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Abstract: The energy efficiency and flight endurance of small unmanned aerial vehicles (SUAVs) can
be improved through the implementation of autonomous soaring strategies. Biologically inspired
flight techniques such as dynamic and thermal soaring offer significant energy savings through
the exploitation of naturally occurring wind phenomena for thrustless flight. Recent interest in
the application of artificial intelligence algorithms for autonomous soaring has been motivated
by the pursuit of instilling generalized behavior in control systems, centered around the use of
neural networks. However, the topology of such networks is usually predetermined, restricting the
search space of potential solutions, while often resulting in complex neural networks that can pose
implementation challenges for the limited hardware onboard small-scale autonomous vehicles. In
exploring a novel method of generating neurocontrollers, this paper presents a neural network-based
soaring strategy to extend flight times and advance the potential operational capability of SUAVs. In
this study, the Neuroevolution of Augmenting Topologies (NEAT) algorithm is used to train efficient
and effective neurocontrollers that can control a simulated aircraft along sustained dynamic and
thermal soaring trajectories. The proposed approach evolves interpretable neural networks in a
way that preserves simplicity while maximizing performance without requiring extensive training
datasets. As a result, the combined trajectory planning and aircraft control strategy is suitable for
real-time implementation on SUAV platforms.

Keywords: dynamic soaring; thermal soaring; neurocontrol; artificial neural network; neuroevolution;
unmanned aerial vehicle; flight trajectory; aircraft control; trajectory optimization; optimal control

1. Introduction

Interest in small unmanned aerial vehicles (SUAVs) has continually been increasing
due to their utility in numerous applications ranging from scientific data acquisition to
military surveillance. Nevertheless, the power storage limits onboard small-scale aircraft
greatly restrict their maximum flight times, negatively impacting their ability to perform
long-range operations. As a result, there exists practical value in improving the energy
management of SUAVs. Recent work in addressing this issue from an aeronautical per-
spective has been motivated by a significant interest in solar-powered vehicles. However,
biologically inspired mechanisms can offer other solutions to the problem. In nature,
certain species of birds such as the albatross and the frigatebird have evolved methods of
extracting energy from wind by soaring in particular patterns that exploit the differences
in wind velocities at varying altitudes and regions. One such technique known as dynamic
soaring can be observed in albatross birds, who perform cyclic maneuvers using horizontal
winds to travel across large, transoceanic distances without flapping their wings [1]. Simi-
larly, thermal soaring enables frigatebirds to continuously loiter over oceans using columns
of rising air, or thermals [2]. Since these discoveries, the study of autonomous soaring
for SUAVs has been a growing field pursuing a multidimensional challenge that involves
wind field mapping, trajectory planning, and aircraft control. A particular difficulty lies
in creating an autonomous system that can compute energy-efficient dynamic soaring
trajectories and pass control commands to a computationally limited autopilot platform.
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To understand the energy efficiency of dynamic soaring, a typical albatross bird
weighing 8.5 kg would need to generate 81.0 W of power to maintain an airspeed of 38 knots
for a long-endurance flight. An equivalent gasoline engine would consume almost a liter
of fuel per day, and for the over 15,000 km-long transoceanic travel commonly observed of
wandering albatrosses, such an energy expenditure would be calorically unsustainable and
physiologically destructive without the evolved technique of dynamic soaring [3]. Natural
observation of the method’s capacity to significantly contribute to flight endurance with
minimal cost illustrates its potential value in aerial vehicles. Similarly, pioneering research
in thermal soaring found that in one instance, the application of the technique in SUAVs
could result in a remarkable twelve-hour increase in flight endurance on an electrical vehicle
with a base endurance of two hours [4]. Yet, despite the clear benefits, the implementation
of these techniques remains a challenge due to the problems of planning a sustainable
soaring trajectory, as well as controlling an aircraft along the trajectory.

In addressing the issue of trajectory planning, much of the existing research has
involved numerical trajectory optimization (TO) techniques to calculate the optimal energy-
neutral flight path. The extensive computational resources required to perform the large
number of calculations have primarily seen the use of trajectory optimization for exploring
the theoretical feasibility of soaring maneuvers [5,6]. Even so, through continued research
efforts, real-time optimization techniques have now largely bypassed the problem of timely
trajectory generation [7–9]. As for the issue of aircraft control, a significant body of research
has explored the popular approach of explicitly tracking a calculated trajectory [10,11] in a
category of methods known as tracking control. However, the individual addressing of the
planning and control problems reveals another challenge with this distinct categorization of
the components of autonomous soaring: such approaches depend heavily on the reference
trajectory, causing any deviations from the planned path to compromise the entire soaring
cycle as additional energy must be expended to correct tracking errors. When considering
the stringent energy management required for sustained soaring, this susceptibility of the
approach becomes a major obstacle towards successful implementation.

Due to these considerations, in addition to modern improvements in the accessibility
of neural network training algorithms, the research in dynamic soaring implementation has
seen a recent interest in the field of neurocontrol. A subfield of intelligent control, neurocon-
trol is characterized by the use of neural networks in control systems. Specifically, the use of
reinforcement learning (RL) algorithms and deep neural networks has already been initially
explored in the context of dynamic soaring [12–15] to train neural networks capable of
exhibiting generalized and adaptable soaring behavior. That being said, the majority of the
existing literature around the use of neural networks in aerial control systems has been
focused on fixed-topology networks, where the structure of the nodes and connections are
kept constant [16–18]. In such approaches, the size of the neural network is a design choice
that must be hand-tuned to obtain the desired performance. Unfortunately, this often leads
to large, complex, deep neural networks that pose difficulties in training, interpretation,
and implementation, which are exacerbated by the extensive training datasets required for
some learning methods [12]. Alternatively, the neuroevolution of augmenting topologies
strategy developed by Stanley et al. [19] progressively generates not only the weights
and biases, but also the unique topology of the structure to produce simple and effective
neural networks.

