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Abstract: This paper presents a two-phase guidance and control algorithm to extend the range and
improve the impact point accuracy of a 122-mm rocket using a fixed canards trajectory correction
fuze. The guidance algorithm consists of a unique glide and correction phase of the rocket trajectory
that is activated after the flight’s apex. The glide phase operates in an open-loop configuration where
guidance commands are generated to increase the range of the rocket. In contrast, the correction
phase operates in a closed-loop configuration where the Impact Point Prediction method based
on Modified Projectile Linear Theory is used as a feedback channel to correct the range and drift
errors. The proposed fixed canards trajectory correction fuze has a simple and reliable single channel
roll-orientation control configuration. The rocket trajectory model consists of a 7-DOF non-linear
dynamic model of a dual-spin rocket configuration with a fixed canards correction fuze mounted
at the nose. A Monte Carlo simulation of the rocket’s inertial and launch point perturbations show
that the fixed canards fuze with the proposed guidance algorithm can double the range of the rocket
without changing the rocket motor thrust-time curve. At the same time, the rocket’s accuracy can
also be improved beyond the results of an unguided rocket.

Keywords: dual-spin projectile; fixed canards trajectory correction fuze; impact point prediction;
Modified Projectile Linear Theory; Monte Carlo

1. Introduction

122-mm artillery rockets launched from the Multiple Launch Rocket System (MLRS)
are still the first battlefield choice against ground targets, but they are attributed with a
short range and larger dispersion radius due to manufacturing inaccuracies and launch-
point perturbations. However, modern warfare requires accurate firepower at an extended
range to engage a larger target area with minimum repositioning of the launcher so that
long-range fire support can be provided for a longer duration. Nevertheless, conventional
122-mm rockets have a maximum range of about 32 km with a target hit accuracy of
approximately 500 m. One way to improve its accuracy and extend its range is to design an
entirely new precision-guided rocket, but that is an expensive and time-consuming task.

A cost-effective and simple alternative is to add guidance and control features to
existing unguided rockets to convert them into guided rockets. With recent technological
advancements such as the miniaturization of rugged Micro-Electromechanical System-
(MEMS) based inertial sensors, it is currently possible to add guidance and control features
into the limited space of a fuze so that it can be retrofitted on to an unguided rocket,
converting it into a low-cost, high accuracy guided rocket. Such a fuze system with
guidance and trajectory control features is called a trajectory correction fuze. Generally,
the control mechanism of these trajectory correction fuzes is implemented through force
generated by impulse thrusters or aerodynamic asymmetry caused by cruciform-shaped
control canards mounted at the outer surface of the fuze. An impulse thruster-based control
mechanism consists of a ring of thrusters mounted near the rocket’s center of gravity, and
thrusters provide a short duration impulse force in the radial direction perpendicular to the
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rocket velocity vector. The canard-controlled trajectory correction fuze falls into two broad
categories: one, with moveable canards [1–5]; two, with fixed canards [6–9]. Moveable
canards have multi-channel control and guidance strategies similar to missiles; however,
they have the disadvantage of having more moving parts, a complex control mechanism,
and high-resolution actuators, resulting, overall, in a higher cost and a lower reliability.

Examples of existing methods for guiding 122-mm rockets include both impulse
thrusters and canards. For example, reference [10] describes the use of impulse thrusters
for trajectory correction; the author uses the impact point prediction method to calculate
deviation from longitudinal and horizontal axes, with the simulation results showing
that the Circular Error of Probability (CEP) of uncontrolled rockets = 359 m, while the
CEP for general firing control scheme = 38 m, and the CEP for optimum firing control
scheme = 20 m. Reference [11] also refers to the 122-mm rocket with 30 thrusters mounted
in front of the center of gravity near the nose. The author has used closed-form solutions of
linear theory for the impact point prediction guidance algorithm. Monte Carlo simulations
for 400 samples show that for unguided trajectory, the CEP = 184.66 m, and while using an
impulse thruster force of 1000 n, it claims CEP = 18.87 m. Reference [12] proposes trajectory
correction of 122-mm rockets using cyclic control of moveable canards of odd or even
numbers. The author has used a guidance scheme based on the impact point prediction
method, with the airframe using three canards for correction in a horizontal and vertical
frame. The cyclic control of canards generates an average side force and moment similar to
the wings of helicopters, 100 Monte Carlo simulations are run, and the results show that an
unguided rocket has CEP = 219.05 m and a guided rocket has CEP = 4.25 m.

In comparison to the use of impulse thrusters or moveable canards for 122-mm rocket
correction, the fixed canards trajectory correction fuze is a controlled single channel and
has the advantage of being simple in design (only one moving part) and, hence, low cost
and more reliable. Because of the advantages mentioned earlier, it is natural to use a fixed
canards trajectory correction fuze to improve the impact point accuracy of a 122-mm rocket.
Whereas to address the issue of extending the range of 122-mm rocket, the conventional
method is to alter the rocket motor thrust time curve to increase the rocket motor impulse to
achieve maximum burn-out velocity. For example, reference [13] claims that the range can
be extended from its existing 20,168 m to 24,443 m with a time delay of 3 s in Thrust-time
curve. The other method to increase range is to add impulse thrusters near the rocket’s
Center of Gravity (C.G) or, more recently, rocket range can be extended by using high lift
ratio moveable canards to increase the angle of attack to generate more lift force [14,15].
However, these methods require a major rocket hardware change, making these methods
complex and expensive for the low-cost 122-mm rocket. To summarize, this research
proposes a simple, low cost, and reliable fixed canards trajectory correction fuze to both
extend the range of 122-mm rockets and improve their accuracy without altering hardware.

