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Abstract: With the rapid development of on-orbit services and space situational awareness, there
is an urgent demand for multisatellite flyby inspection (MSFI) that can obtain information about a
large number of space targets with little fuel consumption in a short time. There are two kinds of
constraints, namely inspection constraints (ICs) at each flyby point and transfer process constraints
(TPCs) in the actual mission. Further considering the influence of discrete and continuous variables
such as inspection sequence, time, and maneuver scheme, it is complex and difficult to solve MSFI.
To optimize it efficiently, the task flow and the problem model are defined firstly. Then, the algorithm
framework based on constraint repairing is given, which contains repair methods of the ICs and the
TPCs. Finally, the proposed method is compared with the nonrepair optimization method in two
numerical examples. The results indicate that when the constraints are hard to meet, it is better and
more efficient than the nonrepair method.

Keywords: multisatellite flyby inspection; constraint repairing; trajectory optimization; on-orbit
services; space situational awareness

1. Introduction

In the recent half-century, on-orbit services (OOSs) have been widely used in space
stations, space shuttles, space telescopes, and other items, which have provided human
beings huge economic value and science rewards [1]. Besides, autonomous OOSs have
been gradually applied in the recent several years, such as on-orbit refueling and on-orbit
inspection missions, which have preliminarily shown application prospects [1,2]. The
number of space targets is increasing rapidly, and providing effective on-orbit services for
a large number of satellites is a great challenge for space agencies of all countries.

Multisatellite flyby inspection (MSFI) refers to the fact that a service satellite (SS)
or multiple SSs perform the orbital transfer in a short period and fly by multiple target
satellites at close range to obtain target images and radio signal characteristics and other
information to provide support and help for space situational awareness and subsequent
OOSs. Compared with the approach of close inspection through coplanar rendezvous,
MSFI can not only obtain information of more targets through fast flyby inspection on
different planes but also save propellant and time, which is more suitable for the needs of
close inspection of satellite groups. To obtain clear image information, it is required that
the inspection points have good illumination conditions and the line-of-sight rotation rate
be within a certain range, which can be collectively referred to as the inspection constraints
(ICs) at each flyby point. In the orbital transfer process, the size of a single maneuver is
limited by the engine capacity, and the orbital height cannot be lower than the lowest limit
of low earth orbit (LEO), which are collectively referred to as transfer process constraints
(TPCs). Due to the coupling effect of the ICs and TPCs, the trajectory optimization problem
of MSFI is different from the trajectory optimization problems of multisatellite rendezvous
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and unconstrained multisatellite flyby, which have been studied extensively. The problem
becomes complex and difficult to solve after considering the comprehensive influence of
discrete and continuous variables such as inspection order, time, and maneuver scheme.

If the current position and velocity of the SS and the information of the target to
be flown by are known and the orbit plane intersection inspection is adopted, the SS
does not need to adjust the orbit plane. At this time, the position of the flyby point is
determined, and the orbit maneuver solution is essentially a two-point boundary value
problem (TPBVP). The Lambert problem, as a classical TPBVP, has been a hot topic for
many years. The constrained Lambert problem is an important research direction of the
TPBVP. Zhang et al. characterized the minimum perigee and maximum apogee constraints
as the constraints of semimajor axis iterative variables and then obtained the feasible
revolution range in the multirevolution algorithm, which can reduce the number of cycles
to be evaluated [3]. Huang et al. characterized apogee and perigee height constraints as
the lateral component range of eccentricity vector, and the solution of multirevolution
transfer can be selected in advance to meet the constraints [4]. Thompson et al. made the
dynamic transformation of height constraints of apogee and perigee and determined the
input direction of flight, transfer time, and cycle range by semimajor axis versus transfer
time graph [5]. According to the demand of Moon-to-Earth transfer, Luo et al. effectively
transformed the dynamic characterization of the original Lambert problem for the quasi-
Lambert problem with limited departure flight-direction angle but free transfer angle and
gave a fast iterative solution [6]. Karthikeyan et al. proposed a two-pulse maneuver strategy
to meet the constraints of reentry terminal time and flight-direction angle based on the
Lambert problem [7]. Aiming at the constraint of orbital maneuvering pulse size, Shirazia
et al. characterized the multipulse rendezvous problem as a multisegment two-point
boundary value problem [8].

For other constrained TPBVPs, Thompson et al. proposed a tangent guidance method
with constrained initial or terminal flight direction angle according to the safety require-
ments of rendezvous and solved it by numerical iteration [9]. Taur et al. constructed the
optimal rendezvous/interception primer vector method with path constraints by using
the variational method to deal with the constraints of perigee and apogee [10]. Zhang et al.
derived the analytical solution of tangent guidance and gave the existence condition of the
solution [11]. Zhang et al. derived the partial derivative analytical model of the influence
of orbital maneuver along the track on the illumination conditions and the trajectories of
the subsatellite point based on the J2 relative dynamics equation and revealed the law of
the influence on the fast and slow diffusion directions [12,13]. Liu et al. studied the optimal
pulse guidance law considering the impact angle constraint of the intercept terminal [14].
Xie et al. considered the constraints of pulse time, pulse component size, and terminal
position and derived the first-order necessary condition of minimum velocity increment by
using the variational method [15].

The above studies mainly consider the requirements of perigee and apogee height and
terminal velocity direction, and some studies consider the constraint of single maneuver
pulse size. The optimization of a single flyby inspection trajectory is the underlying support
of MSFI. The single flyby time needs to be as short as possible, and the excellent results
often appear in the boundary of constraint satisfaction and conflict. The way of constraint
processing directly affects the effect and efficiency of multisatellite problem-solving.

The problem of multisatellite flyby belongs to the problem of multisatellite access, and
a similar problem is the problem of multisatellite rendezvous. For multisatellite rendezvous,
there are three different modes: one to many (O2M), many to many (M2M), and peer to
peer (P2P). They are rendezvous modes of one SS or multiple SSs and multiple target
satellites and rendezvous mode of each satellite. The first is O2M mode. Hudson et al. and
Zhang et al. studied the OOS problem [16,17]. Taking the optimal speed increment or the
maximum task revenue as the task index, the optimal sequence was obtained by using
the optimization algorithm. Zhang et al. also considered constraints such as illumination.
Barea et al. and Zhao et al. studied the problem of large-scale space debris removal, aiming
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at maximizing mission revenue, and obtained rendezvous sequences and actual trajectories
that meet both time and energy constraints [18,19]. The second is M2M mode. Li et al.
studied the on-orbit refueling problem with the background of the fuel station and refueling
spacecraft [20], optimized the task allocation and refueling sequence, and obtained the
on-orbit refueling scheme meeting the constraints of time and carrying capacity. Zhang
et al. and Zhu et al. considered the location of the refueling station and the cost of an open
refueling station; ant colony algorithm or clustering algorithm was used to determine the
location and number of fuel stations to meet the on-orbit refueling task constraints [21,22].
Guo et al. considered multiple-satellite deployment problems and used genetic algorithms
and sequential quadratic programming to optimize the transfer orbits [23]. The third is
the P2P mode. Yu et al. proposed a two-stage planning strategy to apply to the P2P mode,
considering the complex constraints of communication time window and illumination [24].
Du et al. took the distributed on-orbit refueling as the research object, transformed the
problem into a graph matching problem, and used graph theory algorithm and genetic
algorithm to solve it [25].

