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Abstract: As part of a collective research effort towards greener aviation, the present study focuses
on the noise impact of aircraft operations around major airports. To this end, an aircraft noise
prediction platform is developed, which relies on state-of-the-art functionalities as well as more
specific, innovative features. Originally built upon the Aircraft Noise and Performance (ANP)
database and its Noise–Power–Distance (NPD) table, the method is further refined to alleviate
most of their inherent limitations (e.g., standardized and simplified aircraft noise scenarios). The
resulting aircraft noise prediction platform is validated against benchmark cases of increasing
complexity, being then applied to real-life situations involving actual aircraft operations around
Hong Kong International Airport (HKIA). Specific comparative analyses are conducted, which
allow highlighting the variability of the noise impact by aircraft, depending on their type (A330,
B777) and/or operational conditions (power settings, meteorological conditions, routes, banks,
etc.). The study delivers insightful outcomes, whether phenomenological (aircraft noise impact)
or methodological (aircraft noise prediction). As a by-product, it illustrates how noise prediction
methods/platforms such as the present one may help in guiding the further expansion of airport
operations and/or infrastructures (as is currently the case with HKIA).

Keywords: green aviation; airport operations; aircraft noise impact; noise prediction method

1. Introduction

The development of low-noise technologies and the establishment of more stringent
regulations have led to a continuous decrease in the noise impact by air traffic over recent
decades [1]. However, the environmental noise pollution caused by civil aviation is still a
major societal concern, because of the many adverse effects it entails (annoyances, sleep
disturbances, health issues, educational achievements, etc.) [2–4]. This makes aircraft
noise a show-stopper for airports expansion [5], which may question the sustainable
development of the aviation market [6–8] whose annual growth is about 5% [9]. Therefore,
mitigating the noise impact of civil aviation is of utmost importance for all major countries,
especially those which possess large aviation hubs located nearby highly dense cities, such
as China [10,11]. Indeed, not only China is the most populous country in the world, but it
also ranks second in the world in terms of passenger air traffic and it has now replaced the
United States as the world’s largest aviation market [12]. In particular, Hong Kong, which
is the world’s sixth most densely populated city, is also the busiest airport in terms of cargo
volume, worldwide. To cope with the growing demand for air transportation, the Hong
Kong International Airport (HKIA) is now expanding its capacity, through the deployment
of a third runway [13]. This obviously raises legitimate concerns about how the noise
impact by aircraft operations will affect the many residential areas surrounding HKIA.

Aircraft noise has been a matter of intense research over the past 50 years. Essentially,
two main approaches exist to mitigate aircraft noise, namely at the aircraft level by re-
ducing its sources [14] and at the operation level by reducing its perceived impact on the

Aerospace 2021, 8, 264. https://doi.org/10.3390/aerospace8090264 https://www.mdpi.com/journal/aerospace

https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-6980-7361
https://doi.org/10.3390/aerospace8090264
https://doi.org/10.3390/aerospace8090264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/aerospace8090264
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace8090264?type=check_update&version=1


Aerospace 2021, 8, 264 2 of 40

ground [15–17]. The former strategy seeks at developing quieter engines and low-noise
aircraft designs [18], which however constitutes a daunting challenge given the multiple
components involved (e.g., high-speed jets, combustion, turbine, fan, landing gear, high-lift
devices, cavities, etc.) [19,20]. The latter strategy rather seeks at optimizing the aircraft
operations nearby airports (e.g., through noise abatement flight procedures) [17,21,22].
This however requires properly assessing the noise impact induced by aircraft during their
departure and approach flight phases, which can be achieved through field measurements
and/or predictive models. Field measurements are relatively straightforward and reli-
able [23], but they can only be performed a posteriori, over certain predetermined locations
(e.g., using in-situ microphones). Notably, they solely offer measuring the noise impact
from actual aircraft operations, but they do not allow to extrapolate it to alternative sce-
narios (e.g., for exploring the impact of new flightpaths, runways, fleets, noise abatement
procedures, etc.). Moreover, field measurements can be polluted by ambient sounds, which
makes it more difficult to discriminate the actual aircraft noise [24]. All these issues can
be overcome by using predictive models, whose principle is to virtually recreate the noise
impact by aircraft operations. The major limitation of these models is their cost in terms
of computational resources, which scale with the accuracy level that is sought after. Over
recent decades, many aircraft noise prediction approaches were proposed, which can be
subdivided into three categories [25,26], namely, empirical [27–30], semi-empirical [31–33]
and analytical [34–36]. Falling in the first category, the so-called Integrated Noise Model
(INM) [37] developed by the US Federal Aviation Administration (FAA) is used world-
wide for assessing the noise impact around airports. This tool is commonly used for
either (i) monitoring aircraft operations, (ii) studying their impact on the neighboring
populations [38–40], (iii) guiding the further development of airports [22,41,42], or even
(iv) establishing low-noise flight procedures [43,44]—all that whereas incorporating other
constraints (e.g., fuel consumption and chemical emissions) [45,46]. In particular, the INM
model is now the cornerstone of large prediction platforms aiming at optimizing airport
operations, worldwide, such as the Aviation Environmental Design Tool (AEDT) in the
U.S.A. The latter constitutes one of the major bricks of the FAA-led Next Generation Air
Transport System [47], whose goal is to revamp America’s aviation infrastructures and
operations into a renewed, integrated, clean and efficient air system [47]. Similar large-scale
initiatives exist worldwide, for instance in Europe with the Environmental Noise Direc-
tive [48], whose aircraft noise aspects are tackled using methods that also rely on the INM
model. Notably, the baseline methodology underlying INM is best described in ref [49],
which was issued by a concertation group of the European Civil Aviation Conference
(ECAC) in the framework of the END initiative [48]. Since the latter initiative extends to
other industries (civilian and military aviation, railway, road traffic, etc.), current efforts
focus on unifying and standardizing the prediction tools for environmental noise miti-
gation, for instance by developing the so-called Common Noise Assessment Methods in
Europe [50]. Regarding aviation noise, the CNOSSOS-EU approach also relies on the INM
model whereas integrating additional databases, thereby offering to tackle not only civilian
aircraft, but also military ones, as well as helicopters, or specific airport operations (e.g.,
engine run-up noise). This may be pivotal in implementing strategic noise maps [51,52],
thereby helping policymakers in their efforts to improve the land-use planning around
major airports, as advocated by ICAO for mitigating environmental noise by air traffic. All
the above illustrates how aircraft noise prediction tools can be advantageously integrated
into larger platforms, thereby allowing to tackle environmental issues that would be too
challenging to handle otherwise.

The present study is part of a larger research effort, whose objective is to develop
a flightpath optimization platform enabling to minimize both the fuel consumption and
noise emission due to aircraft operations nearby airports [45]. As a starting point, we
here develop a noise prediction approach that comes as a mix between the INM baseline
methodology [49] and novel, specific features. Upon incremental validations, we apply the
resulting approach/tool to actual aircraft operations, thereby highlighting its relevance for
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real-life situations. This paper is organized as follows. In Section 2, the noise prediction
approach is outlined, with a special emphasis put on the specific improvements that were
brought to it. The method and subsequent tool are then validated in Section 3, this being
achieved using several benchmark cases of increasing representativeness. In Section 4, the
approach is applied to realistic scenarios coming from actual aircraft operations nearby
Hong Kong International Airport. Finally, some conclusions and perspectives are drawn.

2. Computational Methodology

This section outlines the present noise prediction approach, which incorporates specific
supplements compared to the baseline methodology described in [49].

2.1. Overview

Similar to the INM-related baseline methodology it originates from, the present ap-
proach primarily relies on the so-called Aircraft Noise and Performance (ANP) database
and its associated Noise–Power–Distance (NPD) subset. This ANP/NPD database can be
seen as a semi-empirical tool that allows estimating the noise impact induced by a given
aircraft, depending on what its power settings and distance to the ground are [53]. Here
it is worth reminding that such a noise impact is commonly measured in terms of Sound
Exposure Level (SEL) or Effective Perceived Noise Level (EPNL), both of which represent
the overall sound energy of a single noise event once integrated over a given duration
(one and ten seconds, respectively) [37,54] and tailored to the sensitivity of the human
ear (e.g., the SEL is A-weighted and the EPNL is tone corrected). Both measures thus
translate the loudness or noisiness of the noise event, whereas their cumulative effect over
successive events can be averaged (e.g., Day–Night average sound Level, DNL, Equivalent
Sound Level, Leq). Given its empirical nature, the ANP/NPD database/tool is a powerful
resource for predicting the noise environment around airports. On the other hand, since
it is built upon standardized scenarios of aircraft operations (aircraft types, flightpaths,
power settings, atmospheric conditions, etc.), its application is limited to rather canonical
situations of air transport exploitation. Moreover, since the NPD-based noise prediction
kernel relies on a rather rudimentary scenario of noise emission by a simplistic source
(isolated jet) within a homogeneous free-field medium, the approach somehow lacks accu-
racy. One way to mitigate these limitations is to improve both the source characteristics
and the propagation features that the approach relies on, which can be partly achieved
by incorporating additional correction factors. This is what was carried out here and is
summarized below.

On one hand, the characteristics of the noise source can be improved through a more
accurate description of both its intensity and directivity. First, the source intensity is
directly driven by the aircraft power settings, which can be refined by using the actual
ones instead of their standardized counterparts. To this end, Section 2.3.1 proposes a
method for assessing the actual power settings of an aircraft, based on its flightpath
characteristics. Second, the source directivity is related to the way the engines are installed
within the airframe (e.g., wing-mounted or fuselage-mounted), with an installation effect
that can be partly incorporated through the proper estimation of the aircraft bank angle (see
Section 2.3.2). On the other hand, the propagation features can be refined through several
means such as a more accurate description of the propagative path itself (e.g., incorporating
all the flightpath sections that contribute to the noise impact, see Section 2.3.3), as well
as of the noise phenomena to occur during the propagation phase (e.g., absorption due
to the humidity, refraction due to the atmosphere inhomogeneities, reflection due to the
ground, etc.). Some of these refinements are part of the INM-based method which is
described in Section 2.2, whereas others are specific to the current work and are detailed in
Section 2.3. Yet, not all of these effects can be incorporated in the approach, which would
be too complex and costly otherwise. For instance, one can here remind that the sound
refraction originates from the atmospheric heterogeneities, which either affect the sound
speed (and thus the acoustic impedance) through the pressure and temperature variations,
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or add convection effects due to winds. Whereas the former effect can be incorporated
in a rather straightforward manner, the latter raises more challenges in terms of practical
implementations and CPU cost efficiency.