The proposed concept of a fixed canards trajectory correction fuze is similar to the
Precision Guidance Kit (PGK) that is currently being used for spin-stabilized projectiles [16].
The proposed trajectory correction fuze is mounted on the rocket’s nose like a conventional
fuze and is roll-decoupled through a bearing connection. Therefore, the rocket spins due
to the roll moment created by canted tail fins, and the correction fuze spins at a low or
zero spin rate due to moments created by spin canards. Such a projectile configuration is
called a dual-spin projectile with a forwarding control part that spins at a low speed to the
spinning aft part [17–20]. The angles of the correction fuze canards are fixed, which implies
that the magnitude of the control force is also fixed; however, the orientation of the control
force can be controlled to get the net control force in the desired direction according to the
guidance method. This control function is attained through a co-axial servo motor that
controls the orientation of this front-mounted correction fuze to get the control force in the
desired direction.

The guidance method for such a kind of trajectory correction fuze generally has five
types: Trajectory Shaping, Model Predictive Guidance, Trajectory Following, Proportional
Guidance, and Impact Point Prediction (IPP). Trajectory Shaping is not suitable when only
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small corrections are required, whereas the accuracy of Model Predictive Guidance depends
on the accuracy of the dynamic model of the projectile and predicted horizon [21–23]. An-
other disadvantage of Model Predictive Guidance is the requirement of an accurate model
of the environment and projectile dynamics; it also requires considerable computation
time to update the model. In Trajectory Following Guidance, the current position of the
projectile are compared with the nominal Trajectory, and control is applied to minimize the
error between the current position and nominal position [7]. The disadvantage of Trajectory
Following Guidance is that it only uses the current position to correct the trajectory, but it
neglects the velocity, which means that the projectile will always try to follow the nominal
trajectory and will lose its energy and may fall short of the target. Proportional Guidance is
useful in missile guidance, but it is not suitable for ballistic flights, and it has mainly been
used with projectiles using jet-thruster correction [24,25]. Finally, Impact Point Prediction
(IPP) guidance can be useful for the trajectory correction fuze for small target ranges [26].
The limitation of small ranges can be overcome when the dynamic model of the projectile
trajectory is linearized with Modified Projectile Linear Theory [27]. Based on the IPP
method, various guidance and control strategies have been studied. An iterative impact
point prediction method has been formulated by [28] for fixed canard angle fuze, but this
iterative method is not computationally efficient and puts an unnecessary high burden on
the guidance computer. Whereas in this research, the impact point is rapidly predicted
during discrete intervals of the rocket’s flight using Modified Projectile Linear Theory [29],
and control action is based on the swerve response of the projectile, thus eliminating the
need for the iterative process. The main reason for using Modified Projectile Linear Theory
for IPP is based on the fact that it is more accurate than Projectile Linear Theory and the
Modified Point Mass method, and provides accurate results at higher quadrant elevation
angles and longer ranges [27]. The proposed guidance method starts after the apex of
the trajectory and consists of two guidance phases to maximize the range and reduce the
miss-distance errors. The first phase of guidance works to increase the range of the rocket,
the so-called Glide Phase; while the second phase of guidance corrects both range and drift
errors, the so-called error correction phase.

The main contribution of this research paper is to propose a guidance method that will
extend the range of low-spinning fin-stabilized 122-mm rockets with accuracy improvement
using a simple, low-cost fixed canards trajectory correction fuze as compared to existing
methods of altering rocket motor thrust or by employing impulse thrusters near the rocket’s
C.G. Another contribution is a unique two-phase guidance scheme based on the Impact
Point Prediction method using Modified Projectile Linear Theory in contrast to conventional
predation methods based on the Modified Point Mass method or Projectile Linear Theory.
The trajectory simulations of the guided rocket are based on the actual rocket motor thrust-
time curve and rocket aerodynamic data fitted with the correction fuze that is realized
from the combination of wind tunnel tests and Computational Fluid Dynamics (CFD)
simulations.

The paper begins with a description of fixed canards trajectory correction fuze con-
figuration and its 7-DOF dynamic model, along with control authority analysis and, in
Section 2, rocket swerve response analysis. Section 3 describes the guidance scheme, Impact
Point Prediction method, and Modified Projectile Linear Theory mathematical expressions.
Section 4 consists of guided trajectory simulations and a Monte Carlo simulation of 300 sam-
ples to investigate the effectiveness of the guidance and control strategy. Finally, Section 5
consists of a discussion of the simulation results.

