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Abstract: In the traditional investigations on the drag and heat reduction of hypersonic spiked
models, only the aerodynamic calculation is performed, and the structural temperature cannot
be obtained. This paper adopted the loosely coupled method to study its efficiency of drag and
heat reduction, in which the feedback effect of wall temperature rise on aeroheating is considered.
The aeroheating and structural temperature were obtained by the CFD and ABAQUS software
respectively. The coupling analysis of the hypersonic circular tube was carried out to verify the
accuracy of the fluid field, the structural temperature, and the coupled method. Compared with
experimental results, the calculated results showed that the relative errors of stagnation heat flux and
stagnation temperature were 1.34% and 4.95% respectively, and thus the effectiveness of the coupled
method was verified. Installing a spike reduced the total drag of the forebody. The spiked model with
an aerodisk reduced the aeroheating of the forebody, while the model without an aerodisk intensified
the aeroheating. The spiked model with a planar aerodisk had the best performance on drag and
heat reduction among all the models. In addition, increasing the length of the spike reduced the drag
and temperature of the forebody. With the increase of the length, the change rates of drag, pressure,
heat flux, and temperature decreased gradually. Increasing the diameter of the aerodisk also reduced
the temperature of the forebody, while the efficiency of forebody drag reduction first increased and
then decreased. In conclusion, the heat and drag reduction must be considered comprehensively for
the optimal design of the spike.

Keywords: coupled method; spike; aeroheating; drag; hypersonic

1. Introduction

The aeroheating and wave drag are the most important features of hypersonic ve-
hicles [1,2]. The measurements of the drag reduction and thermal protection must be
taken into consideration to ensure a better flight condition and also to ensure the safety
of hypersonic vehicles. The traditional thermal protection system (TPS) is mainly passive,
such as the ceramic TPS and metal TPS [3–5]. Although the passive TPS has been widely
used in hypersonic vehicles, it can not reduce aerodynamic drag. The active TPS based
on flow control can simultaneously reduce aeroheating and aerodynamic drag, which has
been a research hot spot in recent years.

The spike is a type of active TPS based on the flow control. The mechanism destroys
the bow shock wave generated by the forebody and changes it into oblique shock [6–8].
The free stream is firstly compressed by the spike, and then its speed decreases. The
air flows downstream and is subjected to secondary compression by the forebody, thus
forming a reattached shock wave. The reattached point is the thermal danger point of the
forebody [9,10]. The flow characteristics and mechanisms of the aerodisk/spike model
were studied by the numerical and experimental methods [11–13]. The aerodisk is usually
installed at the front of the spike; it enhances the compression to free stream and reduces
the aeroheating and aerodynamic drag more effectively. However, the spike has some

Aerospace 2022, 9, 19. https://doi.org/10.3390/aerospace9010019 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9010019
https://doi.org/10.3390/aerospace9010019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace9010019
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9010019?type=check_update&version=1


Aerospace 2022, 9, 19 2 of 15

disadvantages. The stagnation heat flux of the spike is high enough to burn the spike in
hypersonic flow, rendering the spike not reusable [14–16]. In addition, the spike changes
the aerodynamic shapes of original vehicles.

The opposing jet is another type of active TPS based on the flow control, and the
nozzle of the forebody can eject high-pressure gas [17–19]. On the one hand, the opposing
jet can weaken shock wave, and this function is similar to the spike. On the other hand, the
ejected gas is usually cold enough to cool the forebody actively. Therefore, the opposing jet
reduces the temperature of the forebody through the combined action of the above two
ways [20–22]. Some scholars have validated the efficiency of the opposing jet by numerical
and experimental methods. Huang et al. [23] used the numerical method to study the
influence of the penetration mode on thermal protection efficiency. Hayashi et al. [20] used
the experimental method to measure the heat flux of forebody with the opposing jet, and
the jet gas adopted was nitrogen.