Figure 1 sketches the overall methodology, both summarizing the baseline approach [49]
and highlighting the specific addendums brought to it in the present work.
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2.2. Baseline Approach

This section gives a brief overview of the baseline approach, whose detail can be
found in [49]. Recommended by the International Civil Aviation Organization (ICAO), this
approach is widely adopted by airports and legislation authorities for assessing the noise
impact of aircraft operations (at least for commercial aircraft) [55].

As detailed in ref [53], this methodology relies on the fragmentation of the flightpath
into specific segments, each one being allotted the aircraft corresponding characteristics
(position, power settings, airspeed, etc.). Those characteristics are then translated into
suitable inputs (power settings, aircraft-to-ground distance) for the NPD-based noise
prediction tool to assess the aircraft noise impact on the ground. More precisely, the 3D
flightpath is decomposed into the so-called ground track (i.e., the vertical projection of
the flightpath on the ground) and flight profile (i.e., the altitude changes of the aircraft
along the ground track), both of which are made of a finite number of continuous straight-
line segments. The detail of these flight segments (endpoints) and associated aircraft
characteristics (operational data) can be inferred from the flightpath records (either radar or
Flight Data Recorder, FDR), or estimated using specific formulas [49]. Using this, the aircraft
power settings and aircraft-to-ground distance can be obtained, thereby allowing the
aircraft noise impact to be assessed through proper (linear and logarithmic) interpolations
of the NPD database.
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As was said, however, the NPD database is built upon an ideal scenario following
which the ground observer would be located right below the aircraft, with the latter flying
at a constant speed and power settings along an infinite horizontal flightpath and under
specific atmospheric conditions. For the method can be applied to more realistic scenarios,
it is thus needed to enhance it with several correction terms, namely, start-of-roll directivity,
engine installation, finite segment, duration, acoustic impedance, and lateral attenuation
adjustments. The start-of-roll directivity correction reflects the highly directive radiation
pattern of the engine noise during the take-off roll. The engine installation correction
accounts for the modification of the aircraft noise source directivity due to the integration
of the engines within the airframe (e.g., scattering by the wings, refraction effects in the near-
field, etc.). The finite segment correction translates the fact that, different from the NPD
assumption, the flightpath is made of finite segments. The duration correction accounts for
the difference between the actual aircraft speed and that from the NPD standard (160 knots),
such disparity in speed translating into shorter or longer sound exposures. The acoustic
impedance adjustment accounts for the difference between the local atmospheric conditions
(taken at the airport level [49]) and that from the NPD standard. The lateral attenuation
translates all the noise interferences induced by the reflection (and, to a lesser extent, by the
refraction) effects inherited from the ground presence. Here it is worth noticing that these
refraction effects are incurred by either the temperature and/or wind gradients induced
by the ground, depending on its characteristics (e.g., roughness, heat transfer). All these
correction terms enable the NPD-based noise prediction tool to assess more accurately the
noise impact of aircraft in different scenarios. As an illustration, Appendix B exemplifies
how these various correction terms weigh on the prediction of the noise impact by a typical
aircraft at take-off.

2.3. Specific Improvements Brought to the Methodology

The ANP database is built on a standardized scenario of aircraft operations (flight
profile, power settings, airspeed, etc.). However, in reality, the actual operations often
deviate from these standard cases, due to various factors (terrain, wind speed and direction,
noise abatement flight procedure, etc.). For the overall methodology to be closer to reality,
the NPD-based noise prediction must therefore be enhanced with various refinements—
which was carried out here and is summarized hereafter.

2.3.1. Refinement of the Aircraft Noise Emission (Intensity), through the Incorporation of
the Actual Power Settings

Ideally, the aircraft operational data should be inferred directly from actual records
(either radar or Flight Data Recorder, FDR). Whereas FDR data offer the most compre-
hensive and accurate information, their proprietary nature makes them difficult to access.
Conversely, radar data are open source and therefore readily available but they offer less
detailed information. For instance, the flightpath characteristics of any aircraft can be easily
accessed through their radar data, which can be accessed via public domain websites (e.g.,
FlightAware, Flightradar24, OpenSky Network, etc.). These data, however, do not provide
any insights about the aircraft power settings, which makes them less straightforward to
use in the present context. To overcome this issue, the present approach incorporates a
functionality that offers assessing the aircraft power settings directly from the flightpath
characteristics (flight profile and airspeed). To this end, we derive a simplified model
for the thrust to be delivered by the engines when the aircraft is in dynamic equilibrium,
whether it is considered at roll or aloft. By developing the corresponding equations of
motion (cf. Appendix A), one can express the aircraft thrust via the following integrated
formula (which is valid whether the flight segment is, i.e., either ground roll or aloft):
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T = m
[

a + g
(

µF
cosγ + µFsinγ

)]
+ L

[
CD
CL

+ cosφ·
(

sinγ− µFcosγ

cosγ + µFsinγ

)]
(1)

In the above, T indicates the thrust (in lbf), L is the lift force, CD/CL is the drag-to-lift
ratio, m is the aircraft mass (in lbm), a is the aircraft inertial acceleration (in average), g is
the gravitational acceleration. Besides, γ and φ, respectively, stand for the flightpath and
bank angles (which are zero when the aircraft is on its ground roll). On the other hand, µF is
the friction coefficient [56], which accounts for the additional drag effect due to the runway
(and is zero when the aircraft is aloft). From there, two scenarios can be distinguished:

When the aircraft is aloft (µF = 0), Equation (1) can be re-expressed as (cf. Appendix A)

T = m
[

a + g
(

CD
CL
· cosγ

cos φ
+ sinγ

)]
(2)

Oppositely, when the aircraft is on the ground roll (γ = φ = 0), and by introducing a
lift model [57], one can show that (cf. Appendix A)

T = m

{
a + g

[
CD
CL
·
(

VTAS
VLOF

)2
+ µF

(
1−

(
VTAS
VLOF

)2
)]}

(3)

where VTAS and VLOF stand for the aircraft true airspeed (TAS) and its value at lift-off,
respectively.

All parameters appearing in the above Equations (2) and (3) are readily available from
the flight data and/or ANP database, for each aircraft type and flight setting. One can thus
get the actual thrust directly from the aircraft and flight parameters, in all flight phases
(whether the aircraft is aloft or on its ground roll). For being readily exploitable, however,
the actual thrust must be scaled back to the standardized value upon which the NPD
database is built upon, namely the corrected net thrust at sea level. To do so, the actual
thrust is then adjusted through a gross-to-net thrust factor, which translates the fact that
the thrust delivered at a given altitude deviates from its sea-level counterpart. This factor
can be expressed through δ, the ratio of the ambient air pressure around the aircraft to the
standard air pressure at mean sea level [23]. Once scaled by the number of engines, N, one
finally gets the corrected net thrust per engine, to be used as input for the NPD database.

Fn =
T

Nδ
(4)

2.3.2. Refinement of the Aircraft Noise Emission (Directivity), through the Incorporation of
the Engine Installation Effects (Bank Angle)

The way the engines are mounted within the airframe affects the directivity of the air-
craft noise source. These so-called acoustic installation effects can be partially incorporated
through the aircraft bank angle [49], which relates to the depression angle (ϕ) that is directly
linked to the engine installation (see Figure 2 below, as well as Figure A1 in Appendix A).
Indeed, when installed on an aircraft, engines see their noise directivity importantly al-
tered because of the multiple scattering effects induced by the airframe elements (e.g.,
wings) [23]. This directivity, which is measured through the depression angle, mostly
depends on the way the engines are positioned within the airframe (e.g., wing-mounted,
fuselage-mounted). From a ground observer perspective, the noise intensity is thus to be
driven by the combination of the depression and bank angles.
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In the absence of any specific formulas provided in Ref [49], the aircraft bank angle is
here estimated through the flightpath turn radius, using a geometrical approach [37]. To do
so, the ground track is first approximated (using cubic spline interpolation) as a succession
of evenly spaced points, each one being then inferred its corresponding turn radius (which
is determined from the circumradius of the triangle formed with its two neighboring
points). From there, using the aircraft airspeed along with the gravitational acceleration,
the bank angle is derived [49]. Once filtered out from all possible irregularities coming
from the flight characteristics inaccuracies (especially the aircraft position and airspeed),
the bank angle values are interpolated back to the original ground track. Section 4.3.1 and
Appendix C illustrate the sensitivity of the noise prediction towards these bank effects.

2.3.3. Refinement of the Aircraft Noise Propagation (Distance), through the Dynamic
Specification of the Ground Track and Observers
Dynamic Extension on the Ground Track

By definition, the departure flight sequence begins when the aircraft initiates its
ground roll and terminates once it has climbed up to an altitude of 10,000 ft. Oppositely,
the approach flight sequence starts when the aircraft has descended down to an altitude of
6000 ft and finishes at the end of the landing ground-roll [37]. Because of this somehow
arbitrary definition of the departure and approach procedures, any flightpath segment
that would be beyond their altitude ranges is usually discarded in the aircraft noise
assessment process. This may lead to underestimating the noise levels on the ground,
whose discarded flight segments may still contribute to, depending on the situation (e.g.,
aircraft settings/flightpath⇔ ground observer relationship). In order to correct such a
potential bias in the noise estimation, some authors proposed to automatically enhance
the default flight sequences with an extra flight segment, of arbitrary length [49]. Given its
arbitrary nature, however, this fix may be partially conclusive (e.g., extra flight segment
of insufficient length). Therefore, we here propose to rather incorporate all the flightpath
segments that actually contribute to the noise impact on the ground, on a case-by-case basis.
To do so, the flight sequence is extended in a dynamic fashion, being automatically added
all the flight segments that are beyond its standard altitude range—this being carried out
until their contribution to the aircraft noise impact is negligible, i.e., the noise levels on the
ground are converged. More detail about this process is provided in Section 4.3.2.

Dynamic Specification of Ground Observers

Classically, the aircraft noise impact is characterized using a set of ground observer
locations, over which the noise contribution by the various flight segments is summed up
over time—all this leading to integrated noise contour maps. The overall efficiency (i.e.,
accuracy and rapidity) of the noise prediction is directly driven by the number and distribu-
tion of these prediction points. Therefore, past researches focused on how to optimize the
latter, for instance using irregular grids [58,59]. Different from the baseline methodology,
the present method incorporates an advanced dynamic grid refinement functionality [37],
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which allows increasing locally the density of observers wherever and whenever needed.
This dynamic, local grid refinement process is conducted automatically during the noise
prediction, which can be seen as a multi-stage calculation. More precisely, the noise predic-
tion is first conducted on a coarse mesh, being then bi-linearly interpolated on a twice finer
grid. The interpolated result is then compared to that of the direct calculation, which is
repeated for each new grid point created. Whenever the two results fall within a certain
threshold, the calculation is considered converged, and the local grid refinement stops.
Should this not be the case, the process is repeated, until a local convergence is reached.
Besides the tolerance (i.e., interpolation accuracy threshold), the degree of refinement is
controlled through two other criteria, namely, the maximum refinement level allowed (with
respect to the initial, coarse grid), and some pre-defined extrema of noise levels. Thanks to
such a dynamic grid refinement functionality, the calculation process is optimal, offering
the best trade-off in terms of accuracy and cost.