For the problem of the multisatellite flyby, coplanar maneuver and out-of-plane flyby
are usually used to visit the target spacecraft. Zhang et al. gave the necessary and sufficient
conditions for a single spacecraft to fly by three Walker constellation satellites in different
planes without orbital maneuver [26]. Zhou et al. studied the close-range observation mis-
sion of multisatellite flyby based on coplanar maneuver; proposed the method of perigee
maneuver to fly by different targets; and optimized the flying sequence [27], task time,
and maneuver strategy with a two-level optimization model. Based on the work of Zhou
et al., Zhu et al. put forward the strategy of two-tangent-impulse maneuver [28], which
made the maneuver position not only limited to the perigee, and completed the mission
of out-of-plane flyby. Zhao Z. studied the MSFI mission based on coplanar maneuver
strategy and hybrid-encoding genetic algorithm (HEGA) but did not consider the complex
constraints such as illumination [29]. Ma N. proposed the strategy of backward phase
maneuver, where a single mission satellite flew by target satellites on different orbit planes
and completed the task of traversal access to the Walker constellation [30]. Peng et al. used
greedy search and multiround planning method to obtain the mission scheme of MSFI and
compared it with the traditional optimization method [31].

For a single flyby inspection mission, some researchers do not consider the ICs. Even
if the ICs are considered, the inspection window is often predicted and screened based on
the Hohmann-like maneuver in engineering, which discards a large number of inspection
opportunities that are considered as infeasible due to ineffective constraint processing, thus
affecting the effect of MSFI trajectory optimization [31]. In the mission of multisatellite flyby
or rendezvous, the combination of evolutionary algorithm and penalty function is used
to solve the problem, which leads to low efficiency and has difficulty in finding a feasible
solution when the existing constraints are difficult to meet [17,29]. Only considering the
O2M MSFI problem with coplanar maneuvers, to obtain the feasible solution satisfying
the constraints in a short time and obtain a better optimization effect, this paper proposes
an MSFI trajectory optimization method based on constraint repairing and compares it
with the nonrepair optimization method. Comparing with the existing work [31], the main
contributions of this article are as follows: Firstly, in the current research of constrained
TPBVPs, this paper derives the repair range satisfying the single flyby inspection con-
straints through theoretical derivation, which improves the constraint process efficiency
and provides support for the subsequent constraint repairing. Secondly, in the current
research of multisatellite flyby or rendezvous problems with multiple constraints, such as
the MSFI problems, we propose a constraint repairing method to increase feasible solution
numbers and to improve optimization effects and efficiency compared with the method
without repairing, especially when the constraints are hard to meet. The specific sections of
this paper are arranged as follows: Section 2 is the task flow, problem model, and solution
algorithm. Section 3 gives two examples to verify the proposed method and compares
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the proposed algorithm with the nonrepair optimization method. Section 4 gives the
conclusion and prospects of the future research direction.

2. Mission Description and Trajectory Optimization Method
2.1. Task Flow of MSFI Using Coplanar Maneuvers

In this article, there is only one SS; that is, we only consider the O2M MSFI problem.
As shown in Figure 1, when the target passes through the orbital plane of the SS, we
define this time as the candidate end time of the mission. Each revolution of the target will
intersect with the orbit plane of SS at two positions, and we generally select one position as
the end time of the mission. The selection principles are as follows: If one position is in the
Earth’s shadow, then we will select another one. If both positions are out of the shadow, we
will choose the position closest to the target or try to keep the position close to the previous
one. The calculation formula of the candidate end time of the task is shown in [29] and is
not described in detail here.
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Figure 1. Task flow of multisatellite flyby inspection. 
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Figure 1. Task flow of multisatellite flyby inspection.

The platform only needs coplanar maneuvers, and at the end of each transfer, it can
fly by the target in a short distance. The orbit transfer process is shown in Figure 1. The SS
starts from the initial position, executes two coplanar maneuvers at t1 and t2, respectively,
and conducts close-range flyby inspection on the target at the end of the transfer. After
flying by and inspecting one target satellite, the SS continues to perform coplanar maneuver
orbit transfer and inspects the next target until all the target satellites are inspected.

2.2. Mathematical Model of Problem

For the mathematical model of the MSFI trajectory optimization problem, it is neces-
sary to clarify the optimization variables, optimization objectives, and constraints, which
are described below. The optimization variables generally include the sequence variables
of inspecting multiple target satellites; the time of completing each inspection mission, that
is, the number of orbital revolutions for target satellite flight when inspecting each target;
and the maneuver time, size, and direction variables of inspecting each target satellite. The
optimized objective function is to minimize the total propellant consumption, as shown in
Equation (1).

minJ = M0(1− exp(−
n

∑
i=1

2

∑
j=1
‖∆vij‖/(Isg0))) (1)

where M0 is the initial mass, ∆vij is the jth maneuver to inspect the ith target, n is the
number of target satellites, g0 is the gravitational acceleration at sea level, and Is is the
specific impulse of the engine.

Constraints include the ICs and TPCs for each target satellite. The ICs include relative
velocity constraints and constraints of the angle between sunlight and line-of-sight (ASL).
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The TPCs include maneuver size constraints and perigee height constraints. The details are
listed as follows:

(1) ASL constraints: The optical imaging equipment requires that the sunlight cannot
appear in a certain angle range of the line-of-sight. Therefore, the ASL, also written as α,
at the end of transfer should be greater than the minimum ASL, also written as αmin. As
shown in Figure 2, since the trajectory of the spacecraft is approximately in a straight line
in the last period when it flies by the target, the direction of the relative position vector of
the target spacecraft and SS can be replaced by the reverse direction of the relative velocity
vector. The calculation formula is shown in Equation (2).