This paper, building upon a previous work by Perez et al. [20] introducing the appli-
cability of the NEAT algorithm to optimal dynamic soaring, presents a combined trajectory
planning and control strategy that can generate sustainable, energy-efficient soaring trajec-
tories with simple and computationally inexpensive neural networks. The strategy’s ability
to evolve efficient and effective controllers makes it a promising candidate for creating a
practically implementable system on existing SUAV autopilot architectures. The current
work details the neuroevolutionary approach’s unique penalty and fitness functions, uses
a flight dynamics model that takes into account wind from all three Cartesian directions,
demonstrates the method’s applicability to various soaring techniques from higher-altitude
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dynamic soaring to thermal soaring, illustrates the similarities in energy-efficiency between
the resulting neurocontrol trajectories and those of biological albatross birds, and provides
a comparison of the simulated results against numerical trajectory optimization, as well
as other neural network training methods. The paper is organized as follows: Section 2
defines the dynamic and thermal soaring problems. Section 3 describes the NEAT-based
neurocontroller training strategy. Section 4 presents the results of various neurocontroller
test cases, and Section 5 provides concluding remarks.

2. Soaring Problem

The dynamic and thermal soaring problems can be described using the framework of
trajectory optimization, since soaring maneuvers aim to optimize a particular parameter
such as energy, flight time, or travel distance. This section presents the general structure of
trajectory optimization before detailing the aircraft and wind models used for this work.

2.1. Trajectory Optimization

The problem of soaring is an energy extraction task, in which the objective is to maxi-
mize the kinetic and potential energies obtained through environmental wind phenomena.
This quantifiable goal allows for the formulation of a trajectory optimization problem for
the solving of energy-optimal soaring trajectories. In the general case, trajectory optimiza-
tion involves determining the state x(t), the control u(t), the initial time t0, and the final
time t f that minimizes the cost function J, with boundary conditions Φ and Lagrange term
performance index L, all summarized as [21]:

J = Φ
[
x(t0), t0, x(t f ), t f

]
+
∫ t f

t0

L[x(t), u(t), t]dt (1)

Although the cost function helps define soaring behavior, it is also necessary to
impose the rules of the problem. Therefore, there exists a set of differential equations
ẋ that represent the dynamic constraints of the system, path constraints C that enforce
restrictions along the trajectory, and boundary constraints φ, which limit the initial and
final system states:

ẋ(t) = f[x(t), u(t), t] (2)

C[x(t), u(t)] ≤ 0 (3)

φmin ≤ φ
[
x(t0), t0, x(t f ), t f

]
≤ φmax (4)

Path constraints, or inequalities, ensure that states and controls stay within defined
limits in a way that reflects a physical system. For soaring, constraints would include
restrictions on altitude h, structural limits such as the airframe load factor n, and aircraft
control limits for any control variables such as the lift coefficient CL and the roll angle µ:

h(t) ≥ 0 (5)

n(t) =
L

mg
≤ nmax (6)

CLmin ≤ CL(t) ≤ CLmax (7)

−µmax ≤ µ(t) ≤ µmax (8)

Boundary conditions, or equality constraints, are also specified to define the initial
and final states of the trajectory and are necessary to distinguish between different soaring
techniques. In all, these elements define the trajectory optimization problem, which can
be solved through various techniques. For instance, a nonlinear-programming (NLP)-
based direct collocation approach discretizes and transcribes the continuous-time soaring
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task into a nonlinear programming problem by dividing the time interval into N discrete
subintervals and M = N + 1 nodes or collocation points [22]:

tI = t1 < t2 < . . . < tM = tF (9)

In the trapezoidal collocation method, multiple polynomial splines are used to rep-
resent the optimal state and control trajectories, while ensuring that the defects ζ, or the
discrepancies between collocation intervals, are zero to ensure continuity in the system dy-
namics. The dynamics are discretely approximated using the trapezoid rule, where yk is an
NLP decision variable and fk = f (xk, uk, tk) is the evaluation of the dynamics at each node.
The entire process, summarized as follows, is also subject to path and boundary constraints:

minimize J =
∫ tk

t0

L[x(tk), u(tk), tk)dt] (10)

with respect to yk, k = 1, 2, . . . M (11)

subject to ζk = yk+1 − yk =
hk
2
[ fk+1 + fk] = 0 (12)

C[x(tk), u(tk), tk] ≤ 0 (13)

Φ[x(t0), t0, x(tM), tM] = 0 (14)

The solution to a trajectory optimization problem is represented by a set of state and
control histories. In the case of soaring, the position and attitude of an aircraft would be
specified for every time interval, along with the values of each control variable, which
can be tracked by a control scheme to obtain the desired behavior. Although this work
does not explicitly use trajectory optimization, the control scheme to be presented incor-
porates many of the concepts and elements outlined above. Nonetheless, in addition to
the problem formulation, trajectory optimization requires models of the flight agent and
the environment.

2.2. Flight Dynamics Model

The system dynamics used in this work was based on a three-degree-of-freedom
(3DOF) point mass model of an SUAV. The motion of the aircraft is relative to an inertial
frame located on the Earth’s surface. Figure 1 depicts a free body diagram of the model,
and the equations of motion [5,23], adapted for wind in the x, y, and z directions, are
defined as follows, where V is airspeed, g is standard gravity, L is lift, D is drag, m is the
aircraft’s mass, ψ is the heading angle, γ is the pitch angle, µ is the roll angle, x, y, and h
are the aircraft’s positions in the x, y, and z directions relative to the inertial frame, and Wx,
Wy, and Wz are the environmental wind strengths along their respective axes:

V̇ = −D
m
− gsin(γ)− Ẇxcos(γ)sin(ψ)− Ẇycos(γ)cos(ψ) + Ẇzsin(γ) (15)

ψ̇ =
Lsin(µ)

Vmcos(γ)
− Ẇxcos(ψ)

Vcos(γ)
+

Ẇysin(ψ)
Vcos(γ)

(16)

γ̇ =
1
V

(
Lcos(µ)

m
− gcos(γ) + Ẇxsin(γ)sin(ψ) + Ẇysin(γ)cos(ψ) + Ẇzcos(γ)

)
(17)

To track the aircraft’s states, the kinematic equations of motion are defined, relating
the motion of the aircraft with respect to the inertial frame:

ẋ = Vcos(γ)sin(ψ) + Wx (18)

ẏ = Vcos(γ)cos(ψ) + Wy (19)

ḣ = Vsin(γ) + Wz (20)
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Figure 1. Free body diagram of the flight agent model.