2.3.4. Refinement of the Aircraft Noise Propagation (Attenuation), through the
Incorporation of Meteorological Effects

Aside from its emission characteristics (intensity, directivity), the aircraft noise is
also driven by the properties of the atmospheric medium through which it propagates
to the ground. It is not rare, however, that the actual atmospheric conditions deviate
from the standard values upon which the NPD database is built. In this case, the noise
prediction must be corrected from the specific biases induced by these offsets in atmospheric
properties [55]. This can be achieved through two correction terms, namely, the acoustic
impedance adjustment and the atmospheric absorption adjustment. The former correction
accounts for the offset in the sound speed (which is driven by the atmospheric pressure
and temperature values) whereas the latter accounts for the offset in the noise absorption
effect (which is primarily driven by the temperature and relative humidity).

Deviation of the Sound Speed Characteristics (Acoustic Impedance Adjustment)

Acoustic impedance adjustment accounts for the deviation of the medium sound
speed with respect to its NPD standard value. This correction term [49] is classically built
as a function of the atmospheric pressure and temperature (e.g. using Equation (4–6) and
Equation (4–7) from Ref. [49]), both of which have a monotonic effect on the propagation.
As exemplified in Figure 3, a rise in pressure (resp. temperature) shall result in a higher
(resp. lower) correction required. The latter corrections, however, are usually moderate,
with a variability that remains in the order of a decibel (dB). For instance, a pressure
increase of 50 kPa entails a difference of +2.3 dB (regardless of the temperature), whereas a
temperature increase of 40 ◦C induces an effect of −0.3 dB, regardless of the pressure.
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Deviation of the Sound Absorption Characteristics (Atmospheric Absorption Adjustment)

The atmospheric absorption relates to the energy dissipation that sound waves ex-
perience when interacting with air molecules. It is mostly driven by the temperature
and relative humidity, upon which the atmospheric absorption adjustment is thus usu-
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ally built [60]. As an illustration, Figure 4 depicts the difference in the noise levels that
are radiated on the ground by a given sound source located at an altitude of 25,000 ft,
depending on if the propagation medium corresponds to a standard or a non-standard
atmosphere. As can be seen, these differences are nonlinear and non-monotonic, which
makes it uneasy to predict how a given deviation in temperature and/or relative humidity
shall impact the noise prediction. Notably, these effects may cancel out each other—as
highlighted in Figure 4 by the red line, which depicts those atmospheric conditions for
which the difference is nil. In the present approach, the atmospheric absorption adjustment
not only incorporates the deviations in temperature and/or relative humidity (as classi-
cally carried out [60]), but it also includes those in atmospheric pressure. Relying on the
so-called Volpe method [61], this correction is thus expected to yield still more accurate
results, especially for what concerns long-distance propagation. For more detail about
this correction term, the interested reader is referred to Ref. [49] (Equations (D-1) to (D-4))
and Ref. [61] (Equations (1) to (6), Equations (16) and (17)). These atmospheric absorption
effects are further discussed in Section 4.2.
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3. Validation of the Methodology Using Standardized Cases

In this section, the present noise prediction approach is validated using benchmark
cases, which correspond to either virtual standard scenarios or to real-life but well-known
situations (noise certification tests).

3.1. Standardized Scenarios

Here, we consider a total of 12 standardized scenarios, which were previously docu-
mented in [62]. These cases describe the noise impact induced by an aircraft, depending
on its type and/or flightpath. More precisely, we here consider three different types of air-
craft, namely, a jet-powered aircraft with either fuselage-mounted (JETF) or wing-mounted
(JETW) engines, as well as a propeller-powered aircraft (PROP). Each aircraft is taken under
either a departure (D) or an approach (A) flight, which both follow either a straight (S) or a
curved (C) route. Please, see Ref. [62] for a detailed description of these benchmark cases,
some aspects of which are nevertheless further documented in Appendix B (e.g., aircraft
routes, observers locations).

Figures 5 and 6, respectively, depict the noise contour maps associated with all three
aircraft at departure and approach (only the curved routes are considered, for the sake of
conciseness). Of note, the noise metric used here is Sound Exposure Level (SEL). For each
case, the differences between the present prediction and the reference one [62] are quantified
using error maps (obtained by subtracting the reference values from the calculated results).
As one can see, the agreement is good, with absolute error levels that are typically less than
0.01 dB. Notably, compared to some of the past works [23], the present calculations rely
on a coarser distribution of ground observers, whereas delivering more accurate results
(compare for instance the error map of JETFDC case with its counterpart from Ref. [23]
whose visual rendering was here duplicated on purpose.).
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This good agreement is verified for all 12 benchmark cases, as shown in Table 1, which
quantifies the mismatches between the present predictions and the reference values. For
each case, this mismatch is characterized via both the maximum absolute error (δmax) and
the average (root-mean-square) error δRMS, as recorded throughout the ground observers.
Notably, for all cases, the average error, δRMS, is much less than the threshold of 0.01 dB,
which is the indicator of a reliable prediction [62]. Moreover, this accuracy level appears
to be higher than the one reached by previous similar studies which focused on the same
benchmark [23].
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Table 1. Errors between the calculated noise levels and the reference results.

Reference Case δmax (dB) δRMS (dB)

JETFAC 0.0125 0.00135
JETFAS 0.0125 0.00149
JETFDC 0.0125 0.00237
JETFDS 0.0125 0.00160

JETWAC 0.0125 0.00183
JETWAS 0.0125 0.00179
JETWDC 0.0125 0.00215
JETWDS 0.0125 0.00157
PROPAC 0.0100 0.00218
PROPAS 0.0016 0.00162
PROPDC 0.0200 0.00423
PROPDS 0.0124 0.00159

All in all, these benchmark cases provide a validation of the present noise prediction
platform and underlying methodology. Appendix B provides a further illustration (along
with a more incremental validation) of the overall prediction process, exemplifying each
calculation step in the particular JETWDS case.

3.2. Noise Certification Cases

To further assess the accuracy of the methodology as well as to lean towards real-life
situations, the present section focuses on actual flight scenarios whose characteristics are
however close enough from the ANP standard ones. To this end, we consider several noise
certification flight tests, for which field measurements were made available by the European
Union Aviation Safety Agency (EASA) [63]. These flights tests were performed for two
different aircraft (B737-800 and A320-211), delivering for each the Effective Perceived
Noise Level (EPNL) over a set of certification points. Indeed, aircraft noise certification
tests follow a very specific protocol [64], which consists in flying the airplane along its
standard approach and take-off flightpaths whereas measuring the resulting noise at
three ground locations, namely the approach, lateral full-power and flyover reference
points [64] (see Figure 7). Notably, these ground measurements are performed such that
the ground reflections are minimized at best (e.g., displaying the microphones over a flat
terrain of known impedance, with no surrounding buildings, etc.). The two considered
certification flights were here virtually duplicated using the noise prediction platform,
thereby delivering the EPNL results provided in Table 2.
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Table 2. Noise levels for B737-800 and A320-211 aircraft at three certification points, as measured and
calculated (in EPNdB) with associated errors (in percentage).

Approach Lateral Flyover

A320-211 B737-800 A320-211 B737-800 A320-211 B737-800

Measurement 96.10 96.30 93.70 93.90 87.40 86.40
Present study 96.32 94.80 94.41 94.71 94.40 94.00

Error 0.229 1.558 0.758 0.863 8.009 8.796

For what concerns the approach procedure, the noise levels predicted at the approach
reference point compare favorably with their flight test counterpart, entailing an error of
0.229% and 1.558% for the A320-211 and B737-800 aircraft, respectively. Besides modeling
aspects, these slight discrepancies between the predicted and measured results may be
attributed to the multiple uncertainties coming from the field test (e.g., slight deviations in
the aircraft trajectory, variations in the atmospheric conditions, variable impedance effects
by the ground, etc.). For what concerns the departure procedure, the EPNL perceived on
the lateral full-power reference point is first considered. Here too, the prediction matches
well the flight tests, with an error of less than 1% between the predicted and measured noise
levels. Notably, this good agreement also holds when the two aircraft are considered under
different atmospheric conditions (as proven by successfully retrieving the prediction results
from Ref. [65], which are not reproduced here for the sake of conciseness). The assessment
is then conducted for the flyover reference point (see Figure 7), leading to an agreement
that is less favorable. Indeed, whatever the aircraft is, the predicted noise levels are about
8% higher than their measured counterpart. Such discrepancies are likely to be due to the
mismatches between the flight procedure used in the prediction (ANP database standard
scenario) and that adopted in the certification (flight test scenario). Indeed, compared
to the former, the latter comes with an earlier reduction in the power settings (thrust is
decreased before the flyover reference point [64]), thereby leading to lower noise levels,
overall. Rather than questioning the validity of the noise prediction approach (which was
demonstrated through all previous cases), these discrepancies rather advocate for basing
it on actual flightpaths rather than on standard ANP-based ones—as usually carried out.
This point is discussed in the following section.

4. Further Illustration of the Methodology Using Realistic Scenarios

The present section further illustrates the capacity of the aircraft noise prediction
methodology to tackle real-life situations by considering actual flight scenarios coming
from one of the major international airports, worldwide.

4.1. Context

Hong Kong International Airport (HKIA) is among the busiest airports in the world,
ranking 1st and 13th in terms of cargo and passenger traffic, respectively. On the other
hand, Hong Kong is the 6th densest city worldwide, and many of its highly populated
residential areas are prone to be impacted by air traffic pollution, whether chemical or
acoustical. Since HKIA’s current two-runway system has almost reached its maximum
operational capacity, a third runway is now being developed so as to cope with the expected
growth of air traffic (of about 5% per year). This makes it critical to accurately assess the
noise impact by aircraft take-off and landing operations at HKIA on local communities.
Such an assessment must account properly for the specificities that characterize the local
Hong Kong aviation scene, whether these concern aircraft operations (power settings,
flight trajectories) or meteorological conditions. Indeed, because of both the complicated
airspace (crowded air traffic, topography, densely populated areas, available routes) and
the adoption of specific procedures (e.g., continuous descent approach, CDA [66]), the
flight trajectories around HKIA are pretty diverse, and definitely non-standard. In addition,
due to its unique geographical location, Hong Kong undergoes important seasonal changes
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over the year (namely, the summer is hot and very humid, whereas the winter is rather
cool and dry.).