α = arccos(
^
ds · (vs − vt)/‖vs − vt‖) ≥ αmin (2)

where
^
ds is the unit vector of sunlight direction, vs is the velocity vector of SS, and vt is the

velocity vector of target spacecraft. It is worth noting that for the real flyby there would be a
separation vector at the time of closest approach (large enough to ensure negligible collision
risk), so the line of sight will deviate from the approximation considered here. Therefore, the
assumption is only fine for a preliminary mission design. (2) Relative velocity constraints:
Because the imaging camera needs a servo mechanism to maintain the orientation to the
target, the relative velocity between the serving spacecraft and the target should not be too
fast and should be less than an upper limit; that is, δv = ‖vs − vt‖ ≤ δvmax. (3) Maneuver
size constraints: The size of each maneuver of spacecraft is less than the upper limit of
a single maneuver for the SS; that is, ∆vij ≤ ∆vmax. (4) Minimum geocentric distance
constraints: Due to the inspection problem of LEO, the geocentric distance at the perigee
of the platform, also written as rp, needs to be greater than the lower limit, also written
as rp_min.

Aerospace 2021, 8, 274 5 of 20 
 

 

where 0M  is the initial mass, ijvΔ  is the jth maneuver to inspect the ith target, n is the 

number of target satellites, 0g  is the gravitational acceleration at sea level, and sI  is the 
specific impulse of the engine. 

Constraints include the ICs and TPCs for each target satellite. The ICs include relative 
velocity constraints and constraints of the angle between sunlight and line-of-sight (ASL). 
The TPCs include maneuver size constraints and perigee height constraints. The details 
are listed as follows: 

(1) ASL constraints: The optical imaging equipment requires that the sunlight cannot 
appear in a certain angle range of the line-of-sight. Therefore, the ASL, also written as α
, at the end of transfer should be greater than the minimum ASL, also written as minα . 
As shown in Figure 2, since the trajectory of the spacecraft is approximately in a straight 
line in the last period when it flies by the target, the direction of the relative position vector 
of the target spacecraft and SS can be replaced by the reverse direction of the relative ve-
locity vector. The calculation formula is shown in Equation (2). 

Target

Line-of-sight direction

SS
Sunlight direction

α
sd̂

sv

tv

tv

sv

Angle between sunlight 
and line-of-sight (ASL)

 
Figure 2. ASL constraints diagram. 

α α= ⋅ − − ≥s s t s t min
ˆarccos( ( ) / )d v v v v  (2)

where sd̂  is the unit vector of sunlight direction, sv  is the velocity vector of SS, and tv  
is the velocity vector of target spacecraft. It is worth noting that for the real flyby there 
would be a separation vector at the time of closest approach (large enough to ensure neg-
ligible collision risk), so the line of sight will deviate from the approximation considered 
here. Therefore, the assumption is only fine for a preliminary mission design. (2) Relative 
velocity constraints: Because the imaging camera needs a servo mechanism to maintain 
the orientation to the target, the relative velocity between the serving spacecraft and the 
target should not be too fast and should be less than an upper limit; that is, 

s t maxv vδ δ= − ≤v v . (3) Maneuver size constraints: The size of each maneuver of space-

craft is less than the upper limit of a single maneuver for the SS; that is, maxijΔ ≤ Δv v . (4) 
Minimum geocentric distance constraints: Due to the inspection problem of LEO, the ge-
ocentric distance at the perigee of the platform, also written as pr , needs to be greater 

than the lower limit, also written as p_ minr . 

2.3. Algorithm Based on Constraint Repairing 
Firstly, the overall framework of the algorithm is given, and then the IC repair 

method and TPC repair method are given. 
  

Figure 2. ASL constraints diagram.

2.3. Algorithm Based on Constraint Repairing

Firstly, the overall framework of the algorithm is given, and then the IC repair method
and TPC repair method are given.

2.3.1. Solution Algorithm Framework

In this paper, we use a HEGA to optimize all design variables at the same time and
the penalty function method to deal with the ICs and TPCs. The objective function is
the minimum fuel consumption. The HEGA mainly includes initialization, calculation of
fitness function, crossover and mutation of integer and real variables, and finally selection
together. Through continuous evolution and iteration, the optimal maneuver scheme is
obtained. The crossover and mutation of the HEGA are carried out in the way of simulating
binary numbers, and the selection operation is carried out in the way of the tournament
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method. The fitness function is described in Equation (3). The other specific algorithm flow
is shown in [29] and is not described in detail here.

f itness =
1
J

(3)

(1) Design variable

Design variables include inspection sequence variables and orbital maneuver scheme
variables, in which sequence variables are integer variables and orbital maneuver scheme
variables are real variables. When inspecting each target, the first maneuver is an orbit
adjustment maneuver, and the maneuver time, size, and direction are all design variables.
Because of the coplanar maneuvers, only one angle and size can describe the first maneu-
ver. In the second maneuver, we use the Lambert algorithm to satisfy the end position
constraints, so only the second maneuver time and the end time of the mission need to be
given to obtain the second velocity component. In conclusion, we show the expression of
design variables in Equation (4).

x =



x1 = (q1, q2, . . . , qi, . . . , qn),
x2 = (N1, N2, . . . , Ni, . . . , Nn),
x3 = (∆v11, ∆v21, . . . , ∆vi1, . . . , ∆vn1),
x4 = (θ11, θ21, . . . , θi1, . . . , θn1),
x5 = (t11, t21, . . . , ti1, . . . , tn1),
x6 = (t12, t22, . . . , ti2, . . . , tn2)

(4)

where qi is the sequence number of the ith target satellite (1 ≤ qi ≤ n), ∆vi1 and θi1 are the
first maneuver modulus and angle between the maneuver direction and spacecraft’s radius
direction, ti1 and ti2 are the time of the two maneuvers, Ni is the flight revolutions of the
ith target to be flown by, that is, the end time of the ith inspection mission.

(2) Penalty function method

We use the penalty function method to deal with the constraint conditions; that is,
when the constraint is not satisfied, a penalty term is added to the objective function, and
the size of the penalty term is proportional to the value of the part beyond the limit, as
shown in Equation (5).

J̃ = J +
n
∑

i=1
(P1

2
∑

j=1
max(0, ∆vij − ∆vmax) + P2max(0, δvi − δvmax)+

P3max(0, αmin − αi) + P4max(0, rp_min − rp(i)))
(5)

where J is the original objective function; J̃ is the augmented objective function; and P1, P2,
P3, and P4 are the penalty factors of orbital maneuver size, terminal relative velocity, ASL,
and geocentric distance of perigee, respectively. max(a, b) returns the largest one between
a and b.