For further reducing the aeroheating and aerodynamic drag, some scholars have
designed some combined configurations by taking advantage of both the opposing jet and
the spike [24–29]. On this basis, the combined configuration of the spike and the lateral jet
is developed [30]. The numerical and experimental investigations show that the combined
configurations have reached a higher efficiency of drag and heat reduction.

The previous scholars mainly studied the mechanism and performance of the above
configurations through experimental and numerical methods from the perspective of flow
field, while the structural temperature is one the most important factors to consider in the
design of thermal protection, which directly affects the safety of the vehicles. This paper
studied the thermal protection efficiency of the spiked model by adopting the fluid-thermal
coupled method, which can calculate the wall heat flux and structural temperature directly.

2. Coupled Fluid-Thermal Numerical Method
2.1. Coupling Strategy

The aeroheating causes the structural temperature to rise sharply, and the high tem-
perature will result in the decrease of aeroheating according to the Fourier’s law. This
paper adopted the loosely coupled method to analyze the structural thermal environment
(Figure 1). The aeroheating and structural temperature were obtained by the CFD and
ABAQUS software respectively. In addition, the fluid and structural grids are usually
different in size, so the interpolation algorithm is necessary to achieve the data transfer of
the coupling variables. The interpolation algorithm in [3] was adopted to complete the data
transfer. The basic principle is mapping the grid nodes on the coupling surface from the
3D physical space to the 2D control plane, and the data transfer is achieved on the control
plane. The interpolation function of wall heat flux is given by:

Q(u, v) = b1u3 + b2v3 + b3u2v + b4v2u + b5u2 + b6v2 + b7uv + b8u + b9v + b10 (1)
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Figure 1. Transient coupled method.  Figure 1. Transient coupled method.

2.2. Validation Example

The thermal environment of hypersonic circular tube [3] was calculated to validate the
coupled method. The outer and inner diameters of the model were 76.2 mm and 50.8 mm,
respectively. Table 1 presents the corresponding material properties. This paper established
a 2D numerical model, and Figure 2 presents the computational grids and boundary
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conditions. The red and blue zones are the flow field and structure respectively. The grid
number of flow field was 300 × 200, and the grid height near the wall was 1 × 10−5 m
for meeting the requirement of the Menter’s SST k-ω turbulent model and obtaining wall
heat flux independent of the grid height (y + <1). The parameters of hypersonic flow are
shown in Table 2. In the numerical simulation, the AUSM + spatial discretization scheme
with second-order accuracy [31], Menter’s SST k-ω turbulent model [32] and LU-SGS time
marching scheme [33] were adopted. The gas model was calorically perfect gas. Because
the thermal conductivity and dynamic viscosity of the air are important for the calculation
of aeroheating, the above two parameters were obtained by the corresponding Sutherland’s
models. The structural temperature was calculated by the ABAQUS software. The coupling
analysis was transient, in which the coupled time step ∆t was set to be 1 × 10−3 s and
1 × 10−4 s, and the total time of coupling analysis was 2 s. The steady flow field was taken
as the initial condition for the coupling analysis, and the initial structural temperature was
set as 294.4 K.

Table 1. Material properties of circular tube.

Parameter Value Parameter Description

k (W/(m·K)) 16.72 Thermal conductivity
c (J/(kg·K)) 502.48 Specific heat
ρ (kg/m3) 8030 Density
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Table 2. Parameters of hypersonic flow.

Parameter Value Parameter Description

Ma∞ 6.47 Mach number
α (◦) 0 Angle of attack

T∞ (K) 241.5 Static temperature
p∞ (Pa) 648.1 Static pressure

The time-history curves of the stagnation temperature under different coupled time
steps were obtained (Figure 3). The stagnation temperature rose very quickly at the
initial stage, and then its changing rate gradually slowed down, which will reach a stable
temperature eventually (steady solution). In addition, the two time-history curves of the
stagnation temperature were coincident with each other, indicating that the solution which
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is independent of the coupled time step can be obtained at the coupled time step 1 × 10−3 s.
Therefore, the coupled time step of 1 × 10−3 s was adopted in the subsequent analysis. The
calculated dimensionless results of the outer wall are shown in Figure 4. The calculated
results are in good agreement with the experimental results. Table 3 lists the calculated and
experimental results of the stagnation point; the relative errors of the stagnation heat flux
and stagnation temperature were 1.34% and 4.95% respectively. The above comparisons
validate the accuracy of the loosely coupled method.
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Table 3. Comparison of calculated and experimental results.