2. Fixed Canards Trajectory Correction Fuze

The angles of canards mounted on a trajectory correction fuze are fixed and canards
are not moveable. Its configuration is shown in Figure 1; it consists of two pairs of fixed
canards, i.e., spin canards (1 and 3) and control canards (2 and 4). Spin canards are canted
2◦ in the opposite direction to produce a counterclockwise roll moment (when viewed from
the rear) to overcome rocket spin and roller bearing friction, so the correction fuze can spin
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in the opposite direction to the main rocket spin. In comparison, the control canards are
canted 5◦ in the same direction to produce a control force and moment perpendicular to
the velocity vector of the rocket. When no control is required, the fuze spins freely, so there
is no net force in a specific direction; and when control is activated, it produces a control
force and control moment in a specific direction. Such a dual-spin projectile configuration
can be used to extend the range and correct rocket trajectory errors.
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2.1. 7-Degree of Freedom (DOF) Dynamic Model

The trajectory model of the dual-spin rocket is based on a 7-DOF nonlinear dynamic
model expressed in the Body Fixed Plane (BFP) frame as a set of 14 nonlinear differential
equations [30]. The dynamic model consists of quaternion rate equations with normal-
ization to determine the Euler Angles of the rocket orientation, so that singularities can
be avoided that may occur when the pitch angle of the rocket reaches −90◦ during the
terminal correction phase. The forces and moments acting on the rocket are first converted
into the BFP frame before using them in the dynamic model. The 7-DOF dynamic model is
numerically integrated using the variable step size fourth-order Runge-Kutta method to
increase simulation speed.

The reference frames used in the simulation are Earth Frame, Body Fixed Plane (BFP)
Frame, Canard Frame, and Velocity Frame (shown in Figures 2 and 3). The Earth Frame
is assumed to be an Inertial Frame with a Flat Earth approximation since the projectile of
the trajectory model is a short-range/time of flight rocket, and this approximation has a
negligible effect on the accuracy of the results. The BFP frame is similar to Body Frame in
a way that, it is rigidly fixed to the rocket’s C.G and exhibits all the linear motions of the
rocket, including yawing and pitching motions of the rocket (although it does not roll with
the rocket), and its Y-axis always remains in the horizontal plane. The advantage of using
the BFP frame lies in the fact that it speeds up the simulation time. The transformation
matrix from Canard Frame to BFP Frame (Figure 2), denoted as CB

C, is obtained through
the rotation of control angle θc. The transformation matrix from Velocity Frame to BFP
Frame (Figure 3) and Canard Frame are CB

V and CC
V , respectively, and both are acquired

after consecutive rotation through the aeroballistics angle of sideslip (−β) and angle of
attack (α), as shown in Equation (1) [30,31].

CC
V = CB

V =

 cos β cos α − sin β cos α − sin α
sin β cos β 0

cos β sin α − sin β sin α cos α

, CB
C =

 1 0 0
0 cos θc − sin θc
0 sin θc cos θc

 (1)
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The dynamic equations of rocket motion expressed in the BFP frame are shown by
Equations (2) and (3). The [I] is a diagonal inertia matrix of the rocket containing elements
of the principal roll and pitch moment of inertia. The term rtθ is the roll rate of the BFP
frame required to keep its Y-axis in the horizontal plane. .

u
.
v
.

w


B

=

 X/m
Y/m
Z/m


B

−

 0 −r q
r 0 rtθ

−q −rtθ 0

 u
v
w


B

(2)

 .
p
.
q
.
r


B

= [I]−1


 L

M
N


B

−

 0 −rtθ q
r 0 rtθ

−q −rtθ 0

[I]
 p

q
r


B

 (3)

Here,
[

X Y Z
]′

B is the sum of gravity, the aerodynamic forces acting on the rocket,
control force generated by canards, gravity force, and rocket motor thrust, all expressed
in the BFP frame. The matrix

[
L M N

]′
B contains the moments contributed from

the steady and unsteady aerodynamics of the individual rocket segments. The steady
aerodynamics include the moment generated by the rocket body, tail fins, and canards,
while the unsteady aerodynamic moments consist of roll and pitch damping moments
contributed from the rocket body and tail fins only. All moments are about rocket C.G and
are expressed in the BFP frame. Equations (4) and (5) give mathematical expression for
calculations of forces and moments in the BFP frame.
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 X
Y
Z


B

= qdynS

CB
V

 CX
CY
CZ

+ CB
CCC

V

 CcX
CcY
CcZ

+ mg

 2(q1q3 − q0q2)
2(q2q3 + q0q1)

q2
0 + q2

3 − q2
1 − q2

2

+

 T
0
0

 (4)

 L
M
N


B

= qdynSLre f

 MX
MY
MZ

+ CB
C

 McX
McY
McZ

− pD
V

 CLP
CMQ + Cm

.
α

CMQ + Cm
.
α

 (5)

The rocket aerodynamic force coefficients
[

CX CY CZ
]′ appearing in Equation (4)

consist of contribution from the zero yaw and squared yaw force coefficients, and are
calculated using Equation (6). Similar expressions are also used to calculate canard force
coefficients. The zero yaw drag coefficient C0

X of the rocket fitted with 0.5◦ canted tail
fins was obtained through wind tunnel tests conducted at Mach numbers from 0.4 to 3.6
according to the test setup of reference [32], while squared yaw coefficients were obtained
using CFD simulations.

CX = C0
X + Cα2

X α2 + Cβ2

X β2

CY = C0
Y + Cα

Yα + Cβ
Y β

CZ = C0
Z + Cα

Zα + Cβ
Zβ

(6)

The turbulence model used in the CFD simulations is based on Reynolds averaged n-S
equations, and for the eddy viscosity model, the SST k−ω two equation model is adopted.
The SST k− ω model is also known as the shear stress transport k− ω model. The SST
k−ω model can better improve the accuracy and stability of the numerical simulation of
near wall turbulence characteristics based on the standard k−ω model. Here, k refers to
the turbulent kinetic energy, and ω is the specific dissipation rate (the energy dissipated
per unit friction area in unit time). The kinematics of the rocket’s C.G can be expressed
using Equation (8) based on quaternions rates Equation (7), owing to their advantage of
intrinsic properties. 