(3) Calculation flow of constraint repairing

To reduce the number of penalty terms and increase the number of feasible solutions,
we propose a new method based on constraint repairing, which is to enter a constraint
repairing process when inspecting a satellite and the constraint is not satisfied. After the
repairing process, the method can obtain a new maneuver scheme to replace the original
one, and then the SS continues to inspect the next satellite according to the original design
variables. The calculation process is shown in Figure 3.
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Firstly, according to the original design variables, the maneuver scheme for inspecting
a satellite is obtained. When the constraint conditions for inspecting the satellite are not met,
the algorithm enters the repairing process to obtain a new inspection scheme. Otherwise,
the original maneuver scheme is maintained and the process is repeated until all the target
satellites are inspected. The calculation process of constraint repairing is as follows:

Step 1 Judge whether all constraints are met. If all constraints are met, the next target’s
maneuver scheme will be calculated directly without repair until all targets have
been inspected. Otherwise, go to Step 2.

Step 2 The algorithms repair the ICs first and then repair the TPCs. First, judge whether
all ICs are satisfied. If satisfied, go to Step 4 to repair the TPCs. If any of the ICs
are not satisfied, then go to Step 3.

Step 3 Repair the ICs, and judge whether the IC repairing is successful. If it fails, exit the
calculation directly and keep the original maneuver scheme. Otherwise, continue
to repair TPCs.

Step 4 Repair the TPCs and obtain a new maneuver scheme to replace the original one.

2.3.2. IC Repair Method

Firstly, we give the repair process, and then we give the repair scope satisfying the ICs.

(1) Repair process

According to the expression of ASL and relative velocity constraints, the reason why
the ICs are not satisfied is that the magnitude or direction of relative velocity does not meet
the requirements. Because the state of the target at the terminal time is known, we can
only adjust the velocity vector of the SS to meet the terminal constraints. Generally, the
state of terminal flyby is represented by the flight-direction angle, also written as γ, and
the velocity size, also written as vs. The flight-direction angle is defined as the angle from
radius direction to velocity direction, the range of which is 0 ≤ γ ≤ π [11].

The repair process is shown in Figure 4. First, judge whether the original terminal
flight-direction angle is within the feasible range. If it is not within the feasible range, take
a flight-direction angle value according to the feasible range and corresponding design
variable. If it is within the feasible range, there is no need to repair it. It is necessary to
provide the design variables related to the flight-direction angle. Here, the design variables
corresponding to the direction of orbital maneuver are changed into the design variables of
flight-direction angle.
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Then, under the current flight-direction angle value, the range of flyby velocity that
meets the ICs and other constraints is calculated. If there is no feasible range, withdraw
the calculation because the repair is not successful. If there is a feasible range, judge
whether the existing velocity is within the range. If it is, do not repair it. If it is not, judge
which boundary of the feasible range the velocity size is closer to, and then repair it to the
corresponding boundary value and end the calculation.

(2) Repair scope satisfying the ICs and other constraints

Generally, the value of the flight-direction angle is given according to the design vari-
ables and the feasible range of the flight-direction angle, and the velocity range satisfying
the ICs and other constraints depends on the given flight-direction angle value. By calcu-
lating the upper and lower bounds of the velocity, we can obtain the velocity according to
the design variables. To sum up, given the range of flight-direction angle, we can obtain
the velocity range satisfying the ICs and other constraints. The specific derivation process
is shown in Appendix A.

The range of flight-direction angle is {γ|A∩ B∩C}:

A = {γmin ≤ γ ≤ γmax} (6)

B =
{

arcsin(
√

1− emax2) ≤ γ ≤ π− arcsin(
√

1− emax2)
}

(7)

C =
{

arcsin(rp_min/r) < γ < π− arcsin(rp_min/r)
}

(8)

where γmin and γmax are the lower and upper bounds of flight-direction angle, emax and
rp_min are the maximum eccentricity and the minimum geocentric distance during the
whole mission, and r is the geocentric distance of the target inspected at the time of
inspection.

Given the range of the flight-direction angle, it is assumed that the value of the flight-
direction angle is known according to the design variables, and the range of the velocity
that satisfies the ICs and other constraints is {vs|D∩ E∩ F∩G∩H}.

D = {vmin ≤ vs ≤ vmax} (9)

E =

{
∅, ∆1 < 0;{
(−b1 −

√
∆1)/2 ≤ vs ≤ (−b1 +

√
∆1)/2

}
, ∆1 ≥ 0.

(10)

F1 =


U, dsxvtx + dsyvty + dszvtz > 0, dsx cos γ + dsy sin γ = 0;
∅, dsxvtx + dsyvty + dszvtz ≤ 0, dsx cos γ + dsy sin γ = 0;
vs <

dsxvtx+dsyvty+dszvtz
dsx cos γ+dsy sin γ , dsx cos γ + dsy sin γ > 0;

vs >
dsxvtx+dsyvty+dszvtz

dsx cos γ+dsy sin γ , dsx cos γ + dsy sin γ < 0;

(11)



Aerospace 2021, 8, 274 9 of 19

F2 =


U, dsxvtx + dsyvty + dszvtz ≤ 0, dsx cos γ + dsy sin γ = 0;
∅, dsxvtx + dsyvty + dszvtz > 0, dsx cos γ + dsy sin γ = 0;
vs ≥

dsxvtx+dsyvty+dszvtz
dsx cos γ+dsy sin γ , dsx cos γ + dsy sin γ > 0;

vs ≤
dsxvtx+dsyvty+dszvtz

dsx cos γ+dsy sin γ , dsx cos γ + dsy sin γ < 0;

(12)

F3 =



U, a2 = b2 = 0, c2 ≤ 0;
∅, a2 = b2 = 0, c2 > 0;
{vs ≤ −c2/b2} a2 = 0, b2 > 0;
{vs ≥ −c2/b2} a2 = 0, b2 < 0;
∅, a2 > 0, ∆2 < 0;{
(−b2 −

√
∆2)/(2a2) ≤ vs ≤ (−b2 +

√
∆2)/(2a2)

}
, a2 > 0, ∆2 ≥ 0;

U, a2 < 0, ∆2 ≤ 0;{
vs ≤ (−b2 +

√
∆2)/(2a2)

}
∪
{

vs ≥ (−b2 −
√

∆2)/(2a2)
}

, a2 < 0, ∆2 > 0.