Results Quantity Calculation Experiment

Qs (kW/m2) Stagnation heat flux 661 670

Ts (K) Stagnation
temperature 442 465

3. Geometric and Numerical Models

Figure 5 presents the geometric model in this paper, which includes a forebody, a spike,
and an aerodisk. In order to study the effect of the aerodisk, a separate forebody (Model 1),
a model without an aerodisk (Model 2), and two models with an aerodisk (Models 3 and 4)
were constructed. Figure 6 presents the shapes and dimensions of the above models, among
which Model 3 has a spherical aerodisk and Model 4 has a planar aerodisk.
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The parameters of hypersonic flow and wall temperature Tw are shown in Table 4. This
paper established the axisymmetric numerical model. Figure 7 presents the computational
grids and boundary conditions, and the grid height near wall was 1 × 10−5 m in the fluid
grid for obtaining wall heat flux independent of the grid height. The AUSM+ spatial
discretization scheme with second-order accuracy, Menter’s SST k-ω turbulent model,
and the LU-SGS time marching scheme were adopted. The gas model was calorically
perfect gas. The thermal conductivity and dynamic viscosity of the air were obtained by
Sutherland’s models. The thickness of the forebody was 15 mm, and the temperature of
inner wall remained constant (300 K). Table 5 lists the corresponding material properties.
The structural temperature was calculated by the ABAQUS software.

Table 4. Parameters of hypersonic flow and wall temperature.

Parameter Value Parameter Description

Ma∞ 8 Mach number
α (◦) 0 Angle of attack

T∞ (K) 247.02 Static temperature
p∞ (Pa) 21.96 Static pressure
Tw (K) 300 Wall temperature

Table 5. Material thermal properties of the structure.

Parameter Value Parameter Description

k (W/(m·K)) 2 Thermal conductivity
c (J/(kg·K)) 1000 Specific heat
ρ (kg/m3) 1500 Density
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The grid independence study was conducted in this paper, and three grid systems
were established. Figure 8 presents the wall pressure and wall heat flux of the forebody in
Model 4. The results showed the calculated results had little difference between the grids 2
and 3, and the grid independent results were obtained. Therefore, grid 3 was adopted in
the subsequent sections.
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4. Results and Discussion
4.1. Comparison of Initial Results

Figure 9 presents the flow fields of different analysis models. Models 3 and 4 had the
same flow characteristics as Model 2. However, influenced by the aerodisk, Models 3 and 4
had stronger bow shock waves than Model 2. In addition, Models 3 and 4 had significantly
weaker reattached shock waves than Models 1 and 2, which is favorable for weakening the
aeroheating of forebody. Therefore, the forebody in Models 3 and 4 had a lower peak heat
flux. Although the reattached shock wave was weakened by the aerodisk, the bow shock
wave in Models 3 and 4 was enhanced.
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Figure 10 presents the corresponding pressure and heat flux of forebody. It was found
that the peak pressure was reduced in all the three spiked models. Table 6 shows the drag
coefficient of the whole model (Cd) and the peak heat flux of forebody (Qmax). The drag
coefficients of Models 2, 3, and 4 were 5.70%, 42.26% and 48.59%, respectively, which are
lower than that in Model 1. The peak heat fluxes of Models 3 and 4 were 37.80% and 46.79%,
respectively, which are lower than that of Model 1, while the peak heat flux of Model 2 was
25.73% higher than that of Model 1. Therefore, the drag was reduced in Models 2, 3, and 4,
and Models 3 and 4 had better drag reduction performance than Model 2. Models 3 and 4
significantly reduced the aeroheating of forebody, while Model 2 enhanced the aeroheating,
which is detrimental to the thermal protection. The function of the aerodisk is enhancing
the compression to hypersonic flow.
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Table 6. Drag coefficient and peak heat flux of forebody.