.
q0.
q1.
q2.
q3

 =
1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


 p

q
r


B

(7)

 .
x
.
y
.
z


E

=

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 u
v
w


B

(8)

The yaw and pitch angles are calculated using relationships in Equation (9), whereas
the roll rate equation in Body Frame is not directly integrated but is indirectly estimated as
a posterior quantity.

ψ = sgn(q1q2 + q0q3) cos−1
(

q2
0+q2

1−q2
2−q2

3
cos θ

)
θ = − sin−1[2(q1q3 − q0q2)]

ϕBFP = sgn(q2q3 + q0q1) cos−1
(

q2
0+q2

3−q2
1−q2

2
cos θ

)
∼= 0

.
ϕ = p + rtθ

(9)

The dynamic motion of the trajectory correction fuze is assumed to be perfectly con-
trolled by a servo motor with no lag or overshoot. It is assumed that the servo controller
provides the overcoming torque of roller bearing connection, aerodynamic damping mo-
ment created by canards, and spin rate r tan θ along the Xc-axis of the canard frame to keep
its Yc-axis always in the horizontal plane. For an ideal case, after compensating for the
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aforementioned angular dynamics, the angular rate of the canard fuze (ωFuze) measured
along the Xc-axis of the canard frame can be considered as zero. The canard fuze orientation
is controlled by the control angle θc (measured from negative Z-axis of BFP Frame); it is
calculated by the guidance algorithm to minimize dispersion error.

ωFuze = 0
θFuze = θc

(10)

The main forces in Equation (2) consist of rocket motor thrust, gravity, and aerody-
namic forces. The actual rocket motor thrust duration is 3.088 s, measured at sea level
(Figure 4). This measured thrust data is adjusted with altitude-based atmospheric pressure
at the nozzle exit. The aerodynamic data of the rocket with six straight tail fins (canted at
0.5◦) and fixed canards is a combination of wind tunnel test data and CFD simulations that
comprise a three-dimensional lookup table as a function of Mach number, angle of attack,
and angle of sideslip. The unsteady aerodynamic damping moment coefficients appearing
in Equation (5) consist of roll and pitch damping coefficients; these coefficients vary during
active motor burning and during passive rocket flight, the coefficients are shown in Figure 5
as a function of Mach number. Figure 6 shows the drag coefficient of the rocket fitted with
canards at the various angle of attack and side-slip measured at different Mach numbers;
this Drag data also include additional drag induced due to spin and control canards of the
correction fuze. Figure 7 shows the normal force coefficient at different Mach numbers for
the canards fuze with 5◦ canted control fins expressed in Velocity Frame. The aerodynamic
force coefficients appearing in Equation (4) are measured in the Velocity frame while the
moment coefficients appearing in Equation (5) are measured in the body frame, and they
need to be transformed into the BFP frame using the transformation matrix (Equation (1)
previously used in the dynamic model. The aerodynamic coefficients of a 122 mm rocket
without a canard fuze are similar to the data presented in references [12,28,32–35] which
are based on CFD simulations and Missile DATCOM.
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2.2. Control Authority Analysis

Control Authority analysis is performed to check the correction ability of the trajectory
correction fuze when the control angle of the trajectory correction fuze remains fixed in a
specific direction in the Body Fixed Plane (BFP) frame (Figure 2). Larger control authority
implies the correction fuze’s ability to correct larger perturbations and cover larger areas of
engagement.

In this analysis, multiple sets of trajectory simulations are run corresponding to
various control activation times and control angles. Each set consists of 72 trajectories
with a constant control angle θc for the entire trajectory selected from an array of 0–355◦

having a 5◦ angle step. The simulation results for the control activation times of 90, 95,
and 100 s are shown in Figures 8–10, respectively. Figure 11 shows the combined impact
point footprints of the previously mentioned control activation times. Results show that
larger correction ability is obtained when control is activated earlier in the flight (90 s) while
smaller correction ability is obtained when control is activated later (100 s) in the flight. For
example, when control is activated at 90 s it can achieved ‘range’ control authority from
32 km to 48 km, whereas ‘drift’ control authority of 12 km can be achieved on both sides of
the ‘drift’ axis.
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The footprint area of rocket impact points decreases when control is activated later
in the flight. The corresponding area plots of rocket impact points for various control
activation times are shown in Figure 11. This area plot is necessary for analyzing and
calculating the swerve response of the projectile when control is activated at different
intervals of flight.