(13)

F = F1 ∪ (F2 ∩ F3) (14)

G =

{√
(−b3 −

√
∆3)/(2a3) ≤ vs ≤

√
(−b3 +

√
∆3)/(2a3)

}
(15)

H =

{√
(−b4 −

√
∆4)/(2a4) ≤ vs ≤

√
2µ/r

}
(16)

where a1 = 1; b1 = −2
(

^
vs · vt

)
; c1 = vt

2 − δvmax
2; a2 =

(
^
ds ·

^
vs

)2

− cos2 αmin; b2 =

−2
[(

^
ds ·

^
vs

)(
^
ds · vt

)
− cos2 αmin

(
^
vs · vt

)]
; c2 =

(
^
ds · vt

)2

− vt
2 cos2 αmin;

a3 = r2 sin2(γ)/µ2; b3 = −2r sin2(γ)/µ; c3 = 1− emax
2; ∆i = bi

2 − 4aici(i = 1, 2, 3, 4);
a4 = [r2 sin2(γ)− rp_min

2]/µ2; b4 = 2[2rp_min
2− r2 sin2(γ)− rp_minr]/µr; c4 = 4rp_min(r−

rp_min)/r2; vmin and vmax are the lower and upper limit of flyby velocity; U is the universal

set; the projections of unit velocity vector
^
vs, unit sun vector

^
ds, and target terminal velocity

vector vt in the local-vertical local-horizon (LVLH) coordinate frame are (cos γ, sin γ, 0),
(dsx, dsy, dsz), and (vtx, vty, vtz); and µ is the gravitational parameter.

2.3.3. TPC Repair Method

After obtaining the flying velocity and direction satisfying the ICs and other con-
straints, it is necessary to give a complete maneuver scheme again and find the scheme
satisfying the TPCs or minimizing the penalty term. If the ICs are satisfied but the TPCs are
not satisfied at the beginning, we can also use this method to obtain a complete maneuver
scheme.

Now, the velocity direction and size of the terminal flyby are known. Once given the
time of two pulses maneuver, we can obtain the components of two pulses.

Firstly, as shown in Equation (17), we need to determine n values of traversal vari-
able t1.

t1 = t1_l + i× (t1_u − t1_l)/(n− 1) (17)

where 0 ≤ i ≤ n− 1, i ∈ N, t1_l and t1_u are the lower and upper bounds of the variable t1,
respectively, and n is the number of traversal calculations.

Secondly, t2 is the end time of the mission minus a fixed value, that is, pushing
backward for a fixed period of time, and then the position state of the second maneuver is
obtained.

Thirdly, traversing the variable time t1 and aiming at the second maneuver position,
the SS applies a Lambert maneuver at the corresponding first maneuver position.

Finally, when reaching the second maneuver position, we can obtain the velocity
component of the second maneuver by subtracting the actual velocity from the desired
aiming velocity.
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After traversing all time t1, the one with the smallest augmented objective function is
selected as the actual inspection scheme. The whole process is shown in Figure 5.
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3. Example Analysis

Two examples of MSFI are calculated to test the optimization effect of the proposed
algorithm. The first test case involves a relatively diverse set of targets, and the second one
involves a more clustered set of targets.

3.1. Example 1
3.1.1. Example Configuration

The first test case involves a relatively diverse set of targets. They are selected from
current STARLINK satellites, which will be potential customers for such an inspection
service. The SS and target satellites are shown in Table 1. The starting time of the mission
is 04:00:00 on 27 August 2021 (UTCG). The data are from “STARLINK TLEs” on the
website [32], which are current as of 27 August 2021 02:00:56 UTC (Day 239).

Table 1. SS and target satellite orbit parameters of example 1.

Num. Name a/km e i/◦ Ω/◦ ω/◦ θ/◦ u/◦

/ SS 6928.14 0.00 40.00 0.43 0.00 0.00 0.00
1 STARLINK-2158 6929.58 0.00 53.18 73.31 75.61 309.16 24.77
2 STARLINK-1532 6931.72 0.00 53.01 328.37 53.56 308.63 2.19
3 STARLINK-1230 6931.73 0.00 52.95 278.29 47.61 309.61 357.22
4 STARLINK-2201 6932.90 0.00 97.38 297.28 63.06 178.89 241.95
5 STARLINK-3005 6884.30 0.00 97.54 7.08 297.02 162.86 99.88
6 STARLINK-2574 6926.66 0.00 52.99 213.21 77.02 143.12 220.14
7 STARLINK-1308 6931.75 0.00 53.15 38.35 51.92 305.32 357.24
8 STARLINK-1084 6929.18 0.00 52.99 218.23 73.63 313.84 27.47
9 STARLINK-2206 6905.42 0.00 97.38 299.46 103.13 96.39 199.52

The minimum and maximum times of a single inspection mission are 2 and 24 h,
respectively. The specific impulse of the engine is about 290.82 s, and the initial mass is
2000 kg. The lower limit of ASL is 50◦, and the maximum relative velocity is 10.5 km/s.
The upper limit of a single maneuver is 1000 m/s, and the lower limit of the perigee height
is 200 km. The lower bound of the first maneuver time is the initial slide time (IST), and
the upper bound is the single inspection mission time (SIMT) minus the end slide time
(EST) and the minimum spacing between thruster impulses (MSTI). The lower bound of
the second maneuver time is the first maneuver time plus MSTI, and the upper bound is
the SIMT minus EST. We set IST = EST = MSTI = 300 s.

In the optimization model based on constraint repairing, the upper and lower bounds
of the flyby flight-direction angle are 75–105◦, and the upper and lower bounds of the flyby
velocity are 0–11.2 km/s. The maximum eccentricity is set to 0.7. The lower bound of the
first maneuver time is the IST, and the upper bound is the minimum value of T1 and T2.
T1 is the IST plus the first revolution flight time of SS. T2 is the SIMT minus the EST and
MSTI. The number of traversal calculations is 89, and the second maneuver is executed
300 s before the end of each transfer.
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The parameters of the HEGA are as follows: The population size is 600. The evolution
generation is 700. These two parameters are chosen because the optimization results are
best in these two values after many trials. The mutation probability of integer and real
variables is 0.7, and the crossover probability is 0.8. The reason why the mutation and
crossover probability are so large is that the HEGA uses the elite strategy, which may
cause a premature problem if the probability of mutation and crossover is too small. The
number of individuals in the tournament is 3. The penalty factors of penalty function are as
follows: The penalty factors of maneuver velocity, perigee height, ASL, and flyby relative
velocity are 106, 105, 107, and 104, respectively. The units of all parameters are international
standard units.