Lift and drag are computed as shown below, with local air density ρ, wing reference
area S, lift coefficient CL, and drag coefficient CD:

L =
1
2

ρV2SCL (21)

D =
1
2

ρV2SCD (22)

The drag coefficient is a function of both parasitic and lift-induced drag, where CD0
is the zero-lift drag coefficient, K is the induced drag factor, and Emax is the maximum
lift-to-drag ratio:

CD = CD0 + KC2
L (23)

K =
1

4CD0E2
max

(24)

Furthermore, the total energy of the aircraft eT comprises both the kinetic eK and
potential eP energies as described:

eT = eK + eP (25)

eK =
1
2

mV2 (26)

eP = mgh (27)

The elements of the state vector shown below were purposefully selected to only
include variables that would typically be measurable onboard an SUAV. In addition,
the control variables were chosen to be navigation-level commands that can be conveyed
to an autopilot system:

x =


V
ψ
γ
h
ḣ

, u =

[
CL
µ

]
(28)
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This mathematical model of the aircraft is required for trajectory optimization and, more
generally, can be used to simulate a physical system. However, soaring techniques rely on
naturally occurring winds, which must also be expressed through models.

2.3. Dynamic Soaring

A traveling dynamic soaring cycle, illustrated in Figure 2, can be characterized by
five primary segments: upwind climb (1), high altitude turn (2), downward sink (3), low
altitude turn (4), and an intermediary traveling component for expending any additional
energy gained over the cycle [1]. An agent undergoing dynamic soaring trades kinetic
energy for potential energy as it gains altitude by turning upwards into the wind field
and subsequently trades the potential energy for kinetic energy after it turns downwards
away from the wind. This cycle repeats as the agent travels in a specific direction over
soaring cycles.

Figure 2. Typical dynamic soaring trajectory with a linear wind gradient (adapted from [5]).

From the initial formulation by Zhao [5], the horizontal wind profile from which
energy is extracted can be modeled through a horizontal wind speed Wx, represented by a
shape parameter Ax, an average gradient slope βx, a maximum wind speed Wmaxy , and a
transitional altitude htrx :

Wx =

{
β
[

Ah + 1−Ax
htrx

h2
]

h < htrx

Wmaxx h ≥ htrx

(29)

β =
Wmaxx

htrx

(30)

The rate of change of the wind profile is defined as:

Ẇx = βx

[
Ax + 2

1− Ax

htrx

h
]

Vsin(γ) (31)

Figure 3 shows that this model represents a logarithmic wind profile when 0 < Ax < 1
and an exponential profile when 1 < Ax < 2. Furthermore, for Wx to not exceed Wmaxx ,
Ax must be limited to [0, 2], with a shape value Ax = 1 corresponding to a linear profile.
An identical model can be used to simulate wind Wy in the y direction.
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Figure 3. Horizontal wind profile shapes, with Wmaxx = 10 m/s and htrx = 30 m.

In the trajectory optimization framework, the boundary constraints for dynamic
soaring would include initial and final conditions on the airspeed, heading angle, pitch
angle, and coordinate states. For the traveling case, the latter would not be subjected
to final conditions, as the distance covered would be a variable result of the optimized
trajectory output.

V(0) = V0 V(t f ) = Vf (32)

ψ(0) = ψ0 ψ(t f ) = ψ f

γ(0) = γ0 γ(t f ) = γ f

x(0) = x0

y(0) = y0

h(0) = h0

2.4. Thermal Soaring

In thermal soaring, a flight agent circles around a region containing an updraft to gain
altitude before eventually exchanging the potential energy for kinetic energy by soaring out
of the thermal once the updraft fades. A common model for thermals is the toroidal bubble
model described by Lawrance and Sukkarieh [24], which is characterized by a core updraft
region surrounded by sinking air, disconnected from the ground and moving upwards
over time. This representation is visualized in Figure 4.

(a) Vector field (b) Vertical wind speed cross-sections
Figure 4. Toroidal thermal bubble model.

The model, minimally altered from the original formulation to fit the coordinate
system presented in Section 2.2, is defined by the agent’s distance from the thermal center
r, the maximum core updraft wind speed Wcore, the thermal’s height ht, the thermal radius



Aerospace 2021, 8, 267 8 of 25

over the xy plane rxy, the radius over the z axis rz, the bubble eccentricity factor k, and the
rising velocity ḣt, where x, y, and h are the agent’s location in the inertial frame:

r =
√

x2 + y2, k =
rz

rxy
(33)

Wz =

{
wcore r = 0, h ∈ [ht − rz, ht + rz]

cos( 2π
4rz

(h− ht))
rxywcore

πr sin( πr
rxy

) r ∈ (0, 2rxy], h ∈ [ht − rz, ht + rz]
(34)

Wx = −Wz
h− ht

(r− rxy)k2
x
r

(35)

Wy = −Wz
h− ht

(r− rxy)k2
y
r

(36)

The rates of change of the wind components were calculated using the finite difference
approximation method for simplicity. In this model, the bubble rises from an initial height
ht0 at a speed ḣt, which allows a flight agent to continually gain potential energy as long as
the thermal remains sufficiently strong. In all, these models of the flight agent and wind
conditions were used to simulate an environment in which controllers were trained and
soaring tests conducted.

3. Neurocontrol

This section describes the neural-network-based evolutionary control scheme by
explaining the motivation for its use, providing a description of the main algorithm and de-
tailing the specific parameters and functions used for this work.

3.1. Neural Network Topology

Although classic trajectory optimization techniques provide numerically optimal solu-
tions, recent advancements in neural network research have encouraged the exploration of
artificial-intelligence-based approaches in generating soaring trajectories in a more general,
behavior-like manner that can be executed on the limited computing hardware onboard
SUAVs. For instance, the field of dynamic soaring has already seen the application [12–15]
of one of the most common disciplines of artificial intelligence, known as reinforcement
learning. In such approaches, neurocontrollers are trained to behave in a particular manner
or to follow a policy π by constructing a mapping of states S to actions A:

π : S→ A (37)

For complex, nonlinear systems, this process often involves the use of neural networks
as function approximators that estimate the value V of taking a specific action from a
particular state. As a learning agent interacts with the environment either directly or
through a simulation, it receives rewards R that encourage or discourage certain actions,
based on a defined evaluation criterion J. For autonomous soaring, the costly nature of
learning through trial and error necessitates a simulation-based training approach. Fur-
thermore, control actions that result in an energy-neutral trajectory can only be evaluated
after a full soaring cycle, and as such, the optimal policy π∗ can be defined as the mapping
between states x(t) and actions u(t) that maximizes this energy-based performance criteria,
or achieves the greatest reward:

π∗ : x(t)→ u(t) (38)

Often, this policy is either indirectly encoded through stochastic exploratory and
exploitative mechanisms or more consistently and directly defined in the form of a neural
network as is the case for more complex RL algorithms. In this way, different learning
algorithms can be applied to the soaring problem to obtain neural-network-based control
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strategies, where inputs such as aircraft states can be fed-forward to obtain the control
action that will maximize the reward.

