plan Failure Method

	Isolation of Defective Actions by the Bi-Loop Recognition Method
	Multi-Factor Regulatory Repair
	Factor Estimation
	Searching for a Recovery Plan
	The Algorithm for Multi-Factor Regular Repair

	Experimental Evaluation and Discussion
	Setup of the Experiment
	A Satellite
	A Multi-Rover System
	Discussion

	Conclusions
	References