3.1.2. Simulation Results and Method Comparison

To compare and analyze the optimization effect of the method proposed in this paper,
the nonrepair method is used for optimization calculation. The nonrepair method is the
optimization method without any constraint repair and only relies on the penalty function
method for optimization.

In all calculations, the computer configuration used is Intel (R) Xeon (R) E5-2690 V4
(2.6 GHz, 64 GB). Because of the randomness of the HEGA, we carry out 20 independent
calculations using the constraint repairing method and the nonrepair method and give the
best solution in Table 2, which contains the population size, evolution generation, velocity
increment, fuel consumption, computation time, and mission time.

Table 2. Population size, evolutionary generation, velocity increment, fuel consumption, computation time, and mission
time for two methods.

Method Population
Size

Evolution
Generation

Velocity Increment
(m/s)

Fuel Consumption
(kg)

Computation
Time (min)

Mission
Time (h)

Nonrepair method 2000 2000 667.57 417.65 444.59 118.30
Constraint repairing method 600 700 1164.83 670.99 222.50 130.53

Compared with the nonrepair method, the constraint repairing method cannot obtain
a better solution, but it can also obtain a reasonable solution in a short time. We give
the constraints of the best solution scheme for the nonrepair method, which is shown in
Table 3. As we can see, the constraints are easy to meet, and the constraint repairing method
might not suit this problem-solving. Therefore, we make a more clustered case in example
2, whose constraints are more difficult to satisfy.

Table 3. Constraint values of each inspection task of example 1.

Target Sequence ASL (◦) Relative Velocity (km/s)

2 87.29 3.46
3 112.09 7.37
8 117.83 10.46
6 115.50 10.50
5 109.38 7.32
9 71.94 9.54
4 70.63 9.69
1 63.36 6.72
7 68.81 3.95

Constraint boundary 50.00 10.50

3.2. Example 2
3.2.1. Example Configuration

The second test case involves a more clustered set of targets. The specific parameters
of the SS and target satellites are shown in Table 4. There are nine targets, which are
distributed in a sun-synchronous orbit. The starting time of the mission is 20:00:00 on



Aerospace 2021, 8, 274 12 of 19

31 July 2021 (UTCG), and other parameters are the same as the configuration of example
1. Firstly, the simulation results of optimization are given, then the effects of various
constraints on the results are given, and finally, the comparison results of two different
methods are given.

Table 4. SS and target satellite orbit parameters of example 2.

Name a/km e i/◦ Ω/◦ ω/◦ θ/◦ u/◦

SS 7078.14 0.00 98.19 50.97 0.00 0.00 0.00
Target satellite 1 6927.00 0.00 97.00 140.00 127.00 280.00 47.00
Target satellite 2 6999.00 0.00 97.00 139.00 117.00 202.00 319.00
Target satellite 3 6999.00 0.00 97.00 139.00 62.00 77.00 139.00
Target satellite 4 6996.00 0.00 97.00 139.00 60.00 169.00 229.00
Target satellite 5 6990.00 0.00 97.00 139.00 197.00 234.00 71.00
Target satellite 6 6986.00 0.00 98.00 83.00 116.00 43.00 159.00
Target satellite 7 6807.00 0.00 97.00 84.00 111.00 171.00 282.00
Target satellite 8 6936.00 0.00 98.00 139.00 228.00 49.00 277.00
Target satellite 9 6958.00 0.00 98.00 62.00 78.00 17.00 95.00

3.2.2. Simulation Results and Constraint Analysis

Due to the randomness of the HEGA, we carry out 20 independent calculations, in which
the optimal velocity increment is 2668.60 m/s (the propellant consumption is 1215.89 kg), the
mission time is 61.29 h, and the optimal inspection sequence is {2,4,1,3,5,8,9,6,7}. The specific
maneuver scheme is shown in Table 5. The optimal evolution curve is given. As shown
in Figure 6, the feasible solution is obtained in the 44th generation of evolution. Through
continuous evolution, the final result is obtained.

Table 5. Orbit maneuver scheme.

Maneuver Sequence Time (h) J2000 Impulse (m/s) Velocity Increment
(m/s)

1-1 0.24 (1.90, 3.17, −3.57) 5.14
1-2 2.32 (−87.95, −117.21, 38.11) 151.42
2-1 8.93 (−0.62, −1.08, 1.39) 1.87
2-2 9.03 (−19.41, −23.18, −3.31) 30.41
3-1 20.07 (−6.19, −1.95, −24.87) 25.70
3-2 30.42 (92.33, 130.43, −72.31) 175.40
4-1 30.60 (−6.63, −7.87, −1.35) 10.38
4-2 30.68 (−70.68, −64.61, −98.75) 137.56
5-1 33.91 (−0.01, −0.01, −0.03) 0.03
5-2 34.00 (−12.09, −17.44, 11.05) 23.92
6-1 46.07 (−4.78, −5.62, −1.23) 7.48
6-2 46.15 (−28.20, −12.26, −98.54) 103.23
7-1 48.85 (−305.33, −321.12, −242.88) 505.31
7-2 52.85 (0.20, −3.08, 14.55) 14.87
8-1 53.02 (−441.61, −486.05, −256.80) 705.13
8-2 56.12 (−392.92, −423.15, −269.24) 637.13
9-1 57.71 (−13.22, −18.82, 10.98) 25.48
9-2 61.21 (−68.00, −75.35, −37.32) 108.14

The time-varying processes of the semimajor axis, eccentricity, argument of perigee
(AOP), and cumulative velocity increment of the SS are given, as shown in Figure 7. The
vertical lines in the figure represent the inspection time of nine different targets. It can be
seen that the semimajor axis and eccentricity of the SS increase gradually, and the greater
the change of the two, the greater the velocity increment. The AOP almost remains in the
range of 100–150◦, which will reduce the fuel consumption in the aspects of changing AOP.
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Figure 7. Time-dependent curves of orbit parameters and velocity increment of SS.

As shown in Figure 8, the trajectories of the SS are given. Different trajectories
represent the trajectories of inspecting different targets. Combined with Figure 7, it can be
seen that the semimajor axis and eccentricity of the SS are increasing, but the apsidal line is
kept near a region and remains unchanged in the later stage. This kind of phenomenon is
an expression of saving propellant.
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Figure 8. Optimal trajectory.

As shown in Table 6, the constraint values for completing each inspection task are
given. Most of the ASLs are close to the lower limit of the constraint, three of which even
are taken to 50.00◦. Relative velocity constraints are also basically around 10.5 km/s. They
all prove that the constraints proposed in this problem are difficult to satisfy.
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Table 6. Constraint values of each inspection task of example 2.