However, to avoid the structural limitations of fixed-topology networks and the
consequent omission of a subset of potential solutions, NEAT can be used to evolve unique
networks that are optimized in node and connection weights, as well as in topology. This
difference is illustrated in Figure 5.

(a) Fixed-topology network (b) NEAT network
Figure 5. Comparison of artificial neural network structures.

Canonical tests in solving artificial intelligence and control problems have demon-
strated the NEAT algorithm’s ability to generate networks that often perform better while
being much simpler than fixed-topology networks [19].

3.2. Neuroevolutionary Strategy

The NEAT algorithm operates on the principle of Darwinian fitness, which is a mea-
sure of how well an individual is able to propagate itself through successive generations.
In the context of this study, the fitness of a neurocontroller is the value that defines how
well a neural network is able to perform autonomous soaring in a virtual environment,
which in turn directly influences its survivability in the evolutionary process.

Initially, the algorithm populates a generation with random members, or neuro-
controllers, with randomly generated features. These features, consisting of the unique
topology and weights of a member, are encoded within its genotype, a data structure
that contains information about each node and connection, the value of each node and
connection, and the point in the evolutionary process at which each node and connection
was created. In addition, members that share similar network shapes are grouped together
into subcategories classified as species, which is a protective structure that allows for
the optimizing of the node and connection weights. For instance, it is highly unlikely
that a random mutation that results in a new connection would immediately increase a
member’s fitness, since the weight associated with the connection would not have yet
undergone tuning, or the optimization process. By only comparing a member against other
members within its own species through this mechanism, known as speciation, innovative
mutations have a chance to mature. Nonetheless, each genotype completely characterizes
a unique neurocontroller, and this particular neural network encoding method allows for
the tracking and evolution of network topologies.

After every member of a new population is evaluated in a virtual test environment and
assigned a fitness value, species undergo reproduction by eliminating the members with
the lowest fitnesses before creating offspring and undergoing mutation. Offspring arise
when two genotypes, or parent networks, are spliced and concatenated in a process known
as crossover at randomly determined points along each genotype, with any genes that do
not undergo crossover being inherited from the parent with the higher fitness value. This
process allows for two neurocontrollers to merge and create a better-performing network.
Once offspring are generated, mutations have a chance to occur. Mutation processes
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encompass various different operations, including the random addition and subtraction
of nodes and connections, all of which are made possible by the gene history encoded
in each genotype. The crossover and mutation operations allow for the creation of new,
unique neural networks while persevering the genes or characteristics that contribute to
high fitnesses. Lastly, competition between species is addressed through stagnation, which
is when the highest fitness achieved by a member of a species has not improved after a
certain number of generations. Such species are marked as stagnant and are prohibited
from reproducing further, eventually becoming extinct through the generational culling
process. However, to prevent the complete extinction of all species, an elitism mechanism
preserves a small number of the highest-performing species, regardless of whether they
have stagnated.

This entire process is managed by the NEAT algorithm, which populates each genera-
tion, evaluates every member once, and outputs the best-performing neural network after
a fitness threshold is reached or a certain number of generations has elapsed. The evolu-
tionary algorithm is depicted in the outer loop of Figure 6, the entirety of which presents
the main effort of this work. The inner loop tests each member of the generation one at a
time in a simulation environment that includes a model of the flight agent and wind profile.
At every time interval of the assessment, the neural network being evaluated receives
aircraft states to produce control outputs used to propagate the simulation and obtain the
flight agent’s subsequent states.

Figure 6. Neurocontroller evolution scheme.

At the end of each test, an evaluation process examines the trajectory along which
the neural network controlled the flight agent to determine the member’s fitness score.
For the test cases presented in the following sections, this value was the numerical output
of a specifically designed function that included penalties proportional to the degree to
which the neurocontroller exceeded flight constraints, as well as rewards dependent on
the total distance that the flight agent traveled. The NEAT algorithm then receives and
stores the fitness of each member until every member of the population is evaluated,
before creating new members and extinguishing unsuccessful networks. In this way,
the presented procedure progressively creates better-performing neurocontrollers.
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3.3. Neuroevolutionary Implementation

The fitness function that was used to evaluate the performance of each network
during the evolutionary cycles is a critical design element that has a significant influence
on the network behavior. The functions used for the dynamic and thermal soaring test
cases presented in the next section were similar in that they both included penalties that
discouraged the flight agent from exceeding trajectory constraints. Since the evaluation
process occurs after a member completes a flight episode in the simulation environment,
the histories of the states and controls experienced during the simulation were examined
for any values that surpassed limits. These included the following variables:

Airspeed:

Height:

Pitch angle:

Load factor:

Pitch rate of change:

Heading rate of change :

Lift coefficient rate of change:

Roll rate of change:

Vmin ≤V ≤ Vmax

hmin ≤h ≤ hmax

γmin ≤γ ≤ γmax

n ≤ nmax

γ̇min ≤γ̇ ≤ γ̇max

ψ̇min ≤ψ̇ ≤ ψ̇max

ĊLmin ≤ĊL ≤ ĊLmax

µ̇min ≤µ̇ ≤ µ̇max

The penalties for each of these trajectory variables were calculated as the sum of the
value by which the limits were exceeded over every time step t of the simulation. This
formulation accumulated penalties proportional to how severely a limit was surpassed.
The scheme is expressed below, where xhistory is the array of values collected over the
duration of the simulation, which lasted from t0 = 0 to t f :

xpenalty =

t f

∑
t=0

[
max(0, xhistory(t)− xmax) + max(0, xmin − xhistory(t))

]
(39)

The penalties of all variables xpenalty = xpen were then squared, summed, and negated
to result in a single value that became the fitness f of a member π:

fπ = −(V2
pen + h2

pen + γ2
pen + n2

pen + γ̇2
pen + ψ̇2

pen + ĊL
2
pen + µ̇2

pen) (40)

For the traveling dynamic soaring case, however, a reward mechanism was necessary
to incentivize the neurocontroller to steer the flight agent along a direction. The reward rπ

was equal to the square of the agent’s displacement along the xy plane:

rπ = (x f − xi)
2 + (y f − yi)

2 (41)

In the case of a reward, the overall fitness function was a linear combination of the
reward and penalty values, where k1 and k2 were experimentally tuned constants that
prevented either value from dwarfing the other:

fπ = (k1 × reward)− (k2 × penalty) (42)

In addition, to strongly dissuade neural networks from exceeding system-critical
constraints, an extremely large penalty was attributed to members who steered the model
into the ground, induced excessive load factors, or stalled the model.