To further illustrate the ability of the present approach to tackle real-life scenarios, the
present section assesses the noise impact entailed by actual aircraft flying in and out from
HKIA, a special focus being put on those Hong Kong’s densely populated areas that are
likely to be more exposed to it. The left side of Figure 8 plots the spatial distribution of
Hong Kong’s population in 2020 (as provided by the Hong Kong Census and Statistics
Department) whereas its center side depicts some typical flightpaths of representative
aircraft flying to/from Taipei in 2020 (as provided by the major airline in Hong Kong,
Cathay Pacific). The areas depicted in black (namely, D1-D7) are densely populated
districts with many aircraft flying over, which the focus is put on here. In that regard,
a representative set of aircraft and flightpaths are selected, their noise footprint on the
ground being then simulated using the noise prediction platform.
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A quick analysis of the air traffic around HKIA in 2021 reveals that the most frequently
used aircraft types are A330-343, B787-9 and B777-3ER. We thus here consider both A330-
343 and B777-3ER aircraft flying in/out HKIA from/to Taipei (the B787-9 being discarded
since its characteristics are not yet incorporated in the ANP database and are rather close
to those of A330-343). For each aircraft considered, the operational characteristics and
associated flightpaths are excerpted from actual data provided by the airline (Cathay
Pacific). Among all available possibilities, specific flights are selected, and their noise
impact (SEL) on Hong Kong residential areas is predicted using the present approach. The
latter incorporates most features, e.g., it accounts for the atmospheric properties (humidity,
temperature, pressure), the installation effects (bank angle), the dynamic grid functionality.
On some occasions, additional methodological ingredients are used, e.g., the ground track
extension (cf. Section 4.3.2), the thrust approximation (cf. Section 4.3.3). Unless stated
otherwise (e.g., Section 4.2.2), the atmospheric conditions correspond to the so-called
ISA+10 atmosphere, which is classically used (including for noise certification tests) and is
rather close to the yearly averaged meteorological data recorded in Hong Kong. Finally,
for helping the reader identifying more easily the various scenarios considered hereafter,
each flight is labeled using a specific nomenclature, namely, XYn, where X refers to the
aircraft type (“A” for A330-343, “B” for B777-3ER) whereas Y relates to the flight type (“A”
for approach, “D” for departure) and n is the subsequent scenario index (1, 2, etc.).

Regarding the aircraft noise exposure in Hong Kong, the solely available data are the
official records from HKCAD. The latter come as averaged ground noise levels, which are
recorded annually over a few specific locations and integrated over time (irrespective of
aircraft movements). In the absence of suitable validation means coming from field tests,
all the noise predictions presented hereafter are thus used for illustration purpose. They
however deliver insightful information, whether the latter relates to phenomenological
aspects (see Section 4.2) or to methodological considerations (see Section 4.3). More pre-
cisely, here, we assess the noise impact sensitivity towards various key factors, namely the
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flight characteristics (flightpath, power settings), the meteorological effects (atmospheric
absorption, acoustic impedance), the aircraft type, but also the way to infer them better
(flightpath extension, trajectory and/or thrust approximation), etc. Of note, these predic-
tions incorporate the ground effects regardless of the specificities coming from the actual
terrain (e.g., landscape, buildings, vegetation, or water), which would be too cumbersome
to account for. These specificities are nevertheless expected to be of secondary importance
compared to the effects that are primarily sought after, here.

4.2. Phenomenological Aspects
4.2.1. Noise Impact Variability upon the Flight Scenarios

Aircraft operations around HKIA rarely comply with standardized flightpaths, being
rather characterized by scattered flight profiles. In that regard, the present section illustrates
the variability of aircraft noise impact towards the diversity in flight routes.

Departure Scenarios

We consider those departure routes followed by A330-343 aircraft flying from Hong
Kong to Taipei, focusing on those Hong Kong densely populated areas that are located
underneath flight corridors (namely, D1, D5, D6, and D7 in Figure 8). Among all corre-
sponding flights available from the database, two specific A330-343 departure flights are
chosen upon the high disparity between their characteristics. Indeed, the first aircraft
(flight AD1) flies over D1 and D7 districts following a standard route, while the second
aircraft (AD2) rather flies over D5 district with a much lower rate of climb (ROC). The
left and center sides of Figure 9, respectively, depict the ground track and flight profile of
the corresponding routes, which are here plotted up to the nominal maximum altitude of
10,000 ft [37]. The right side of Figure 9 plots the observer grid, as generated using the
dynamic meshing technique (cf. Section 2.3.3).
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profile) and corresponding ground observers (dynamic grid, right).

The left and right sides of Figure 10 depict the SEL contours generated by flights AD1
and AD2, respectively. As can be seen, each flight exhibits a rather specific noise signature
on the ground, thereby impacting Hong Kong in its own way. This disparity between both
flights’ impacts is quantified on the Figure 11, which depicts the differences between the
two noise maps (obtained here by subtracting the former from the latter).
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Compared to flight AD1 (standard route, higher ROC), flight AD2 (deviated route,
lower ROC) has a much higher impact on some of the populated areas, namely districts
D1, D5 and D6 (see the right side of Figure 11). More precisely, the excess in SEL raises
up to 5dB in districts D1 and D5, whereas it can reach up to 15dB in district D6, which is
the most densely populated area in Hong Kong. On the other hand, the opposite holds for
other city areas—such as district D7, where the impact of flight AD1 is about 10dB higher
than that of flight AD2.

At this stage, it is worth noting that the higher altitude of flight AD1 does not nec-
essarily translate into a lower noise impact on the ground areas it flies over, compared
to what happens for flight AD2. For instance, the noise impact by flight AD1 on the D7
district is comparatively higher than that of flight AD2 on the D5 district, although the
latter flight travels at an altitude that is half of the former. This can be explained by the
difference in the power settings adopted by both aircraft along their respective routes.
Indeed, the power settings associated with both flights are depicted in Figure 12, which
delineates (in dash-dotted lines) the particular flight phase during which both aircraft pass
nearby districts D1 and D5. During this phase, flight AD1 exhibits an engine power that is
more than twice that of flight AD2 (whose ROC is suddenly and drastically reduced at that
time). This excess of propulsive power translates into a more important noise emission,
whose effect cannot be completely mitigated by the longer propagation distance entailed
from flight AD1 higher altitude. Independently of the engines power (i.e., noise source
amplitude), the flightpath angle (i.e., noise source directivity) may also explain such a
comparatively higher noise impact by flight AD1. Indeed, during this flight phase, flight
AD2 adopts a lower climb angle than that of flight AD1, as revealed by the flight profiles
on the center side of Figure 9. Considering the highly directive patterns of jet noise (whose
maximum radiation is aligned with the aircraft axis), this lower flightpath angle by flight
AD2 is likely to induce a lower noise impact on the ground. This being said, these more
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favorable characteristics of flight AD2 (less power, reduced climb angle) do not prevent it
to generate a quite substantial noise impact on these areas it flies over rather closely, such
as districts D1 and D5.
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A similar analysis was conducted for B777-3ER aircraft flying along both the standard
and an alternative deviated route, leading to the same observations (see Appendix C).

All the above illustrate well how the variability in departure procedures around
HKIA may have a quite large impact on specific, highly densely populated areas of Hong
Kong city. From a methodological viewpoint, this underlines the necessity to account as
accurately as possible for all flight characteristics when assessing the noise impact by air
traffic operations.

Approach Scenarios

Whereas the previous section focused on A330 aircraft departing from HKIA (with
their B777 counterpart being documented in Appendix C), this section rather focuses on
B777-3ER aircraft at approach. More precisely, we consider the two approach routes to
HKIA (namely 25R and 25L), which both pass through three densely populated districts
(namely D2, D3, and D4 in Figure 8). Among all B777-3ER aircraft flying from Taipei
to Hong Kong in 2020, two specific flights are selected for their high disparity in terms
of characteristics (see Figure 13). Whereas the first one (flight BA1) approaches the 25L
runway at a higher altitude, the second one (flight BA2) follows the route 25R at a lower
altitude. As can be seen, these flight characteristics differences are more prominent at the
beginning of the flight sequence, since both aircraft adopt similar trajectories as they get
closer to HKIA, to comply with the noise abatement procedures enforced in Hong Kong,
namely the Continuous Descent Approach.
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The left and right sides of Figure 14 depict the SEL contours generated by these two
flights BA1 and BA2, respectively. As for what could be observed with the departure
scenarios (cf. Section 4.2.1), each flight impacts differently Hong Kong residential areas.
This disparity between their respective noise impact is quantified on the Figure 15, which
depicts the differences between the two noise maps (obtained here by subtracting the
former from the latter).
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Figure 15. Difference in the noise impact (∆SEL) by flights BA1 and BA2 (as obtained by subtracting
the former from the latter), with a closer view provided on right side.

Being sandwiched between 25L and 25R routes, the populated D3 district sees its
northwestern part impacted more by flight BA2 than by flight BA1 (with a difference in
SEL of up to 7.6 dB), whereas the opposite occurs on D3 southern part (where flight BA1
impact exceeds that of flight BA2 by up to 7.3 dB in SEL)—see the right side of Figure 15.

Considering that most of D3 residents are concentrated in its central and southern
areas, flight BA1 thus appears to be less environmentally friendly for this district. The same
observation holds for the D2 district, whose population concentration is four times higher
than that of its D3 counterpart. Being located right underneath 25L route, this district is
impacted more by flight BA1, with an excess in SEL of up to 9dB (compared to that of flight
BA2). On the other hand, the D4 district appears to be equally exposed to both flights, each
inducing an excess of 5–7 dB compared to the other for those observers that are located
underneath their respective flightpath. All in all, it appears that these densely populated
districts are more exposed to flight BA1, overall. Therefore, the 25R approach route should
be privileged whenever the conditions permit (operational, meteorological, etc.).

A similar analysis was conducted for an A330-343 aircraft flying along these two
approach routes, leading to the same observations (see Appendix C).