Model Cd Qmax (kW/m2)

1 0.966172 263.56
2 0.911118 331.37
3 0.557827 163.94
4 0.496696 140.25

The drag coefficients of the spike and forebody are listed in Table 7. From Model 2
to Model 4, the drag coefficient of forebody decreased gradually for the reason that the
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equivalent radius of the spike increased gradually from Model 2 to Model 4, resulting in
the drag coefficient of the spike increasing gradually. Since the decrease of forebody drag
was much greater than the increase of spike drag, the total drag decreased gradually from
Model 2 to Model 4. Table 8 presents the drag coefficient due to the viscosity and pressure.
The results showed that more than 87% of the drag was caused by pressure, and only a
small part was caused by the viscosity effect. In conclusion, the wall pressure distribution
determines the drag coefficient.

Table 7. Influence of the spike and forebody on drag coefficient.

Model Forebody Spike

1 0.966172 0
2 0.901042 0.010076
3 0.502472 0.055355
4 0.427148 0.069549

Table 8. Influence of viscosity and pressure on drag coefficient.

Model Pressure Viscosity

1 0.900701 0.065471
2 0.820853 0.090265
3 0.486492 0.071335
4 0.434233 0.062463

4.2. Evolution of Analysis Results

The transient coupled investigations on different models were carried out, in which
the coupled time step ∆t was set as 1 × 10−3 s based on the conclusion drawn in Section 2.2,
and the total analysis time was 20 s. The steady flow field was taken as the initial condition
for coupling analysis, and the initial temperature of the structure was 300 K. The calculated
results at different times are shown in Figures 11 and 12. When the coupling analysis began,
the aeroheating caused the wall temperature to increase gradually, resulting in the decrease
of the aeroheating according to Fourier’s law. The coupled method considers the influence
of wall temperature on aeroheating. The wall heat flux is always maintained at the initial
value in traditional uncoupling analysis, which will cause the structural temperature to be
higher than actual value. In addition, with the progress of calculation, the changing rates of
the above-calculated results gradually decreased. The stationary solution will be reached
when the computational time approaches infinity.
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Figures 13 and 14 present the temperature fields of the forebody and spike at 20 s,
respectively. The maximum temperature and its position are also marked in the figures.
The maximum temperature of the forebody in Model 2 was 5.24% higher than that in
Model 1, and the maximum temperature of the forebody in Models 3 and 4 were 24.75%
and 29.68% lower than that in Model 1, respectively. Influenced by the recirculation zone
and reattached shock wave, the maximum temperature in Model 4 was the closest to the
downstream, at the position of 49.11◦. In addition, the maximum temperature of the spike
in Model 2 reached 2366 K, while that in Models 3 and 4 were only 1600 K and 1543 K,
respectively. Therefore, the spike in Model 4 had the lowest temperature and the best
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non-ablative property. The maximum temperature of the spike in Models 2 and 3 was
located at the stagnation point, while that in Model 4 was located at the outer edge of the
aerodisk, where the curvature was at the maximum. Table 9 presents the drag coefficients of
the four models at different times. It can be found that the variation of the drag coefficients
of all models was less than 5% during 0~20 s. Therefore, with the progress of calculation,
the change of the drag coefficient is very small, and the following sections only discuss
the initial drag coefficient. The above analysis results showed that Model 4 had the best
performance on the thermal protection efficiency and drag reduction efficiency.
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Table 9. Evolution of the drag coefficient.