3.4. Simulation Environment

An explicit time simulation environment was used to train the neurocontrollers pre-
sented in the following section. Using the equations of motion for the flight agent along
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with the wind models described in Section 2, the simulation time was incremented by
a discrete time step δ > 0, and future state values were computed through a first-order
approximation. The forward Euler method used to advance the simulation is detailed
below, where a state xk at time step k is updated to xk+1:

xk+1 = xk + δẋk (43)

A neurocontroller undergoing evolution influences the states of the flight agent
through the control commands that it outputs, consequently dictating its own trajectory.
Throughout the simulation, the state and control histories are recorded so that once the
simulation terminates either due to the member crashing the flight agent or exhibiting
sustained flight for the maximum simulation duration, the member’s fitness score can be
evaluated from the complete trajectory. Therefore, the dynamics function advancing the
simulation was programmed separately from the fitness function called at the end of a
simulation, which by extension is where path constraint checks and penalties were also
calculated. The simulation is summarized by Algorithm 1.

Algorithm 1 Flight simulation.

1: for neural network πN in population Π do
2: while t < t f do
3: states← get_states() . fetch aircraft states
4: if states > constraints then
5: break
6: actions← πN(states) . obtain control commands
7: Wx, Wy, Wz ← get_wind() . calculate local wind profile
8: xk+1 ← xk + δẋk . apply dynamics model
9: t += δ

10: fπ ← get_fitness() . compute rewards and penalties

Each run of the evolutionary neurocontrol optimization presented in this paper con-
sisted of a population size of 250 members, repeated over 100 generations. To accelerate the
process of testing neural networks in the simulated flight environment, the 250 simulations
conducted at every generation were run in parallel, with each simulation ending after a
maximum simulation time of 600 s. Overall, the simulation environment was integrated
into a NEAT implementation matching the original NEAT formulation that was ported
into Python. As the fitness of each neural network was evaluated, a new instance of the
simulation environment was initialized, which stepped through discrete time intervals
until the neurocontroller either failed or succeeded at exhibiting feasible soaring patterns.

4. Results and Discussion

The following autonomous soaring test cases show the evolutionary approach’s ca-
pacity to generate simple and effective neurocontrollers. In the first case, a controller was
evolved in a bidirectional wind environment using a biological albatross model to compare
the trajectory of the neurocontroller to that of an albatross bird. The second case shows
a neurocontroller evolved using a typical commercial SUAV model to demonstrate the
NEAT-based training approach’s applicability to aerial vehicles, and the third test case
presents an instance of SUAV thermal soaring. As was shown in Section 2.1, the state vector
used as inputs to the evolving neural networks does not contain any explicit information
on the local wind field, and as such, the following neurocontrollers evolved by interacting
with the wind model without prior knowledge of the environmental conditions. Similarly,
the networks also did not receive the simulation time, indicating that the following results
did not arise from a generated schedule of control commands.

Although the length of the simulations can vary greatly between population members
due to the inherently unique nature of neurocontroller species, the neural networks shown
in the next section required an average CPU time of 0.224 min across all three test cases to
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evolve a successfully soaring neurocontroller. For reference, the entire evolutionary process
was run on an Intel four-core CPU with 16 GB of memory.

4.1. Albatross Dynamic Soaring

The characteristics of the albatross model [1] are shown in Table 1. The parameters
of both the flight agent and the wind were selected to compare the results against the
data collected and presented by Sachs et al., who recorded the energy extraction cycles of
wandering albatrosses through GPS signal tracking [3]. Parameters with the subscript 0
represent initial conditions at time t0 = 0.

Table 1. Albatross neurocontroller simulation parameters.

Albatross Parameters Value Wind Parameters Value Trajectory Parameters Value

g (m/s2) 9.8 Ax 1.0 V0 (m/s2) 9.1
ρ (kg/m3) 1.225 htrx (m) 9.1 ψ0 (deg) −25
m (kg) 8.5 Wmaxx (m/s2) 10.2 γ0 (deg) 0
S (m2) 0.65 h0 (m) 6.1
CD0 0.033 Ay 1.0 x0 (m) 0
Emax 20.0 htry (m) 9.1 y0 (m) 0
nmax 5 Wmaxy (m/s2) 4.8 hmin (m) 0
CLmax 1.6 γ̇max (deg/s) 100
CLmin −0.25 ψ̇max (deg/s) 100
µmax (deg) 60 ĊLmax 0.25

µ̇max (deg/s) 90
t f (s) 600

The neurocontroller that was trained using the albatross flight model with a two-
dimensional wind profile described in Section 2.3 is shown in Figure 7. Evolved with both
the distance-based reward and penalty functions detailed in Section 3.3, the neural network
uses a reduced input space of three nodes and no hidden layers, defined only by direct
connections to the output nodes.

Figure 7. Topology of the dynamic soaring albatross neurocontroller.

The bias nodes bCL
′ and bµ′ , as well as the connection weights w take the values:

bCL
′ = 2.86 wµ′ψ

= −1.96

bµ′ = −1.37 wµ′h
= 0.0759

wµ′γ = −2.16

wCL
′
h
= 1.73

wCL
′
γ
= 1.62
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Mathematically, the feedforward network can be described as shown below, where
Equation (47) converts the normalized outputs C′L and µ′ of the sigmoid function σ(x) to
values within the aircraft control limits:

CL
′ = σ(wCL

′
ḣ
ḣ + wCL

′
γ
γ + wCL

′
V

V + bCL
′) (44)

µ′ = σ(wµh h + bµ′) (45)

σ(x) =
1

1 + e−x (46)

[
CL
µ

]
=

[
CL
′ 0

0 µ′

][
CLmax − CLmin

2µmax

]
+

[
CLmin
−µmax

]
(47)

The simplicity of the neural network revealed that the roll angle was determined
by the agent’s height, with the lift coefficient determined by the height rate of change,
the pitch angle, and the airspeed. This interpretability is important for the implementation
and adoption of neurocontrol systems, where understanding the internal mechanisms of
networks is a significant component in building trust in such systems. This characteristic
of the neuroevolutionary method is further examined in the next test case.