As for the departure scenarios (cf. Section 4.2.1), the above results illustrate further
how the approach procedures around HKIA may impact very differently those highly
densely populated areas of Hong Kong city.
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4.2.2. Noise Impact Variability upon the Meteorological Conditions

As said, because Hong Kong usually undergoes important seasonal changes, the local
atmospheric conditions may present large deviations compared to the standard ones. For
instance, according to the meteorological data records acquired over the past decade by
the Hong Kong Observatory and Iowa State University, Hong Kong is characterized by
large yearly variations in temperature and relative humidity (which can range from 3 ◦C to
37 ◦C and 6.91% to 100% throughout the year, respectively). Moreover, these fluctuations
may be important on a much shorter timescale, with large deviations occurring throughout
a single day.

The present section illustrates how such a meteorological variability may affect the
aircraft noise impact on the ground, for instance, because of the deviations in the atmo-
spheric absorption (which focus is put on, here). To do so, we consider the particular case
of an A330-343 aircraft flying from Hong Kong to Taipei along a standard departure route,
this flight being successively operated under four specific meteorological scenarios, which
reproduce the extrema in temperature or relative humidity one can get in Hong Kong,
yearly (see Table 3). For each one of the four scenarios (respectively labeled as AD3, AD4,
AD5, AD6), Figure 16 depicts the corresponding SEL on the ground, whose differences are
quantified and discussed in the next subsections.

Table 3. Yearly extrema in atmospheric conditions recorded in Hong Kong (sea level pressure) and
meteorological scenarios considered for the four flights.

Temperature (◦C)

7 35

Relative
humidity (%)

13 AD3 AD4
100 AD5 AD6
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how the noise impact may be altered by variations in temperature (alone), for a given 
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levels, as obtained by subtracting the SEL map associated with case AD3 (resp. AD5) from 
that of case AD4 (resp. AD6). As can be seen, such a 28 °C rise in temperature noticeably 
impacts the ground noise levels, whatever the relative humidity is. This effect on the noise 
impact appears to be driven by both the observer location and the actual level of relative 
humidity. When the latter is low (13%), the noise impact is seen to increase (resp. decrease) 
for those observers that are located close to (resp. away from) the ground track (cf. left 
side of Figure 17). Oppositely, when the relative humidity is high (100%), a lower (resp. 
higher) noise impact is recorded for those observers that are positioned close to (resp. 
away from) the ground track (cf. right side of Figure 17). 

Figure 16. A330 aircraft departing from HKIA. Aircraft noise impact on the ground, as depicted in terms of SEL for cases
AD3, AD4, AD5, AD6 (from left to right, respectively).

Effect of Temperature

By comparing either cases AD3 and AD4 or cases AD5 and AD6, we first highlight
how the noise impact may be altered by variations in temperature (alone), for a given
relative humidity. For each pair of cases, Figure 17 depicts the differences in ground noise
levels, as obtained by subtracting the SEL map associated with case AD3 (resp. AD5) from
that of case AD4 (resp. AD6). As can be seen, such a 28 ◦C rise in temperature noticeably
impacts the ground noise levels, whatever the relative humidity is. This effect on the noise
impact appears to be driven by both the observer location and the actual level of relative
humidity. When the latter is low (13%), the noise impact is seen to increase (resp. decrease)
for those observers that are located close to (resp. away from) the ground track (cf. left side
of Figure 17). Oppositely, when the relative humidity is high (100%), a lower (resp. higher)
noise impact is recorded for those observers that are positioned close to (resp. away from)
the ground track (cf. right side of Figure 17).
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Figure 17. Effect of the atmospheric properties on the aircraft noise impact. Differences in SEL
induced by a variation in temperature, as obtained for a given relative humidity (left: AD4—AD3,
right: AD6—AD5).

Effect of Relative Humidity

Similarly, by comparing either cases AD3 and AD5 or cases AD4 and AD6, we high-
light how the noise impact may be altered by the variations in relative humidity (alone), for
a given temperature. Figure 18 depicts the differences in ground noise levels, as obtained by
subtracting the SEL map associated with case AD3 (resp. AD4) from that of case AD5 (resp.
AD6). Whatever the temperature is, such an 87% variation in relative humidity significantly
alters the ground noise levels, which now increase everywhere. Again, this effect on the
noise impact appears to depend on both the observer location and the actual temperature.
When the latter is low (7 ◦C), the impact is seen to be more important for those observers
that are located close to the ground track (cf. left side of Figure 18). Oppositely, under
a high temperature (35 ◦C), the impact is higher for those observers that are positioned
further away from the ground track (cf. right side of Figure 18).
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Combined Effect of Both Temperature and Relative Humidity

Finally, by comparing cases AD3 and AD6, we illustrate the combined effect of
temperature and relative humidity on the noise impact. Figure 19 depicts the differences in
ground noise levels, as obtained by subtracting the SEL map associated with case AD3 from
that of case AD6. As can be seen, when both temperature and relative humidity increase,
the ground noise impact goes higher. For instance, a variation of +9.6 dB is recorded for that
observer located at the left/bottom corner of the grid. Notably, this difference represents
the arithmetic sum of the ones recorded separately for a variation in temperature alone
(−9.1 dB, cf. left side of Figure 17/AD3→ AD4) and in relative humidity alone (+18.7 dB,
cf. right side of Figure 18/AD4 → AD6). This illustrates well the dual dependency of
the noise impact onto both the temperature and humidity, whose respective effects are
cumulative (and may mitigate each other, depending on the situation, cf. Section 2.3.4).
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At this stage, it is worth observing that the above results (both trends and numbers) are
specific to the present HKIA-based scenario and should not be extrapolated readily to other
situations. They however highlight well how important the atmospheric properties may
alter the noise impact by air traffic operations, from a phenomenological viewpoint. From a
methodological perspective, they underline the crude necessity of accounting properly for
the local atmospheric conditions when assessing the noise impact of air traffic operations,
especially in those regions that are known to undergo important seasonal variations, such
as Hong Kong.

4.2.3. Noise Impact Variability upon the Aircraft Type

The previous sections highlighted how far a given aircraft may see its noise impact
varying, depending on its operational conditions (flight route and power settings, meteoro-
logical conditions, etc.). Here, we rather explore how, for identical operational conditions,
two distinct aircraft may entail different noise impacts. To do so, we consider two of
the previous flights, whereas allotting them with a different aircraft type than previously
carried out.

Focusing first on departure scenario (cf. Section 4.2.1), we repeat the noise prediction
associated with flight AD2 (deviated route, lower ROC), the previous aircraft (A330-
343) being now replaced with a (virtual) B777-3ER. Of note, it was checked that such a
virtual scenario is realistic, e.g., the B777 engines can deliver the power required by the
corresponding A330 flight settings. Figure 20 depicts the SEL maps induced by both cases
(respectively labeled AD2 and BD1), along with their difference. As can be seen, B777-3ER
aircraft impacts Hong Kong less than its A330-343 counterpart, with noise levels that are
lower by about 3 dB over most residential areas. This trend is however inverted further
away from the ground track, with an excess noise by the B777 of up to 5 dB recorded over
some more remote locations (which are nevertheless sparsely populated).
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At this stage, one could wonder about the exact reason for such an inverted trend,
in terms of noise impact by both aircraft with respect to the distance to the ground track.
Indeed, both AD2 and BD1 scenarios differ only by the aircraft type (i.e., noise source),
all other parameters being strictly identical (flightpath, power settings, atmospheric ab-
sorption, etc.). However, as can be inferred from the NPD database (see Figure 21), both
aircraft see their noise levels varying (i.e., decreasing) differently along the propagation
distance. In particular, although they are less than the A330 ones at short distances, the B777
noise levels emerge more further away. This can be related to the atmospheric attenuation
effects, which are to impact differently both noise signatures depending on their respective
spectral content.
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Figure 21. A330 and B777 aircraft noise impact (SEL) as recorded for various power settings (corrected
thrust) and propagation distances. Excerpted from NPD database.

Focusing now on approach scenarios (cf. Section 4.2.1), we repeat the noise prediction
associated with flight BA1 (25L runway, lower altitude), the previous aircraft (B777-3ER)
being now replaced with a (virtual) A330-343 counterpart. Notably, here too, it was checked
that such a virtual scenario is realistic, e.g., the A330 engines can deliver the power required
by the corresponding B777 flight settings. Figure 22 depicts the SEL maps induced by both
flights (respectively labeled BA1 and AA1), along with their difference. As can be seen,
compared to its B777-3ER counterpart, A330-343 aircraft impacts Hong Kong less, with
noise levels that are systematically lower—wherever the observer location is. In particular,
the populated D6 district sees its noise impact reduced by as much as 5 dB when flown
over by an A330 instead of a B777.
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The above results illustrate how aircraft noise prediction methods such as the one
presented here constitute not only a useful diagnostic tool but also a powerful predictive
means. Indeed, beyond simply allowing to measure the noise impact by existing aircraft
operations around major airports, such kind of tool can also help better planning them. This
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is of critical importance when new airport developments are on their way, as is currently
the case with HKIA.

4.3. Methodological Aspects

Whereas the previous sections primarily focused on phenomenological aspects of aircraft
noise impact, we here discuss the prediction process under a more methodological angle.

4.3.1. Accounting for the Bank Angle

In the previous sections, all noise predictions accounted for the engine installation
effects (cf. Section 2.3.2), which were incorporated through the bank angle. One can
however wonder about how big their influence on the noise impact is, that is, how critical
it is to integrate them in the calculation process. To do so, we repeat the noise prediction of
flight AD2 (which undergoes more banked turns than flight AD1), the bank angle effect
being either incorporated or neglected in the calculation. Figure 23 compares the SEL
maps obtained with (left) and without (center) the bank angle effect, along with their
difference (right).
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As can be seen, when the aircraft is engaged into a banked turn, most of the observers
that are located on the same (resp. opposite) side of the turn are exposed to lower (resp.
higher) noise levels (see what happens on the right side of Figure 23, for instance). This
trend, however, is inverted for the small fraction of observers that are located very close to
the ground track. All this can be easily explained upon the respective way each observer
perceives the relative depression angle, which is either increased or decreased because of
the bank (see Figure 2, wing-mounted engines polar). From another hand, this effect of the
bank angle appears to be rather modest, with noise differences of less than 0.3 dB overall.
This number appears to be even lower for flight AD1, whose straighter flightpath naturally
leads to a less important effect of the bank angle (cf. Appendix C).

A similar analysis was conducted for B777-3ER aircraft flying along different departure
routes, leading to the same trends (see Appendix C).

On one hand, the above results confirm that the noise impact by an aircraft does not
vary much during a banked turn, which explains why this aspect is often neglected in the
prediction [62]. On the other hand, however, these results illustrate how one can further
refine the accuracy of the noise prediction by incorporating still more additional effects,
even though they are of secondary importance.