2.3. Swerve Response

When control force is applied at the nose of a fins-stabilized rocket, the rocket response
is not in phase with the control force direction; rather, it responds out of phase with
the control force direction due to the coupling of control force, gravity, and gyroscopic
effect [17,36]. Therefore, it is important to determine the swerve response of the rocket
before implementing the guidance algorithm. The swerve response analysis combines the
footprint of rocket impact points of multiple trajectories when the correction fuze control
angle (θc) is fixed between 0–360◦ with 5◦ step during each trajectory. The output phase
angle ∠BAC is calculated from the mean impact point (point A) of rocket impacts, as
shown in Figure 12. In this figure, the control is activated at 95 s after launch, and in each
simulation, the control angle remains fixed during the entire trajectory, and coordinates
of the footprint are measured. In Figure 13, the relationship between control input angle
(θc) and response output angle (swerve response) is shown. It is evident that most of the
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response output is along the range axis towards the launch point, and correction in the
drift axis is very sensitive to control input angle. Therefore, a small control input angle can
produce a larger correction in the drift axis. The input-output response curve shown in
Figure 13 is converted into a cubic polynomial function fpoly to be later used in Equation (17)
to estimate the control input angle (θc) required for the specific output response direction
for trajectory correction.
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3. Guidance Scheme

The proposed guidance scheme consists of two guidance phases. The first phase of
guidance is an open-loop configuration in which the control action is to increase the range
of the rocket, therefore called the Glide Phase. While the second phase of guidance works
in a closed-loop configuration based on the Impact Point Prediction (IPP) guidance method
in which both range and drift errors are corrected using control action. It is assumed that
the target coordinates are pre-loaded into the fuze’s guidance computer before launch.
Once the guidance is activated, it solves the linear trajectory model based on Modified
Projectile Linear Theory and predicts impact coordinates in Earth Frame according to
current flight state variables. Then, the control action is generated based on the deviation
and orientation of the predicted impact coordinates from the target coordinates. The control
action is the orientation of the Trajectory Correction Fuze (θc) to generate control force and
moment in a direction to minimize the predicted deviation from the target coordinates. The
proposed control law is a unique combination of Impact Point Prediction guidance based
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on Modified Projectile Linear Theory. The start time of the two guidance phases (i.e., glide
and error correction phases) are obtained after the optimization process explained in detail
in Section 4.

3.1. Glide Phase

The Glide Phase starts after the apogee of the trajectory with the objective of range
enhancement. During this phase, the control angle (θc) of the correction fuze remains fixed
in the BFP frame to produce the control force in the upward direction only to increase
the range of the rocket. The exact start time of the glide phase after apogee is based on
the required target range and launch elevation angle. Thus, the guidance starts earlier for
longer target ranges than shorter ones, where the guidance loop starts later in the flight.
During the glide phase, the control force and moment due to the canards increases the angle
of attack and generates more lift force to compensate for gravity and cause the increase in
the range of the rocket.

3.2. Error Correction Phase

Error Correction Phase is a terminal correction guidance scheme based on the Impact
Point Prediction (IPP) guidance scheme to calculate the deviation angle from target coordi-
nates (already loaded into correction fuze before flight). The error correction phase is an
in-flight iterative process that is invoked after every 0.1 s, during which the impact coordi-
nates of the projectile are predicted using current projectile state variables. The deviation
angle (∠BAC) of the predicted impact point from the target is calculated (Figure 12). The
control force is required in the direction opposite to the deviation angle, i.e., (∠BAC + π),
to correct this deviation angle. For this required control force direction, the control angle
of the fuze orientation is calculated from the polynomial swerve function fpoly from the
swerve response diagram (Figure 13). This calculated control angle is used in the main
nonlinear 7-DOF dynamic model, and projectile state variables are updated accordingly.

New coordinates are predicted in the next iteration based on updated projectile state
variables, and new control action is generated. This correction process continues until
the projectile comes closer to the target location, and errors in range and drift are being
removed iteratively. The glide and correction phase process are summarized in the flow
chart shown in Figure 14.
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3.3. Impact Point Prediction

The Impact Point Prediction (IPP) method is used as a feedback loop to generate
guidance commands to correct trajectory during the error correction phase of rocket
flight [12,28,37,38]. The IPP routine is evaluated during the error correction phase af-
ter every 0.1 s, making it is a suitable compromise between guidance computation burden
and required miss-distance precision. Rapid impact prediction requires a simple analytical
model or a linearized trajectory model that a guidance computer can efficiently solve
during intermittent flight intervals. Conventionally, the modified point mass method is
used as an analytical predictor, or projectile linear theory is used to linearize the trajectory
model, but both have limitations and give inaccurate predictions at higher pitch angles
and longer ranges. Therefore, Modified Projectile Linear Theory (MPLT) is preferred over
other prediction methods since MPLT is still valid at higher pitch angles and longer ranges.
Furthermore, it is assumed that the guidance and control unit of the correction fuze contains
all the necessary inertial sensors and filtering to obtain full states of projectile trajectory
during flight. Rocket position and velocity are calculated using GPS, and rocket Euler
Angles are determined by filtered measurements provided by magnetometers.

3.4. Modified Projectile Linear Theory

The Modified Projectile Linear Theory is a set of quasi-linear differential equations
written in the BFP frame to predict the future states of the projectile during rapid flight.
The time derivative of the trajectory model is changed to the non-dimensional variable
‘s’ arc length, defined as the number of calibers traveled along the trajectory. Moreover,
it is assumed that the total velocity slowly varies compared to other variables, that aero-
coefficients remain constant during a short interval of time, and that aero-ballistics angles
are small enough to be neglected [29]. Integral of Equation (11) provides the coordinates
of the predicted impact point in the Earth Frame when the Z-axis changes the sign. These
predicted impact coordinates are to be used to generate control action accordingly.

x′ = cθ D

y′ = cθ Dψ + D
V v

z′ = −Dsθ +
D
V cθw

(11)

θ′ = D
V q

ψ′ = D
Vcθ

r (12)