Target Sequence ASL (◦) Relative Velocity (km/s)

2 52.51 10.45
4 52.22 10.47
1 51.80 10.50
3 51.89 10.43
5 51.56 10.44
8 51.35 10.49
9 50.00 1.82
6 50.00 5.12
7 50.00 5.36

Constraint boundary 50.00 10.50

To analyze the influence of different constraints on the results, we give the optimal
inspection schemes without considering ASL and relative velocity constraints.

Firstly, ASL constraints are not considered. In this example, the minimum ASL is set
to 0◦. The optimal inspection sequence, velocity increment, propellant consumption, and
mission time are shown in Table 7. The velocity increment is greatly reduced compared
with the case in which all constraints are considered, proving that ASL constraints have a
great impact on the optimal inspection scheme.

Table 7. The results of minimum velocity increment under different constraints.

Constraint Considerations Velocity Increment
(m/s)

Fuel Consumption
(kg)

Mission Time
(h) Inspection Order

All constraints 2668.60 1215.89 61.29 {2,4,1,3,5,8,9,6,7}
Without ASL constraints 676.85 422.79 126.50 {8,2,4,1,6,5,9,3,7}

Without relative velocity constraints 2379.45 1132.16 39.56 {8,9,4,1,3,5,2,6,7}

Then, the relative velocity constraints are not considered. In this example, the maxi-
mum relative velocity is set to positive infinity. Similarly, the result is shown in Table 7.
The consumption of propellant has slightly decreased, but the inspection sequence has
changed a lot. Without considering the constraints, the number of feasible solutions will
increase, and more combinations of feasible inspection sequences will be produced so that
different sequences can also obtain better propellant consumption results.

3.2.3. Comparison with the Nonrepair Method

Similarly, to compare the calculation effect of the two different methods in this example,
we change the number of satellites to three, six, and nine and compare the results of the
two methods under different numbers of satellites. Each example is calculated 20 times,
and the best one is taken as the final result. The population size and evolution generation
settings are shown in Table 8. The optimal velocity increment, propellant consumption,
mission time, and calculation time obtained by different methods under different numbers
of satellites are also shown in Table 8.

Generally, the more satellites there are, the more difficult it is to satisfy the constraints.
When the number of satellites is three, the velocity increment obtained by the nonrepair
optimization method is relatively low, and the results obtained by the constrained repair
optimization method in a short time are close to the optimal solution, but the optimization
effect is still not good enough. When the number of satellites increases to six, the optimal
velocity increment is the result of the constraint repairing method, and the calculation time
is at least half of the nonrepair method. When the number of satellites increases to nine,
the conclusion is similar.
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Table 8. Population size, evolutionary generation, velocity increment, fuel consumption, computation time, and mission
time for different numbers of targets and different methods.

Target Sets Method Population
Size

Evolution
Generation

Velocity
Increment

(m/s)

Fuel
Consumption

(kg)

Computation
Time (min)

Mission
Time (h)

{1, 2, 3}
Nonrepair method 1000 1000 152.42 104.15 46.49 60.79

Constraint repairing
method 300 400 170.50 116.14 26.07 42.71

{1, 2, . . . , 6}
Nonrepair method 1500 1500 2533.09 1177.70 196.96 65.88

Constraint repairing
method 500 500 2526.77 1175.88 85.44 31.99

{1, 2, . . . , 9}
Nonrepair method 2000 2000 2677.08 1218.22 531.52 104.76

Constraint repairing
method 600 700 2668.60 1215.89 203.47 61.29

In Figure 9, we compare the ASL and relative velocity constraints of two examples,
which gives the value of the constraint in different inspection missions. Compared with
example 1, most of the ASL and relative velocity constraints for example 2 are near the
bound value. Therefore, example 2 is a case whose constraints are difficult to satisfy, which
may be more suitable for using the constraint repairing method.
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From examples 1 and 2, we can make conclusions as follows: When the constraints are
easy to meet, the nonrepair optimization method can quickly find feasible solutions and
quickly optimize, which has obvious advantages. However, the constraint repairing opti-
mization method can also obtain a reasonable result in a short time. When the constraints
are hard to meet, it is easy to find a feasible solution by using the constraint repairing
method, and it can also obtain better results in a short time, which is more suitable for
solving such problems.

4. Conclusions

In this paper, we propose a trajectory optimization method of MSFI based on constraint
repairing. Firstly, we give the mission flow based on coplanar maneuver, and then we define
the trajectory optimization model from the design variables, constraints, and objective
function. Finally, we propose the trajectory optimization method based on constraint
repairing from three aspects: the algorithm framework, the IC repair method, and the
TPC repair method. Compared with the nonrepair method, through the calculation of the
two different examples, the conclusion is as follows: When the constraints are easy to meet,
the constraint repairing optimization method can obtain a reasonable solution in a short
time. When the constraints are hard to meet, the optimization method based on constraint
repairing is not only slightly better than the nonrepair method in optimization effect but
also more than twice better than the nonrepair method in optimization efficiency, which is
more suitable for solving this kind of problem.
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In future research, it is necessary to consider the problem of multiple SSs inspecting
multiple targets, that is, the M2M MSFI problem, which also needs an efficient algorithm
combined with task allocation variables.

Author Contributions: Conceptualization, J.Z.; methodology, C.P.; software, C.P.; validation, B.Y.,
J.Z.; formal analysis, C.P.; investigation, C.P. and J.Z.; resources, J.Z.; data curation, C.P.; writing—
original draft preparation, C.P.; writing—review and editing, C.P. and J.Z.; visualization, C.P. and
J.Z.; supervision, B.Y. and J.Z.; project administration, J.Z. and Y.L.; funding acquisition, J.Z. and Y.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 11972044.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Let the projection of the terminal velocity vector of the SS vs, the unit sun vector
^
ds, and

the target terminal velocity vector vt in the LVLH coordinate frame be (vs cos γ, vs sin γ, 0),
^
ds = (dsx, dsy, dsz), and vt = (vtx, vty, vtz), respectively. According to terminal relative
velocity constraints and ASL constraints, the following two types of terminal velocity
ranges can be obtained:

The first inequality constraint is about the maximum relative velocity at the end, as
shown in (A1).