Model 1 2 3 4

t = 0 s 0.966172 0.911118 0.557827 0.496696
t = 5 s 0.968403 0.889627 0.544266 0.487179
t = 10 s 0.969502 0.879822 0.538436 0.483491
t = 15 s 0.970382 0.872595 0.533643 0.480497
t = 20 s 0.971165 0.866611 0.529479 0.477855

4.3. Effects of the Spike and Aerodisk

In Figure 5, the most important parameters are length L and diameter d. Figure 15
presents the flow fields with different length-diameter ratios L/D (D = 100 mm). When L/D
was small, the influence area of the recirculation zone covered the whole flow field between
the aerodisk and the forebody. As L/D increased, the recirculation zone was limited to
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the flow field in front of the forebody, and the influence on the aerodisk was small with a
weaker reattached shock wave.
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Figure 15. Effect of the length of the spike on flow field.

Figure 16 presents the corresponding initial pressure and heat flux of the forebody,
indicating that the pressure and heat flux decreased with the increase of L/D. Table 10
shows the corresponding initial total drag coefficient and peak heat flux of forebody. As
L/D increased from 0.5 to 2, the total drag coefficient and peak heat flux of the forebody
decreased by 38.56% and 36.34% respectively, thus improving the drag and heat reduction
efficiency. Figure 17 presents the corresponding temperature fields of the forebody at 20 s.
As L/D increased from 0.5 to 2, the maximum temperature decreased by 20.09%, and L/D
had little influence on the position of the peak temperature. In addition, the decrease rates
of drag coefficient, pressure, heat flux, and temperature decreased gradually.
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Figure 18 presents the flow fields with different diameters d. With the increase of d,
the bow shock wave became stronger, while the reattached shock wave became weaker. In
addition, the diameter d had little effect on the recirculation zone. Figure 19 presents the
corresponding initial pressure and heat flux of the forebody, indicating that the pressure
and heat flux will decreased with the increase of diameter d, while the decrease rates
decreased gradually. Table 11 shows the corresponding initial total drag coefficient and
peak heat flux of the forebody. As the diameter d increased from 24 mm to 36 mm, the peak
heat flux of forebody decreased by 30.08%, thus improving the heat reduction efficiency.
The total drag coefficient first decreased and then increased, which can be explained by the
results in Table 12. Table 12 shows the drag coefficient of the spike and hypersonic forebody
under different diameters of the aerodisks. When the diameter d was greater than a certain
size, the increase of spike drag will be greater than decrease of forebody drag, and the total
drag will increase gradually. Figure 20 presents the corresponding temperature fields of
the forebody at 20 s. As the diameter d increased from 24 mm to 36 mm, the maximum
temperature of the forebody decreased by 13.12%, and the diameter d had little influence
on the position of the peak temperature.
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5. Conclusions

(1) The coupling analysis of the hypersonic circular tube was carried out. The relative
errors of the stagnation heat flux and stagnation temperature between calculated and
experimental results were 1.34% and 4.95%, respectively, thus verifying the calculation
effectiveness of the proposed loosely coupled method in this paper.

(2) The coupling analysis had little influence on the drag coefficient. In all spiked models,
more than 87% of the drag was caused by pressure, and only a small part was caused
by the viscosity effect. With the progress of calculation, the changing rates of the
coupled calculated results gradually decreased. The spiked model with the planar
aerodisk had the least drag and the lowest temperature of the forebody; besides, the
planar aerodisk also had the lowest temperature and the best non-ablative property.
Influenced by the recirculation zone and reattached shock wave, the maximum tem-
perature of the forebody in Model 4 was the closest to the downstream, at the position
of 49.11◦.

(3) With the increase of the length of the spike, the decrease rates of drag, pressure, heat
flux, and temperature decreased gradually. Increasing the diameter of the aerodisk
also reduced the temperature of the forebody, while the drag reduction efficiency
increased at first and then decreased. Therefore, the heat and drag reduction must be
considered comprehensively for the optimal design of the spike.
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