V′ = −πρD3

8m
CX0V − Dg

V
sθ +

1
m

T
D
V

(13)

p′ =
πρVD4

8IXX
CDD +

πρVD5

16IXX
CLP p (14)

While the epicyclic equations are grouped in a matrix form as follows.
v′

w′

q′

r′

 =


−A 0 0 −D

0 −A D 0
B/D C/D E −F
−C/D B/D F E




v
w
q
r

+


Fv
Fw
Fq
Fr


A = πρD3

8m , B = πρD5RMCM
16IYYV CYPA p, C = πρD4RMCP

8IYY
CNA, E = πρD5

16IYY
CMQ, F = IXX D

8IYY
p

Fv = Avwind, Fw = Awwind +
Dgcθ0

V , Fq = − B
D vwind − C

D wwind, Fr = − B
D wwind +

C
D vwind

(15)

Equations (11)–(15) are numerically integrated using the variable step size fourth
order Runge-Kutta method with frozen aerodynamic coefficients to speed up the prediction
calculations. The rocket’s predicted impact coordinates (point B in Figure 15) are used to
calculate the deviation angle and its magnitude. Correction force is required in the opposite
direction (towards D1) of deviation angle θi to correct deviation Γ. The swerve response of
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the rocket needs to be adjusted according to the polynomial function defined by Figure 13
using Equations (16) and (17) to get the control force in the required direction.

θi = atan2(dy, dx) (16)

θc = fpoly(θi + π) (17)
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4. Simulation Implementation

Numerical simulations are carried out to demonstrate the effectiveness of the proposed
guidance scheme to increase the range and accuracy of the 122-mm rocket. The conventional
unguided 122 mm rocket has a maximum range of 32 km with the thrust-time curve of
Figure 4 and using aero-coefficients of the rocket body without a canard fuze. For the
guided simulation scenario, the target point is located at 60 km from the launch point along
the range axis, and the rocket is fired at a higher elevation angle of 53◦ to check the rocket’s
stability. Since a larger launch elevation angle may result in rocket instability at the apex of
trajectory, and during simulations, it was found out that at 55◦ launch angle, the subject
rocket with a correction fuze tends to become unstable.

An optimization function is formulated to determine the optimized values of the glide
phase and the error correction phase start time that gives the minimum value of CEP. The
inputs of this function are the start time of the two guidance phases, while the output
cost function is the Circular Error of Probability (CEP). Several simulations are run with a
sample size of 30 rocket trajectory samples with perturbations, and various combinations
of the two-guidance phase start time are investigated. The objective of the optimization
function is to find a set of guidance start time values that minimize the cost function. The
output plot of the optimization function is shown in Figure 16 with the horizontal axis
representing the various glide and error correction phase start times, while the output of
the optimization function (vertical axis) is the value of CEP. The contour plot shows that
the minimum value of CEP is obtained when the Glide Phase starts at 60 s, and the Error
Correction Phase starts at 166 s after launch. Theses optimized values of guidance start
times are finalized for guided rocket simulations.
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The physical parameters of the 122-mm rocket with initial conditions for simulation
are shown in Table 1; these parameters are the nominal values without launch perturbations.
The simulation results presented below show that the rocket motor maximum burn-out
velocity is 1024 m/s (Figure 17), and that the rocket pitch angle (Figure 18) remains con-
stant during the glide phase while it shows some variations during the terminal error
correction phase when the rocket corrects all the drift and range errors. The range plot
(Figures 19 and 20) consists of three trajectories: one unguided trajectory without a correc-
tion fuze and two guided trajectories with a correction fuze. The two guided trajectories
consist of one trajectory with the glide phase only and the second trajectory with both glide
and error correction phases. The range plot shows the maximum range of unguided rocket
trajectory is 32 km, while plots of guided rocket trajectories show that the guidance algo-
rithm has successfully stretched the rocket trajectory from 32 km to reach the 60 km range
during the glide phase. Furthermore, for the error correction phase, the guidance algorithm
has efficiently corrected the trajectory with a drift error of only 5 m (Figures 19 and 20),
while the other guided rocket without error correction phase has missed the target point
with an error of 1150 m. The plots of ballistics angles (Figures 21 and 22) show that the start
of the glide phase causes the angle of attack to increase and remain constant to generate
more lift. The figure shows that most of the control effort causes the angle of attack to
increase in comparison to the side slip; however, both the angle of attack and sideslip
remain within limits and show the stability of rocket flight.

Table 1. Initial Conditions and Error Budgets.

Sr. Parameter Nominal Values Std Deviation Minimum Value Maximum Value

a. Initial Mass 67.43 (Kg) 0.1 67.12 67.78
b. Final Mass 43.63 (Kg) 0.1 43.38 43.90
c. Iyy Final 85.3 (Kg.m2) 0.5 84.08 86.66
d. Ixx Final 85.3 (Kg.m2) 0.005 0.08 0.11

e. Elevation
Angle 53 (deg) 0.1 52.67 53.27

f. Azimuth
Angle 0 (deg) 0.15 −0.38 0.52

g. Roll Rate 125.66 (rad/s) 0.02 125.60 125.72
h. Pitch Rate 0 0.02 −0.05 0.05
i. Yaw Rate 0 0.02 −0.05 0.06



Aerospace 2022, 9, 32 16 of 22

Aerospace 2022, 9, x 16 of 23 
 

 