‖vs − vt‖ ≤ δvmax (A1)

The inequality is expanded in the LVLH coordinate frame, and a quadratic inequality
about the terminal velocity of SS is obtained.

a1vs
2 + b1vs + c1 ≤ 0 (A2)

where a1 = 1, b1 = −2
(
vtx cos γ + vty sin γ

)
, and c1 = vt

2 − δvmax
2.

Let ∆1 = b1
2 − 4c1; if ∆1 < 0, then vs has no value range satisfying the constraint; if

∆1 ≥ 0, then the range of vs is as follows:

(−b1 −
√

∆1)/2 ≤ vs ≤ (−b1 +
√

∆1)/2 (A3)

The second inequality constraint is about the minimum ASL.

α = cos−1(ds · (vs − vt)/‖vs − vt‖) ≥ αmin (A4)

According to the experience in the project, we usually have cos αmin > 0, so the
following discussion is needed:

Situation 1: When ds · (vs − vt)/‖vs − vt‖ < 0, the inequality is always true. When
dsx cos γ + dsy sin γ = 0, if dsxvtx + dsyvty + dszvtz > 0, vs can take any value; if dsxvtx +
dsyvty + dszvtz ≤ 0, vs has no value range satisfying the constraint. When dsx cos γ +
dsy sin γ > 0, we have vs < (dsxvtx + dsyvty + dszvtz)/dsx cos γ+ dsy sin γ. When dsx cos γ+
dsy sin γ < 0, we have vs > (dsxvtx + dsyvty + dszvtz)/dsx cos γ + dsy sin γ.

Situation 2: When ds·(vs − vt)/‖vs − vt‖ ≥ 0, the range of vs is the complement of
the situation 1. However, the inequality may not always be true. Therefore, the inequality
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is also expanded in the LVLH coordinate frame and can be written as a quadratic inequality
about the terminal velocity of SS.

a2vs
2 + b2vs + c2 ≤ 0 (A5)

where a2 =
(
dsx cos γ + dsy sin γ

)2− cos2 αmin, c2 =
(
dsxvtx + dsyvty + dszvtz

)2− vt
2 cos2 αmin,

and b2 = −2
[(

dsx cos γ + dsy sin γ
)(

dsxvtx + dsyvty + dszvtz
)
− cos2 αmin

(
vtx cos γ + vty sin γ

)]
.

Let ∆2 = b2
2 − 4a2c2; if a2 = b2 = 0 and c2 ≤ 0, then this constraint has no limitation

on the flying velocity of the SS; if a2 = b2 = 0 and c2 > 0, then there is no velocity value
satisfying constraints. If a2 = 0 and b2 > 0, then

vs ≤ −c2/b2 (A6)

If a2 = 0 and b2 < 0, then
vs ≥ −c2/b2 (A7)

If a2 > 0 and ∆2 ≤ 0, then there is no value of velocity satisfying constraints; if a2 > 0
and ∆2 ≥ 0, then

(−b2 −
√

∆2)/(2a2) ≤ vs ≤ (−b2 +
√

∆2)/(2a2) (A8)

If a2 < 0 and ∆2 ≤ 0, then the constraint has no limitation on the terminal velocity of
SS; if a2 < 0 and ∆2 > 0, then

vs ≤ (−b2 +
√

∆2)/(2a2) (A9)

or
vs ≥ (−b2 −

√
∆2)/(2a2) (A10)

Finally, the corresponding ranges of the two situations are combined to obtain the
final range.

In addition to the above two types of constraints, vs should satisfy two kinds of
constraints: the eccentricity should be less than the maximum eccentricity emax, and the
geocentric distance of perigee rp should be more than the minimum rp_min. It is known that
the terminal vector length of the target or platform is r, and the gravitational constant of
the Earth is µ. The first is about the constraint of eccentricity, and according to the formula
of eccentricity obtained by the vector of position and velocity

‖e‖ = ‖(rs × (rs × vs))/µ− rs/rs‖ < emax (A11)

The expansion of rs in the LVLH coordinate frame can be written as (rs, 0, 0), where rs
represents the geocentric distance of SS when it flies by the target. The quartic inequality
of velocity is obtained:

a3vs
4 + b3vs

2 + c3 ≤ 0 (A12)

where a3 = r2 sin2(γ)/µ2, b3 = −2r sin2(γ)/µ, c3 = 1− emax
2.

Let ∆3 = b3
2 − 4a3c3, in order to make vs

2 feasible and greater than zero; then, ∆3 ≥ 0.
After analysis, we can obtain the following conditions about the flight-direction angle:

arcsin(
√

1− emax2) ≤ γ ≤ π− arcsin(
√

1− emax2) (A13)

The velocity range is as follows:√
(−b3 −

√
∆3)/(2a3) ≤ vs ≤

√
(−b3 +

√
∆3)/(2a3) (A14)

Regarding the minimum height of perigee constraint, we can obtain semimajor axis a
by vis viva formula:

a = µr/(2µ− rv2) (A15)
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According to rp_min < a(1 − e) and expression of e, the conclusion is as follows:

a4vs
4 + b4vs

2 + c4 ≤ 0 (A16)

where a4 = [r2 sin2(γ)− rp_min
2]/µ2, b4 = 2[rp_min

2− r2 sin2(γ)+ rp_min(rp_min− r)]/(µr),
and c4 = 4rp_min(r− rp_min)/r2.

If a4 = 0, the conclusion is vs ≥
√

2µ/r, and it cannot satisfy the physic constraint
(second cosmic velocity), so a4 6= 0. Let us assume a4 > 0; the range of flight-direction
angle is obtained (rp_min < r):

arcsin(rp_min/r) < γ < π− arcsin(rp_min/r) (A17)

Let ∆4 = b4
2 − 4a4c4, because a4 > 0, so b4 < 0. In addition, c4 > 0. Therefore, as

long as ∆4 ≥ 0, vs
2 can be feasible and greater than zero. After derivation, it is found that

∆4 ≥ 0 is constant, so the final velocity range is√
(−b4 −

√
∆4)/(2a4) ≤ vs ≤

√
2µ/r (A18)

In addition to the above four types of constraints, minimum and maximum velocity
values satisfying the physical meaning are generally set as follows:

vmin ≤ vs ≤ vmax (A19)

Taking the intersection of the above five kinds of ranges, the range of terminal velocity
of SS is obtained. As for the range of flight-direction angle, in addition to the range given
by Formula (A13) and Formula (A17), upper and lower boundaries are required. As
shown in Formula (A20), the range of flight-direction angle is obtained by intersection of
three ranges.

γmin ≤ γ ≤ γmax (A20)

All in all, the conclusion about the range of flight-direction angle and flyby velocity is
obtained.
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