Figure 8a shows the resulting trajectory of simulating this neurocontroller for 600 s
in the bidirectional wind environment, and Figure 8b shows a single period of the same
trajectory after the aircraft reaches a stable pattern. The flight agent undergoes an initial
transitional period before it reaches an equilibrium point conducive to sustained cycli-
cal soaring.

(a) 121 cycles (600.0 s) (b) 1 cycle (4.9 s)
Figure 8. Simulated trajectories of the dynamic soaring albatross neurocontroller, with start marker
(green), end marker (red), and path (blue).

The smooth states of a consecutive five-cycle segment, shown in Figure 9, mimic the
soaring trajectories of albatross birds [3]. Furthermore, examination of the maximum total
energies of the five cycles reveals that the aircraft experiences positive net changes in energy
between some periods and negative net changes for others, with this pattern of gaining and
losing excess energy continuing throughout the test. Constantly accumulating additional
energy between cycles is both naturally limited by the finite wind gradient and undesirable
when maintaining stable soaring cycles. Therefore, sustained dynamic soaring is a problem
of ensuring that the total energy of the agent does not fall below a certain threshold under
which the ability to extract sufficient energy for future cycles is compromised. The test
trajectories showed that the neurocontroller can manage the agent’s energy for continuous
dynamic soaring, balancing any losses in energy with gains in subsequent cycles. This
ability to generate continuous and stable soaring cycles after simple feedforward passes
through a sparse neural network contrasts the much more limited trajectory horizons of
numerical optimization, which typically only plots trajectories of a single period after
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extensive computation. By ensuring that the fitness criteria in the genetic algorithm are in
part a function of the time for which a particular species survives, the proposed method
evolves sustainable soaring as a trait within the controller itself.

Figure 9. Trajectory trace of the dynamic soaring albatross neurocontroller.

The differences in the total energy histories in the initial transitional phase of the
soaring test, its stable phase, and a recorded cycle of a biological albatross flight captured
by Sachs et al. [3] are illustrated in Figure 10, presented as specific energies. For the
transitional cycle, the point of minimum energy occurs during the upwind climb phase
as the flight agent uses the wind gradient to accumulate sufficient energy for sustained
soaring. After increasing its total energy over multiple transitional cycles, the agent
eventually reaches the altitude limit of the gradient and achieves a maximum airspeed that
does not exceed control and structural limits. In the stable cycles, the minimum total energy
point exists immediately before the downward sink, showing that the aircraft expends
most of its energy during the upwind climb and high altitude turn phases before rapidly
accelerating into the dive maneuver. This sharp fluctuation between extremes leaves little
time to accumulate additional energy, which is necessary to prevent the agent from soaring
out of the wind gradient layer or exceeding aircraft limits.

The recorded albatross flight resembles the transitory cycle of the neurocontroller bet-
ter than the stable period, showing a stronger turn into the wind during the upwind climb
phase to accrue excess energy. This aggressive maneuver from the albatross may have been
necessary in the presence of a varying and uneven wind profile, unlike the deterministic
wind experienced by the neurocontroller. In addition, a flying albatross is likely motivated
by much more complex objectives such as minimizing control effort, maximizing flight
time, and pursuing prey that extend beyond the relatively simple distance maximization
criterion of the neurocontroller. Regardless, the trajectories of the neurocontroller show the
smooth, continuous flight that is characteristic of albatross birds undergoing dynamic soar-
ing. Discrepancies between flight paths can be attributed to the simulation’s unique wind
modeling parameters and the inherently more complex behaviors of biological organisms.
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(a) Transitory cycle (b) Stable cycle (c) Biological albatross cycle
Figure 10. Albatross neurocontroller and biological albatross single-cycle energies.

4.2. SUAV Dynamic Soaring

Another neurocontroller was evolved using an SUAV model for the flight agent and a
different set of wind parameters, all of which are described in Table 2. The resulting neural
network of Figure 11 was evolved in a unidirectional wind environment and also only
defined by input and output layers much the same as the albatross network, relying solely
on the heading and pitch angles.

bCL
′ = 1.48 wµ′γ = −0.929

bµ′ = 0.876 wµ′ψ
= −2.39

wCL
′
ψ
= −1.39

Figure 11. Topology of the dynamic soaring SUAV neurocontroller.

Table 2. Dynamic soaring SUAV neurocontroller simulation parameters.

SUAV Parameters Value Wind Parameters Value Trajectory Parameters Value

g (m/s2) 9.8 Ax 1.0 V0 (m/s2) 10.7
ρ (kg/m3) 1.225 htrx (m) 304.8 ψ0 (deg) 0
m (kg) 4.3 Wmaxx (m/s2) 6.1 γ0 (deg) 0
S (m2) 1.0 h0 (m) 301.8
CD0 0.025 Ay N/A x0 (m) 0
Emax 20.0 htry (m) N/A y0 (m) 0
nmax 15 Wmaxx (m/s2) N/A hmin (m) 0
CLmax 1.5 γ̇max (deg/s) 100
CLmin −0.2 ψ̇max (deg/s) 100
µmax (deg) 60 ĊLmax 0.25

µ̇max (deg/s) 90
t f (s) 600



Aerospace 2021, 8, 267 17 of 25

However, the topology of this neurocontroller is even more sparse than that of the
albatross network. This reduction in network complexity can be attributed to the unidirec-
tional wind profile of the environment in which the SUAV controller was evolved. There is
simply one less dimension that the network must account for, and since the network must
infer the wind model through its effects on the aircraft without receiving measurements of
the local wind, this reduction of the wind profile has a nontrivial impact on the resulting
topology. Nevertheless, the simplicity of the network further enables its interpretation.
The network is rolling based on the aircraft’s pitch and heading angles while determining
the angle of attack based on where the aircraft is headed. The NEAT process indirectly
encoded the characteristics of the wind profile that the neurocontroller was subjected to
during evolution into the neural network’s topology and weights, and this knowledge of
the environment was used to determine when to execute pitch and roll maneuvers that
led to dynamic soaring trajectories. To further illustrate the close relation between the
states and controls, Figure 12 shows the input signals plotted against the output control
commands. Even without the effect of the sigmoid function and the subsequent scaling
of the normalized controls, the outputs can be seen to track their respective inputs, al-
beit with offsets that are simply the result of the specific connection weights and biases.
The proximity of the network’s inputs to its outputs in terms of the number of intermediary
nodes and connections enables the observing and analytical tracking of the network’s
feedforward process, and this topological traceability allows for a precise, intuitive under-
standing of the neurocontroller. This interpretability is an important aspect for validating
neurocontrol schemes that is difficult to achieve with the abstract, black-box nature of
densely interconnected deep neural networks.