4.3.2. Extending the Flightpath Cut-off Limit

In the previous sections, all noise predictions relied on the classical approach of
incorporating only those flightpath segments that would fall under an (arbitrary) reference
altitude of 10,000 ft. As discussed previously (see Section 2.3), this is likely to induce a bias
in the noise prediction because some of the contributing flight segments would then be
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ignored. In Section 4.2.1, for instance, flight AD1 (standard route, higher ROC) reaches
the limit altitude much earlier than flight AD2 (deviated route, lower ROC), which may
translate into a predicted noise impact that becomes less than the actual one. To illustrate
this point, the noise prediction of flight AD1 is here refined, being now conducted using
the automatic flightpath extension proposed in Section 2.3.3 (i.e., all contributing flight
segments are incorporated in the prediction). As revealed by Figure 24, the noise impact by
such an extended flight (labeled hereafter AD1-ext) goes on increasing beyond its former
(10,000 ft limited) value until it reaches a plateau (around an altitude that is almost twice,
i.e., 18,670 ft). This leads to a ground SEL that is higher, with differences of up to 30 dB at
some locations (see right side of Figure 24).
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plotted as an averaged (over all observers) and cumulative (over all flight segments) measure. Right: Differences between
the ground noise levels recorded for AD1-ext and AD1 flights.

The above result illustrates well how aircraft noise predictions can be biased by the
arbitrary limitation of the route beyond a given reference altitude. In turn, it shows how to
avoid such a bias by using a dynamic flightpath extension, such as the one proposed here.

4.3.3. Approximating the Flightpath and/or Power Settings

As said, aircraft operations around HKIA rarely comply with standardized flightpaths,
being rather characterized by scattered flight profiles (cf. Figure 25). In the absence of any
FDR (Flight Data Recorder) inputs, modeling these flights requires using radar information
and inferring power settings, for instance using the model proposed in Section 2.3.1. Radar
data, however, are of limited accuracy [67,68], and it is not rare that they noticeably differ
from the actual (FDR) ones. These discrepancies may question the validity of either the
thrust estimation (which requires knowing accurately both the acceleration and attitude
of the aircraft, cf. Section 2.3.1) or of the noise prediction (which relies on the correct
knowledge of the aircraft-to-ground distance, i.e., flight trajectory). Assessing this point is
the matter of the present section.

We here consider two pairs of specific flights, each relating to an identical aircraft
and mission (B777-3ER or A330-343 aircraft flying from Hong Kong to Taipei) whereas
presenting rather different characteristics in terms of flight profile (cf. Figure 25) and/or
engine power evolution (cf. top right of Figures 26–29). Here, we solely consider departure
scenarios since those are primarily concerned with pure propulsive noise, for which a
correct estimation of the thrust is vital. We first assess the validity of the thrust estimation
alone, this being performed by applying Equations (2)–(4) to accurate trajectory inputs
coming from FDR data. The latter are then replaced with their (less accurate) radar data
counterparts, which are extracted from FlightRadar24 website (business version). The
objective is to assess how far the radar data inaccuracies may impact the thrust estimation,
and ultimately, the noise prediction. Of note, since the present radar data solely provide
the aircraft ground speed, we infer its airspeed counterpart by adding to it a headwind
component (whose value is arbitrarily taken as 8 kt [49], for a lack of better information
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on wind profiles). Besides, here, the atmosphere characteristics are based on the average
values recorded in Hong Kong for 2020.
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using FDR data and actual thrust (left). Error entailed by an approximation of the thrust (center: smooth calculated thrust)
plus the trajectory estimation (right: radar data, calculated thrust).
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Figure 28. A330 aircraft departing from HKIA (flight AD7). Top: Comparison between the flight profile (left), airspeed
(center), calculated and actual thrust (right) inferred from the FDR and radar data. Bottom: Noise contour map, as obtained
using FDR data and actual thrust (left). Error entailed by an approximation of the thrust (center: smooth calculated thrust)
plus the trajectory estimation (right: radar data, calculated thrust).
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using FDR data and actual thrust (left). Error entailed by an approximation of the thrust (center: smooth calculated thrust)
plus the trajectory estimation (right: radar data, calculated thrust).

For both pairs of flights (hereafter labeled as BD2, BD3 and AD7, AD8), the thrust
evolution is first estimated using the actual (FDR) data, its averaged value (labeled as
“smoothed thrust”) being then compared with its actual counterpart (labeled as “actual
thrust”). As can be seen on the top right of Figures 26–29, the agreement is fairly good,
whatever the scenario is. In particular, for both B777 flights (BD2, BD3), the estimation is
very satisfactory, with an estimated thrust that matches the actual one almost perfectly
(compare black and red curves on the top right of Figures 26 and 27, respectively). This
good match slightly degrades for both A330 flights (AD7, AD8), whose actual and predicted
thrust differ in some places (compare again the black and red curves on the top right of
Figures 28 and 29, respectively). These discrepancies come from the much less monotonic
character of the flight (and, thus, power) settings, whose important variations make the
thrust estimation more challenging. Despite such a fussy timeline of the power settings
(which turned out to be the more complicated ones, among all the considered cases), the
thrust estimation is still very favorable, delivering trends that are quite close to the actual
result. This fair character of the thrust estimation naturally translates into a fair prediction
of the aircraft noise impact, as shown on the bottom of Figures 26–29: whereas the left
image plots the actual SEL map (predicted using the actual thrust), its center counterpart
depicts the error incurred by the thrust estimation (obtained by subtracting the former SEL
map from the one predicted using the estimated thrust). Whatever the considered flight
is, this error on the SEL prediction (∆SEL) is mostly in the range of ± 1dB: whereas it can
reach up to ±2.5 dB at the beginning (start-of-roll) and/or the end of the flight sequence
(standard limit altitude of 10,000 ft), the ∆SEL never exceeds ± 1dB in the rest of the flight
sequence. Such discrepancies, which primarily reflect the accuracy limitations of FDR data
(e.g., lack of discretization, absence of information on flap settings, etc.), are deemed to be
acceptable for such low-order modeling of the thrust.

Independent of the thrust model itself, the uncertainties that weigh on the flight
settings (trajectory, airspeed) provided by the radar data may however entail additional
errors. To illustrate this point, we here re-assess the thrust estimation, its FDR-originated
inputs being now replaced with their radar data counterpart. The latter may indeed
importantly differ from the former, whether this concerns the flight profile (cf. top/left
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images of Figures 26–29) or the airspeed (cf. top/center images of Figures 26–29). Notably,
only the actual ground track appeared to be accurately reproduced by the radar data,
across all cases. For each flight, the cumulative effect of all these discrepancies onto
the aircraft noise is again quantified in terms of ∆SEL maps (see bottom right image
of Figures 26–29). The latter are obtained by subtracting the actual ground noise levels
(predicted using the FDR inputs, among which is the actual thrust) from their approximated
counterpart (predicted using the radar-originated inputs and subsequently estimated
thrust). Overall, the fidelity of the noise prediction appears to be driven by the radar data
accuracy. Considering for instance the BD2 flight, one can see that the radar-originated
flight profile, airspeed and thrust do not devoid much from their actual counterparts
(the early take-off excepted). The resulting bias on the noise prediction is fairly low
(cf. bottom right of Figure 26), with deviations of less than 0.5 dB for most of the flight
sequences (except at the take-off start, where radar uncertainties entail noise discrepancies
of about 15 dB). For BD3 flight, the radar-estimated altitude is higher than its actual value
throughout the entire flight sequence (so much that the 10,000 ft limit altitude is reached
earlier), which results in slightly higher error levels on the noise prediction (∆SEL ~ 1 dB,
overall). Notably, the radar-based estimated thrust still agrees well with both its actual
and its FDR-estimated counterparts (compare the blue, red and black curves on the top
right of Figure 27). Only at the start and at the end of the flight sequence, this agreement
on both the thrust estimation and the noise impact appears to be less satisfactory. This
may tend to indicate that, here, the radar data inaccuracies primarily weigh on the thrust
prediction, more than on the propagation aspects (e.g., the aircraft-to-ground distance).
Notably, because their respective discretization levels differ, FDR and radar data exhibit
slightly different start-of-roll point, lift-off point and endpoint. Similar trends are observed
for the AD7 flight, whose radar-originated airspeed appears to be less accurate than its
flight profile counterpart (cf. left and center images on top of Figure 28, respectively).
Combined with the fuzzy evolution of the power settings, these radar data inaccuracies
challenges still more the thrust estimation (compare the blue, red and black curves on the
top right of Figure 28). Besides, such a variability of the radar data airspeed is very likely to
incur a different exposure duration to the noise associated with each flight segment, thereby
further affecting the entire prediction, ultimately. Despite all these discrepancies, however,
the noise impact is predicted rather accurately, with error levels that fall in the range of
[−2; 0] dB (except again near the start-of-roll point, where differences reach 40 dB). Finally,
AD8 flight reveals how radar data may resemble their actual counterparts (cf. left and
center images on top of Figure 29) whereas entailing still more bias on the thrust estimation
(compare the blue, red and black curves on the top right of Figure 29). At this stage,
however, it is believed that the lesser discretization of the radar data (compared to their
FDR counterpart) might explain such discrepancies on the thrust, whose estimation might
then be still more challenged by the fuzzy timeline of the power settings. Whatever the
reason for such biases on the thrust estimation, the overall impact on the noise prediction
is still acceptable, with ∆SEL that never goes under −3 dB (cf. bottom right of Figure 29).

All in all, the above results illustrate the ability of the noise prediction method (and
its underlying thrust model) to solely rely on radar data, thereby allowing to handle
flightpaths that differ from standard ones whenever FDR information is unavailable.

5. Conclusions and Perspectives

The present study focuses on the noise impact by aircraft operations around major
airports. To this end, an aircraft noise prediction platform was developed, which relies on
state-of-the-art functionalities as well as more specific, innovative features. More precisely,
the method classically relies on the Aircraft Noise and Performance (ANP) database and
its Noise–Power–Distance (NPD) table. The latter, however, are known to suffer from
restrictive assumptions which limit their application to simplified situations. For instance,
the ANP database is built upon standardized scenarios of aircraft operations (aircraft types,
flightpaths, power settings, atmospheric conditions, etc.). Besides, its NPD component
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relies on the simplistic scenario of a punctual noise source radiating within a homogeneous
free field. Last but not least, the ground observer is assumed to be located right underneath
the aircraft, with the latter flying with a constant speed and power settings along an infinite
horizontal flightpath. To alleviate all these limitations, the present method incorporates
several functionalities, some of which are specific to the present study. These features aim
at (i) refining the noise emission stage (e.g., source intensity and directivity) as well as (ii)
improving the propagation phase. Regarding for instance the refinement of the aircraft
noise source, an innovative method is proposed, which allows inferring the engine power
solely from the aircraft flightpath characteristics (whose access is much easier than that of
Flight Data Recorder). Besides this, a functionality is introduced which allows extending
automatically and dynamically the flightpath, thereby avoiding an arbitrary truncation of
the aircraft noise emission as well as ensuring an accurate representation of its subsequent
propagation. The latter propagation is also refined through the proper incorporation of the
noise attenuation effects induced by any realistic, non-standard atmosphere. Other specific
features are incorporated into the method, which aim at improving its efficiency (accuracy
and execution speed). For instance, a recursive, dynamic grid refinement technique offers
to optimize the number and distribution of ground observers, thereby maximizing the
results accuracy whereas minimizing the prediction time.