The physical parameters of the 122-mm rocket with initial conditions for simulation 
are shown in Table 1; these parameters are the nominal values without launch perturba-
tions. The simulation results presented below show that the rocket motor maximum burn-
out velocity is 1024 m/s (Figure 17), and that the rocket pitch angle (Figure 18) remains 
constant during the glide phase while it shows some variations during the terminal error 
correction phase when the rocket corrects all the drift and range errors. The range plot 
(Figures 19 and 20) consists of three trajectories: one unguided trajectory without a cor-
rection fuze and two guided trajectories with a correction fuze. The two guided trajecto-
ries consist of one trajectory with the glide phase only and the second trajectory with both 
glide and error correction phases. The range plot shows the maximum range of unguided 
rocket trajectory is 32 km, while plots of guided rocket trajectories show that the guidance 
algorithm has successfully stretched the rocket trajectory from 32 km to reach the 60 km 
range during the glide phase. Furthermore, for the error correction phase, the guidance 
algorithm has efficiently corrected the trajectory with a drift error of only 5 m (Figures 19 
and 20), while the other guided rocket without error correction phase has missed the tar-
get point with an error of 1150 m. The plots of ballistics angles (Figures 21 and 22) show 
that the start of the glide phase causes the angle of attack to increase and remain constant 
to generate more lift. The figure shows that most of the control effort causes the angle of 
attack to increase in comparison to the side slip; however, both the angle of attack and 
sideslip remain within limits and show the stability of rocket flight. 

 
Figure 17. Velocity Plot. 

 
Figure 18. Pitch Angle. 

0 50 100 150 200 250

Time(sec)

0

200

400

600

800

1000

1200

0 50 100 150 200 250

Time(sec)

-40

-30

-20

-10

0

10

20

30

40

50

60

P
itc

h
 A

n
g

le
(°

)

Figure 17. Velocity Plot.

Aerospace 2022, 9, x 16 of 23 
 

 

The physical parameters of the 122-mm rocket with initial conditions for simulation 
are shown in Table 1; these parameters are the nominal values without launch perturba-
tions. The simulation results presented below show that the rocket motor maximum burn-
out velocity is 1024 m/s (Figure 17), and that the rocket pitch angle (Figure 18) remains 
constant during the glide phase while it shows some variations during the terminal error 
correction phase when the rocket corrects all the drift and range errors. The range plot 
(Figures 19 and 20) consists of three trajectories: one unguided trajectory without a cor-
rection fuze and two guided trajectories with a correction fuze. The two guided trajecto-
ries consist of one trajectory with the glide phase only and the second trajectory with both 
glide and error correction phases. The range plot shows the maximum range of unguided 
rocket trajectory is 32 km, while plots of guided rocket trajectories show that the guidance 
algorithm has successfully stretched the rocket trajectory from 32 km to reach the 60 km 
range during the glide phase. Furthermore, for the error correction phase, the guidance 
algorithm has efficiently corrected the trajectory with a drift error of only 5 m (Figures 19 
and 20), while the other guided rocket without error correction phase has missed the tar-
get point with an error of 1150 m. The plots of ballistics angles (Figures 21 and 22) show 
that the start of the glide phase causes the angle of attack to increase and remain constant 
to generate more lift. The figure shows that most of the control effort causes the angle of 
attack to increase in comparison to the side slip; however, both the angle of attack and 
sideslip remain within limits and show the stability of rocket flight. 

 
Figure 17. Velocity Plot. 

 
Figure 18. Pitch Angle. 

0 50 100 150 200 250

Time(sec)

0

200

400

600

800

1000

1200

0 50 100 150 200 250

Time(sec)

-40

-30

-20

-10

0

10

20

30

40

50

60

P
itc

h
 A

n
g

le
(°

)

Figure 18. Pitch Angle.

Aerospace 2022, 9, x 17 of 23 
 

 

 
Figure 19. Altitude vs. Range. 

 
Figure 20. Altitude vs. Drift vs. Range. 

 
Figure 21. Angle of Attack. 

 
Figure 22. Angle of Side Slip. 

  

A
lti

tu
de

(m
)

Figure 19. Altitude vs. Range.



Aerospace 2022, 9, 32 17 of 22

Aerospace 2022, 9, x 17 of 23 
 

 

 
Figure 19. Altitude vs. Range. 

 
Figure 20. Altitude vs. Drift vs. Range. 

 
Figure 21. Angle of Attack. 

 
Figure 22. Angle of Side Slip. 

  

A
lti

tu
de

(m
)

Figure 20. Altitude vs. Drift vs. Range.

Aerospace 2022, 9, x 17 of 23 
 

 

 
Figure 19. Altitude vs. Range. 

 
Figure 20. Altitude vs. Drift vs. Range. 

 
Figure 21. Angle of Attack. 

 
Figure 22. Angle of Side Slip. 

  

A
lti

tu
de

(m
)

Figure 21. Angle of Attack.

Aerospace 2022, 9, x 17 of 23 
 

 

 
Figure 19. Altitude vs. Range. 

 
Figure 20. Altitude vs. Drift vs. Range. 

 
Figure 21. Angle of Attack. 

 
Figure 22. Angle of Side Slip. 

  

A
lti

tu
de

(m
)

Figure 22. Angle of Side Slip.