Figure 13 shows the trajectories of different scales as a result of simulating this neu-
rocontroller in a unidirectional wind environment. The plots show that the SUAV model
achieved a stable pattern near the transition height of the wind profile, which was uniquely
shaped in this test case. The altitudes at which the aircraft would soar were too high to use
the wind profile detailed in Section 2.3, since the vertical gradient would be insufficiently
weak when stretched over hundreds of meters. Therefore, the model used for this test case
compressed the profile into a much smaller altitude range, as shown in Figure 14, allowing
the lightweight SUAV to extract enough energy from the environment. To perform dynamic
soaring with greater altitude fluctuations and longer soaring cycles, a stronger wind profile
would be required, with a proportionately sufficient vertical wind gradient, as well as a
more robust aircraft that can withstand the load factors associated with more strenuous
flight maneuvers. Regardless, the trajectories exemplify the ability to evolve neurocon-
trollers for dynamic soaring trajectories at altitudes much higher than those experienced
by soaring seabirds, with narrower wind gradients.

Figure 12. Network signal tracing of the dynamic soaring SUAV neurocontroller.
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(a) 171 cycles (600.0 s) (b) 1 cycle (3.3 s)
Figure 13. Simulated trajectories of the dynamic soaring SUAV neurocontroller.

Figure 14. Wind profile for the dynamic soaring SUAV neurocontroller.

The smooth states of the multiperiod trajectory, shown in Figure 15, are desired
when considering the response rates and limitations of real control systems and physical
vehicles. The relatively abrupt changes in the lift coefficient and roll angle controls, however,
are required for the rapid maneuvers of dynamic soaring, a characteristic that is also
reflected by the cyclic history of the load factor. Additionally, the energy histories do not
contain any significant reduction in the total energy between cycles, demonstrating that the
neurocontroller can continuously soar given a constant wind profile. In reality, the finite
nature of environmental winds would pose a greater obstacle to indefinite soaring than
any periodic reduction in energy.

Figure 16 provides a dynamic visualization of the aircraft as it soars through a cycle
of the trajectory. The observation of dynamic soaring behavior from such a simple neural
network highlights the advantages of the neuroevolutionary method, which are that such
controllers are more easily implementable on hardware-limited SUAV platforms than more
complex neural networks while being interpretable.

To compare different trajectory planning and control approaches, a numerical trajec-
tory optimization was performed for a single soaring cycle through a direct trapezoidal
collocation nonlinear programming approach as described in Section 2.1, where the opti-
mization was conducted with pyOPT using the SNOPT optimizer [25]. The SUAV and wind
models were identical to those described in Table 2, and the boundary and path constraints
are detailed in Table 3, with the initial and final conditions based on the neurocontroller
trajectory of Figure 13b. The trajectory optimization also used the cost function shown in
Equation (41) to maximize the total distance traveled over the soaring cycle.
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Figure 15. Trajectory trace of the dynamic soaring SUAV neurocontroller.

Figure 16. Aircraft visualization of the dynamic soaring SUAV neurocontroller (Supplementary Materials). The attitude
indicator displays the roll angle along its circumference, as well as the pitch angle through the concentric circles within the
plot. The shaded red zones represent the roll angle limits. The heading and wind velocities are shown by the blue and green
vectors, respectively, where their orientations indicate direction and their lengths indicate the speed.
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Table 3. Dynamic soaring SUAV trajectory optimization constraints.

Boundary t0 Value Boundary t f Value Path Min Max

V0 (m/s) 12.5 Vf (m/s) 12.5 V (m/s) 0.0 1000.0
ψ0 (deg) 60.0 ψ f (deg) 60.0 ψ̇ (deg/s) −100 100
γ0 (deg) 0.0 γ f (deg) 0.0 γ̇ (deg/s) −100 100
z0 (m) 300.0 z f (m) 300.0 n 0.0 15.0
x0 (m) 0.0 CL −0.2 1.5
y0 (m) 0.0
CL0 1.0 CL f 1.0
µ0 (deg) −40.0 µ f (deg) −10.0

The optimization process, consisting of 50 collocation points, took a CPU time of
1.55 min, nearly seven-times longer than the entire evolutionary process that produced the
SUAV neurocontroller of Figure 11, which once trained, procedurally generates trajectories
in real time. Furthermore, although the flight paths and traces of the two methods super-
imposed for comparison in Figures 17 and 18 show similar trajectories, the energy histories
indicate that the optimized flight path ultimately cannot be used for dynamic soaring.
While the boundary conditions were satisfied, the optimization process does not take into
account the practical requirement for repeatable trajectories when computing individual
cycles at a time. The singular focus on the cost function precludes any consideration
of sustainable soaring, resulting in the decrease in the total energy after a single cycle.
Attempting to calculate a longer trajectory comprised of multiple soaring cycles is also
significantly more costly in terms of computation time and resources, and optimizations
performed with twice the number of collocation points yielded identical results.

Many nonlinear programming solvers require an initial guess for the trajectory solu-
tion. Consequently, trajectory optimization results are directly dependent on this initial
solution provided to the optimizer, and therefore, the computed optimal trajectories are
local solutions by nature. In contrast, NEAT allows for the emergence of more global
results, since the random member initialization and speciation mechanisms enable the
exploration of numerous different network structures and weights, expanding the search
space of potential trajectory and control solutions.

Another consideration of using pre-optimized trajectories is that they are decoupled
from the control scheme. Either a control framework must be designed around the limits of
the trajectory optimization method, or the optimization method must take into account the
tracking control scheme prior to the lengthy computation. On the contrary, the presented
neurocontroller scheme combines both trajectory planning and aircraft control by imposing
and enforcing physical constraints during the evolutionary process. The control outputs
and resulting flight path are direct reactions to the state of the aircraft and its environment,
reducing the complexity of an autonomous system from a multilayered planning and
control approach to one that combines both aspects of soaring. These considerations make
it difficult to directly apply numerical trajectory optimization to soaring problems.