The noise prediction method and subsequent computational platform are successfully
validated using several benchmark cases of increasing representativeness. They are then
applied to several realistic scenarios coming from actual aircraft operations around Hong
Kong International Airport (HKIA). Specific comparative analyses are conducted, which
allow highlighting the variability of the noise impact by aircraft, depending on their type
(A330, B777) and/or operational conditions (power settings, meteorological conditions,
routes, banks, etc.). From a phenomenological viewpoint, results allow discriminating
the more prominent drivers, namely, the aircraft flightpath characteristics, the engine
power settings, etc. It is also shown how important the meteorological conditions can be,
because of the specific atmospheric attenuation effects they entail. Oppositely, the engine
installation effects (assessed through the aircraft bank effects) appear to be of secondary
importance. From a methodological perspective, the results showcase the capacity of the
present approach to handling real-life situations, including when the latter greatly differ
from the standardized scenarios underlying the ANP database. They also illustrate how
noise prediction methods/platforms such as the present one may help in guiding the
further expansion of airport operations and/or infrastructures (as is currently the case
with HKIA).

With this end in view, it is planned to further improve the present approach, whether
it is by refining still more its noise emission stage (e.g., assessing better the aircraft power
settings using the Base of Aircraft Data database, BADA [69–71]), or by strengthening
further its propagation phase (e.g., incorporating variable atmospheric conditions such as
wind effects [72–74]). Last but not least, it is envisioned to extend the tool’s capacities from
an aircraft to a fleet level [75] so as to allow better optimizing air traffic operations.
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Data Availability Statement: The data presented in Section 3 are openly available online: https://www.
ecac-ceac.org/images/documents/ECAC-Doc_29_4th_edition_Dec_2016_Volume_3_Part_1.pdf. Be-
sides, publicly available datasets used in Sections 3 and 4 can be found here: https://www.easa.europa.
eu/document-library/type-certificates and https://www.flightradar24.com/. Some of these data are
made available to the reader, as Supplementary Material (namely the radar data of flights BD2, BD3,
AD7 and AD8 in Section 4). The FDR data used in Section 4 cannot be made publicly available, due to
their proprietary nature (Cathay Pacific airline).
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Appendix A. Integrated Thrust Equation for the Aircraft at Roll and Aloft

Appendix A.1. Integrated Thrust Equation

We here derive an integrated expression of the engine(s) thrust required for the aircraft
to remain in dynamic equilibrium, either aloft (in-flight segments) or on the ground (ground-
roll segments). To do so, we consider a virtual situation in which the aircraft is exerted
all typical forces (including the ground reaction, which shall vanish automatically in the
air). Assuming that the aircraft undergoes a straight accelerated motion, we derive the
longitudinal equations of motion (EOM). Once projected along the so-called stability axes
(i.e., parallel and perpendicular to the airflow direction, see Figure A1), these EOM are
respectively given by:
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aircraft, whose (average) acceleration is 𝑎. On the other hand, 𝛼, 𝛾 and 𝜙 stand for the 
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Figure A1. Forces exerted on the aircraft, as depicted in its longitudinal (left) or lateral (right) planes.
Angles associated with the projection in the Earth (x, y, z) and aircraft stability (x’, y’, z’) reference
frames: Angle-of-attack (α), flightpath (γ) and bank (φ) angles, along with the elevation (β) and
depression (ϕ) angles.

ma = Tcosα− D + (R−W)sinγ− FRcosγ (A1)

0 = Tsinα + Lcosφ + FRsinγ + (R−W)cosγ (A2)

In the above equations, m and W, respectively, stand for the mass and weight of the
aircraft, whose (average) acceleration is a. On the other hand, α, γ and φ stand for the
aircraft’s angle of attack, flightpath and bank angles, respectively. Of note, the bank angle
refers to the angle between the Earth reference frame’s horizontal axis (y) and that of the
aircraft’s stability reference frame (y’), whose angle with the aircraft-to-observer noise
propagation path corresponds to the depression angle (ϕ). Aside from that, T, L and D
are the propulsive (thrust) and aerodynamic (lift and drag) forces. R and FR are the two
components of the runway reaction, namely the vertical reaction and the roll resistance,
which are related through the friction coefficient characterizing the runway, µF

FR = µF·R (A3)

https://www.ecac-ceac.org/images/documents/ECAC-Doc_29_4th_edition_Dec_2016_Volume_3_Part_1.pdf
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https://www.flightradar24.com/
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As a reminder, a typical value for this friction factor is 0.02 (resp. 0.4) for a dry concrete
runway without (resp. with) brakes applied.

By combining Equations (A3) and (A2), one can express the ground vertical reaction as

R =
Wcosγ− Lcosφ− Tsinα

cosγ + µFsinγ
(A4)

When introducing the lift and drag coefficient (CL, CD), one can then express the drag
in terms of the lift alone

D = L·CD
CL

(A5)

One can legitimately assume that the aircraft’s angle of attack is small (that is cosα ∼ 1
and sinα ∼ 0), which further simplifies the above relationships. After a few developments,
the thrust can be expressed as

T = m
[

a + g
(

µF
cosγ + µFsinγ

)]
+ L

[
CD
CL

+ cosφ·
(

sinγ− µFcosγ

cosγ + µFsinγ

)]
(A6)

Appendix A.2. Particular Case of in-Flight Segments

When the aircraft is aloft, the ground reaction is nil (µF = 0), and Equation (A6)
becomes

T = m[a] + L
[

CD
CL

+ cosφ·
(

sinγ

cosγ

)]
(A7)

Considering that the lift equals the weight corrected from the simultaneous projection
of flightpath and bank angles

L = W
cosγ

cos φ
(A8)

Equation (A6) then becomes

T = m
[

a + g
(

CD
CL
· cosγ

cos φ
+ sinγ

)]
(A9)

Of note, all parameters appearing in the above equation are readily available from the
flight data and/or ANP database.

Appendix A.3. Particular Case of Ground-Roll Segments

On the other hand, when the aircraft is on the ground roll (γ = φ = 0), Equation (A6)
becomes

T = m(a + gµF) + L
(

CD
CL
− µF

)
(A10)

Expressing the lift force in these conditions is less straightforward, and requires
developing an alternative lift model [57]. To do so, we start from the definition of lift

L =

(
1
2

ρSCL

)
V2

TAS (A11)

where ρ is the air density, VTAS indicates the true airspeed of the aircraft, S is the wing area
and CL is the lift coefficient. Assuming that the wing can be considered as a thin airfoil, the
lift coefficient can be classically related to the angle of attack, α (which is supposed to be
small enough).

CL = CL,0 + CL,αα (A12)

where CL,0 stands for the zero-lift coefficient and CL,α is the lift coefficient slope. Assuming
that the aerodynamic settings (α, S) and the atmospheric conditions (ρ) do not vary during
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the ground roll (i.e., C = 1
2 ρSCL = const), Equation (A11) turns into a parabolic equation

of the aircraft speed (alone)
L = C·V2

TAS (A13)

At the lift-off point, the ground reaction vanishes and the lift strictly equals the aircraft
weight, W

W = L = C·V2
LOF (A14)

where VLOF is the lift-off speed of the aircraft. By neglecting any variation of the aircraft
weight during the ground roll, one can thus re-express the lift force as

L = W·
(

VTAS
VLOF

)2
(A15)

All in all, Equation (A6) then becomes

T = m

{
a + g

[
CD
CL
·
(

VTAS
VLOF

)2
+ µF

(
1−

(
VTAS
VLOF

)2
)]}

(A16)

Here too, all parameters appearing in the above equation are readily available from
the flight data and/or ANP database.

Appendix B. Further Illustration of the Noise Prediction Process and of Its Validation
against Reference Cases

This section further illustrates the validation cases provided in Section 3.1, one of
which is selected and documented more thoroughly.

Figure A2 depicts the routes (departure and approach, either straight or curved) as
well as the set of observers (namely R1–R17) used for all cases [62]. For more details about
the other parameters (flightpath, meteorological conditions, power settings, airspeed, etc.),
the reader is referred to Ref. [62]. Among the various cases listed, we here specifically
focus on the JETWDS configuration (i.e., a wing-mounted jet engines aircraft flying along
a straight departure route), whose relevant observers as those labeled R1–R5. Figure A3
depicts the time trace of various key quantities, as recorded for each observer along the
flight evolution, which is broken down in terms of flight segments, either ground-roll
(1–9) or airborne (10–29). These key quantities constitute the main ingredients of the noise
prediction process, namely the baseline noise level perceived by each observer (Figure A3a)
and its further adjustment through the cumulative corrections introduced in Section 2.2
(Figure A3b–g). The final result is provided in Figure A3h, which also quantifies the error
made with the reference solution [62]. This breakdown of the noise prediction process is
summarized hereafter, for illustration and validation purposes.
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• Baseline noise level (cf. Figure A3a): Originated from the NPD database, this quantity
represents the noise that would be perceived by each selected observer if the aircraft
was flying according to a standard scenario (cf. Section 2.2). It was checked that the
associate prediction results agree well with the reference values [62], the maximum
errors being less than 10−5%. Since the JETWDS case corresponds to a non-standard
flight, these baseline noise levels must be refined through successive correction terms
(see below).

• Start-of-roll directivity adjustment (cf. Figure A3b): This correction accounts for the
highly directive pattern of the jet noise at take-off, which impacts more especially
those observers that are located upstream the ground roll segments (cf. Section 2.2).
Logically, the effect is nil for these observers that are located downstream (i.e., R1 and
R5). Here too, the predicted results match well the reference values, with a maximum
error of less than 10−5%.