4.1. Perturbation Analysis

A Monte Carlo simulation of 300 samples with Gaussian distributed errors comprising
the launch point perturbations and rocket inertial inaccuracies is carried out to establish
the effectiveness of the guidance scheme. The target location is 60 km along the range
axis. Since the unguided rocket has a range of 32 km, to compare it with a guided rocket,
the unguided rocket uses one guidance phase of an open-loop glide phase with the fixed
orientation of the correction fuze to increase its range to 60 km. In comparison, the guided
rocket has both phases of guidance, i.e., glide phase and error correction phase. In these
simulations, a higher quadrant elevation angle is used for both scenarios. The initial
conditions and error budgets with gaussian normal distribution are set the same for both
simulations, as expressed in Table 1.

4.2. Results and Discussion

Monte Carlo simulation results consist of 300 sample trajectories for unguided (with
glide phase only) and guided rockets with perturbations described in Table 1. The Monte
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Carlo simulation was run in MATLAB R2021a on an Intel Core i5 8th Gen processor laptop
with 8 GB of RAM, and it took 6325 s to completely process all 300 samples. The results
consist of a plot of range vs. drift vs. altitude, impact coordinates of the rocket at the target
point, calculation of the Circular Error of Probability (CEP) based on 50% of the impact
points within circle radius criteria, and histograms to show the number of samples and
their miss distance.

From the comparison of result plots, it is clear that the two-phase guidance algorithm
can increase the range of rocket from 32 km to 60 km (Figures 23 and 24) and improve the
accuracy from CEP = 498 m (Figure 25) of the unguided rocket to CEP = 35 m (Figure 26)
for guided rockets. It shows the effectiveness of the relatively simple fixed canard trajectory
correction method compared to other complex methods of firing impulse thrusters or using
moveable canards. The comparison of the histograms (Figures 27 and 28) gives better
insight into guidance algorithm effectiveness by representing the number of rocket samples
vs. miss distance from the target location. The miss distance histogram of the unguided
rocket is shaped like a bell curve with a mean miss distance of approximately 1500 m.
Moreover, substantial improvement is seen for the guided rockets since almost 50% of them
have a miss distance less than the 50 m from the target that fulfills the error correction
capability of the correction fuze since the 122-mm rocket’s lethal radius is about 50 m.
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5. Conclusions

In this article, a two-phase guidance and control strategy to improve range and
accuracy of the 122-mm rocket was presented using a low-cost fixed canards trajectory
correction fuze. The trajectory simulations are based on the actual thrust of the 122-mm
rocket motor and CFD results. Rocket control authority analysis shows a larger area can
be engaged without launcher repositioning, and the rocket does not respond in-phase
with the control force direction. Guided rocket simulations show that the proposed two-
phase guidance algorithm can increase the rocket range from 32 km to 60 km and also
improve the rocket’s target point accuracy. Furthermore, the Monte Carlo simulations were
performed to evaluate the effectiveness of the proposed configuration in the presence of
perturbations; the results show that the proposed algorithm can reduce the CEP of a guided
rocket 14 times more than an unguided rocket, which is a significant improvement.
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Notations

The following symbols are used in this manuscript:

[
x y z

]′
E Earth Frame

[
CX CY CZ

]′ Rocket Aerodynamic Force
Coefficients in Velocity Frame[

x y z
]′

B Body Fixed Plane (BFP) Frame
[

CcX CcY CcZ
]′ Canard Fuze Aerodynamic

Force Coefficients in Velocity
Frame
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[
x y z

]′
C Canard Frame

[
MX MY MZ

]′ Rocket Aerodynamic Moment
Coefficients in BFP Frame[

vx vy vz
]′ Velocity Frame

[
McX McY McZ

]′ Canard Fuze Aerodynamic
Moment Coefficients in BFP
Frame

[
u v w

]′
B Rocket Velocity in BFP Frame CX0, CDD, CLP, CYPA, CNA,

(
CMQ + Cm

.
α

) Zero Drag, Spin,
Spin-Damping, Side Force,
Normal, and Pitch Damping
Coefficients[

u v w
]′

wind Wind Velocities in BFP Frame ρ, D, g, T, m
Air Density, Characteristic
Length, Gravitational
Constant, Thrust, Mass[

p q r
]′

B
Rocket Angular Rates in BFP
Frame

qdyn, S, Lre f

Dynamic Pressure, Reference
Area, Characteristic Length of
Projectile[

q0 q1 q2 q3
]′ Quaternion Elements RMCM

Distance between Center of
Mass and Magnus Center of
Pressure[

ϕ θ ψ
] Euler Role, Pitch, and Yaw

Angles
RMCP

Distance between Center of
Mass and Center of Pressure

α, β
Aero-ballistic Angle of Attack
and Sideslip

CB
C

Transformation Matrix from
Canard to BFP Frame

θc, θFuze, ωFuze

Control Angle input,
Orientation of Fuze, and
Angular Velocity of Fuze

CB
V

Transformation Matrix from
Velocity to BFP Frame

[I], IXX , IYY
Inertia Matrix, Rolling Inertia,
Pitch Inertia

CC
V

Transformation Matrix from
Velocity to Canard Frame[

X Y Z
]′

B
Sum of All forces in BFP
Frame

[
L M N

]′
B

Sum of All Moments in BFP
Frame

m, g
Mass of projectile, acceleration
due to gravity V =

√
u2 + v2 + w2 Total Velocity along the

Trajectory

T Rocket Motor Thrust cθ , sθ , tθ
Trigonometric Ratio of
Subscript Angle
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