The relative simplicity of the NEAT-based neurocontrollers presented in this section
becomes further apparent when comparing their topologies to those of related neural
networks. For instance, a recent work involving deep neural networks for dynamic soaring
control trained three separate neurocontrollers for the angle of attack, bank angle, and wing
morphing parameter, each of which consisted of 5 network layers of 16 nodes with 1201 net-
work weight values [12]. Along with the extensive dataset of 1000 optimal trajectories that
was required for training, such neurocontrollers make interpretation and implementation
on physical systems a significant challenge.

Another work by Li and Langelaan introduced a parameterized trajectory planning
method that aimed to solve the lengthy computation times of numerical trajectory op-
timization [26]. The deep neural network resulting from the actor–critic reinforcement
learning method used to generalize the parameterization approach consisted of an actor
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and critic network, both of which were comprised of two fully interconnected layers, each
with sixteen neurons. Considering that the decision-making actor network was solving
only for parameters that represent a dynamic soaring trajectory and not the control com-
mands themselves, the relative complexity of the neural network contrasts the simple yet
effective NEAT-based neurocontrollers. These related works in the field of dynamic soaring
showcase the typical complexities of deep neural networks and highlight the training and
implementation advantages of the evolutionary neurocontrol approach.

Figure 17. NEAT and TO simulated trajectories of the dynamic soaring SUAV. Neurocontroller in
solid, optimized trajectory in dotted.

Figure 18. NEAT and TO traces of the dynamic soaring SUAV. The neurocontroller in solid lines; the optimized trajectory in
dotted lines.
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4.3. SUAV Thermal Soaring

Table 4 details the parameters used to evolve and test the thermal soaring neurocon-
troller of Figure 19. The horizontal wind model used in the dynamic soaring test cases was
disabled and replaced by the toroidal thermal bubble model described in Section 2.4.

Table 4. Thermal soaring SUAV neurocontroller simulation parameters.

SUAV Parameters Value Wind Parameters Value Trajectory Parameters Value

g (m/s2) 9.8 Wcore (m/s) 3.05 V0 (m/s2) 9.1
ρ (kg/m3) 1.225 ht0 (m) 91.4 ψ0 (deg) 0
m (kg) 4.3 rxy (m) 30.5 γ0 (deg) 0
S (m2) 1.0 rz (m) 61.0 h0 (m) 106.7
CD0 0.025 ḣt (m/s) 0.213 x0 (m) 0
Emax 20.0 y0 (m) −38.1
nmax 15 Wmaxx (m/s2) N/A hmin (m) 0
CLmax 1.5 Wmaxx (m/s2) N/A γ̇max (deg/s) 100
CLmin −0.2 ψ̇max (deg/s) 10
µmax (deg) 60 ĊLmax 0.25

µ̇max (deg/s) 90
t f (s) 600

bCL
′ = 1.27 wa0V = 0.94

bµ′ = 0.390 wCL
′
a0
= 2.59

wµ′
ḣ
= 0.04091

ba0 = −0.745 wµ′γ = 3.78

Figure 19. Topology of the thermal soaring SUAV neurocontroller.

The evolved neurocontroller has a single hidden neuron between the airspeed network
input and the roll angle control output. The lift coefficient is a function of the height rate
of change and the pitch angle, similar to the albatross network of Section 4.1, suggesting
that despite the stochastic nature of the evolutionary process, there exists a set of typical
connections that are more closely correlated with aerodynamics and control rather than
any specific model of the wind or flight agent.

In addition, the fitness function used to generate this neurocontroller only consisted
of penalties, unlike the reward-mechanism-containing fitness of the dynamic soaring test
cases. The trajectories of Figure 20 demonstrate that an aversion to the extreme penalty
of crashing the model was a sufficient motivator for the evolutionary process to develop
soaring behavior. The controller initially finds one edge of the thermal bubble before
circling around and centering the rising toroid at a radius from the thermal center where
the updraft is sufficiently strong for a sustained climb.

Lastly, the trajectory histories of five soaring loops presented in Figure 21 show the
smooth and simple states and controls of the neurocontroller. The roll is maintained at a
constant 26.5 degrees, and the lift coefficient also remains at the maximum value so that
the SUAV can remain in an optimal soaring region. For instance, at too great a radius
from the thermal center, the updraft strength will be insufficient for continued soaring.
On the contrary, at too small a radius, the roll angle required to circle the thermal will
be greater, resulting in less lift acting on the aircraft, compromising future soaring cycles.
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Due to these simple controls and the consequent behavior of the flight agent, the SUAV
continually gains potential energy while its kinetic energy remains constant. In all, this
test case demonstrated the developed neuroevolutionary method’s applicability to other
flight maneuvers.

(a) 47 cycles (600.0 s) (b) Bird’s eye view

Figure 20. Simulated trajectories of the thermal soaring SUAV neurocontroller.

Figure 21. Trajectory trace of the thermal soaring SUAV neurocontroller.

5. Conclusions

This paper presented a method of evolving neurocontrollers for autonomous soaring
based on the neuroevolution of augmenting topologies (NEAT) algorithm. The approach
was shown to generate simple and efficient neural networks through three distinct test
cases. The first used an albatross model to illustrate the similarities between a trained
neurocontroller and the flights of biological albatrosses, demonstrating comparable energy
extraction maneuvers; the second showed that the proposed approach can be applied to
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an SUAV model for dynamic soaring at higher altitudes while comparing the resulting
trajectories to those of other notable approaches; the third test case presented the method’s
applicability to thermal soaring, emphasizing the method’s applicability to other flight
techniques. Examining the resulting dynamic soaring trajectories against those of numer-
ical trajectory optimization showed that the neuroevolutionary method generated more
practical, cyclic flight paths that were generated in real time without extensive computation.
Compared to other neural-network-based learning architectures for trajectory planning
and aircraft control, the presented approach only requires a model of the aircraft and
wind environment instead of extensive training datasets and yields extremely simple net-
works exhibiting smooth control signals that are traceable, interpretable, and ultimately
implementable. Finally, although this work used deterministic models of the environment,
the evolutionary scheme may be adapted for the creation of robust neurocontrollers that can
perform soaring in stochastic conditions, moving further towards significantly reducing
the energy requirements and flight limits of SUAVs.
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