• Engine installation correction (cf. Figure A3c): This correction accounts for the lateral
directivity patterns induced by the engine installation effects, which depend on the
relative depression angle seen by each observer (cf. Section 2.3.2). Logically, the
effect is nil for those observers that are located right underneath the airborne segment
(e.g., R1). Again, the predicted values compare favorably against their reference
counterparts, with an error of less than 10−9%.

• Finite segment correction (cf. Figure A3d): This correction accounts for both (i) the finite
nature of each concerned flight segment and (ii) its relative position with respect to the
observers. The effect is more important for those observers that are located away from
the flight segment, whose perceived noise is then corrected from the loss incurred
by the respective propagation distance. Here too, the calculation results are in good
agreement with the reference ones, leading to a maximum error of less than 1%.

• Duration correction (cf. Figure A3e): This correction translates the variation in the noise
exposure duration, which logically varies with the fly-over time and, thus, the aircraft
speed. In the present case where the aircraft continuously accelerates (from 0kt at the
start-of-roll point) and eventually exceeds the standard value of 160kt (for which the
correction is nil), this effect decreases monotonically. Here too, the prediction result is
very close to the reference one, with errors in the range of 10−12%–10−2%.

• Acoustic Impedance adjustment (cf. Figure A3f): This correction translates the impact of
atmospheric effects (cf. Section 2.3.4), which are solely driven by the local meteorolog-
ical conditions, thereby affecting all observers equally. Here, no error is recorded.

• Lateral attenuation (cf. Figure A3g): This correction accounts for the lateral attenuation
induced by the ground presence (cf. Section 2.2). Logically, this effect does not impact
those observers that are located right beneath the flightpath (here, R1 and R3 for
airborne segments 10-29). The other observers are impacted differently, depending on
their respective (lateral) distance to the aircraft, as well as on the nature of the flight
segment considered (airborne or ground roll [49], e.g., R2-R4 for segments 9 and 10,
respectively). Again, the predicted values match the reference ones, with maximum
errors of less than 10−1%.

• Single event noise level (cf. Figure A3h): This quantity represents the cumulative noise
level perceived by each observer, once the contributions coming from all segments are
summed up into a single noise event. As can be seen, the prediction is very close to
the reference, with errors in the order of zero (except for the R1 observer, for which an
error of about 0.011% is recorded).
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Appendix C. Further Illustration of the Noise Impact Dependency towards Real-Life
Operations

This section first focuses on the noise impact incurred by a B777-3ER (resp. an A330-
343) aircraft departing from (resp. approaching) HKIA, thereby mirroring the discussion of
Section 4.2.1. In a second time, the effect of banked turn is assessed on these various flights.

Appendix C.1. Noise Impact Incurred by B777-3ER Aircraft Flying along Two Departure Routes

Regarding the departure scenario, we select two specific B777-3ER flights with very
distinct characteristics, and we assess their respective noise impact on three densely pop-
ulated districts (namely D1, D5, and D7) that they both fly over. Whereas the first flight
(labeled BD4) flies over districts D1 and D7 along a standard route with a high rate of climb
(ROC), the second one (BD5) passes over district D1 at a lower altitude (see Figure A4).
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Figure A4. B777 aircraft departing from HKIA. Flights BD4 and BD5 respective routes (left: ground track, center: flight
profile) and corresponding ground observers (dynamic grid, right).

Figure A5 depicts the SEL contours generated by flights BD4 (left) and BD5 (cen-
ter) along with their difference, which is obtained by subtracting the former from the
latter (right).
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Compared to flight BD4 (standard route, higher ROC), flight BD5 (deviated route,
lower ROC) impacts less some of the populated areas, with noise levels that are lower by
around 4 dB in D1 and D5 districts, and by about 7.5 dB in the western part of D7 district.
The opposite trend is observed to occur in the eastern part of D7 district, where flight BD5′s
impact exceeds that of BD4 by up to 13 dB in SEL (see Figure A6).

As was observed in Section 4.2.1 for Airbus-related flights, the lower altitude of a
given flight (here BD5) does not automatically entail a higher noise impact on the ground.
For instance, even though flight BD5 passes over D1 district at a lower altitude than its BD4
counterpart, it results in a smaller noise footprint over this area. Here too, this is likely to
be explained by the difference in the power settings (i.e., engine thrust) characterizing both
aircraft along their respective routes. For instance, Figure A7 compares the time history
of the thrust delivered by the two aircraft, with a focus put on that specific flight phase
where they both pass nearby D1 and D6 districts (highlighted with vertical dash-dotted
lines). At that time, flight BD5 exhibits a propulsive power that is almost one-third of its
BD4 counterpart. This is likely to incur a comparatively much lower noise emission for
BD5 flight, whose lower noise attenuation (short propagation distance) is then favorably
balanced. In addition, here again, the smaller ROC exhibited by flight BD5 is likely to
diminish its noise footprint, compared to its BD4 counterpart whose higher flightpath
angle somehow exacerbates its noise impact (jet noise directivity). All in all, these two
features of flight BD5 (lower power setting, smaller ROC) suffice to offset the detrimental
effect entailed by its lower altitude (reduced noise attenuation), when flying over D1 and
D6 districts.
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ure A10), while the opposite occurs in the southeastern part (with an excess noise by flight 
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Figure A7. Power settings (engine thrust) evolution of flights BD4 and BD5.

As for what could be observed with the A330 aircraft (cf. Section 4.2.1), the above
analysis further illustrates how HKIA departure procedures may impact very differently
those highly densely populated areas of Hong Kong.

Appendix C.2. Noise Impact Incurred by A330-343 Aircraft Flying along Two Approach Routes

Mirroring Section 4.2.1, we here compare the noise impact induced by two A330-343
aircraft approaching HKIA, with a special focus on those densely populated areas (namely
D2, D3, and D4) that are located beneath the flight corridors. The two flights are selected
for their rather different flightpaths, so as to highlight how the latter may alter the noise
footprint on the ground. More precisely, the first aircraft (flight AA2) approaches the 25L
runway via a higher altitude route, while the second one (flight AA3) flies towards the
25R runway at a lower altitude. These differences hold to a certain point, after which
both aircraft adopt a similar flightpath, following the Continuous Descent Approach
protocol enforced in Hong Kong. Figure A8 depicts the ground track and flight profile of
both flights.

Aerospace 2021, 8, x FOR PEER REVIEW 35 of 40 
 

 

 
Figure A7. Power settings (engine thrust) evolution of flights BD4 and BD5. 

As for what could be observed with the A330 aircraft (cf. Section 4.2.1), the above 
analysis further illustrates how HKIA departure procedures may impact very differently 
those highly densely populated areas of Hong Kong. 

Appendix C.2. Noise Impact Incurred by A330-343 Aircraft Flying along Two Approach Routes 
Mirroring Section 4.2.1, we here compare the noise impact induced by two A330-

343 aircraft approaching HKIA, with a special focus on those densely populated areas 
(namely D2, D3, and D4) that are located beneath the flight corridors. The two flights 
are selected for their rather different flightpaths, so as to highlight how the latter may alter 
the noise footprint on the ground. More precisely, the first aircraft (flight AA2) approaches 
the 25L runway via a higher altitude route, while the second one (flight AA3) flies towards 
the 25R runway at a lower altitude. These differences hold to a certain point, after which 
both aircraft adopt a similar flightpath, following the Continuous Descent Approach pro-
tocol enforced in Hong Kong. Figure A8 depicts the ground track and flight profile of both 
flights. 

    
Figure A8. A330 aircraft approaching HKIA. Flights AA2 and AA3 respective routes (left: ground track, center: flight 
profile) and corresponding ground observers (dynamic grid, right). 

Figure A9 depicts the SEL contours incurred by both flight AA2 (left) and flight AA3 
(center), along with their difference (right). The densely populated D3 district which is 
sandwiched between 25L and 25R routes sees its northwestern part impacted more im-
portantly by flight AA3 (with noise levels exceeding AA2 ones by about 10.6 dB, see Fig-
ure A10), while the opposite occurs in the southeastern part (with an excess noise by flight 
AA2 of up to 7.8 dB). Given the distribution of residents in the D3 district (whose central 
and southern areas are more populated, see Figure 8), flight AA2 (lower altitude) appears 
to be less environmentally friendly than its AA3 counterpart (higher altitude). This obser-
vation also holds for the four times denser D2 district, which is flown over directly by 
flight AA2 whose noise impact exceeds the AA3 one by about 9.1 dB. Finally, both flights 

 

Figure A8. A330 aircraft approaching HKIA. Flights AA2 and AA3 respective routes (left: ground track, center: flight
profile) and corresponding ground observers (dynamic grid, right).

Figure A9 depicts the SEL contours incurred by both flight AA2 (left) and flight AA3
(center), along with their difference (right). The densely populated D3 district which
is sandwiched between 25L and 25R routes sees its northwestern part impacted more
importantly by flight AA3 (with noise levels exceeding AA2 ones by about 10.6 dB, see
Figure A10), while the opposite occurs in the southeastern part (with an excess noise by
flight AA2 of up to 7.8 dB). Given the distribution of residents in the D3 district (whose
central and southern areas are more populated, see Figure 8), flight AA2 (lower altitude)
appears to be less environmentally friendly than its AA3 counterpart (higher altitude). This
observation also holds for the four times denser D2 district, which is flown over directly
by flight AA2 whose noise impact exceeds the AA3 one by about 9.1 dB. Finally, both
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flights impact equally the D4 district, each incurring a noise excess of 1–2 dB underneath
its respective route. To sum up, flight AA2 appears to be less environmentally friendly for
these densely populated districts, thereby revealing that the 25R approach route should be
given priority whenever the conditions permit (operational, meteorological, etc.). Notably,
all these observations are fully consistent with the ones recorded for Boeing aircraft (cf.
Section 4.2.1).
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Appendix C.3. Specific Effect of the Bank Angle on the Various Routes and Aircraft

This section further illustrates the sensitivity of the noise prediction towards the bank
angle (i.e., engines installation) effect, thereby extending the investigation conducted in
Section 4.3.1. Here, we perform the noise prediction for alternatives flights, with the bank
angle being either incorporated or neglected in the SEL evaluation.

Focusing first on departure scenarios, we consider the flights AD1 (cf. Section 4.2.1),
BD4, and BD5 (cf. Appendix C.1) departing from HKIA. Similar to what happened for flight
AD2 (cf. Section 4.3.1), when the aircraft performs a banked turn, most of the observers
located on the same (resp. opposite) side of the turn experience less (resp. more) noise
impacts (see Figure A11). The opposite nevertheless holds for those observers that are
located very close to the ground track. All the previous observations derive logically from
the relative depression angle perceived by each observer (see Section 2.3.2). This being
said, the bank effect on the SEL levels appears to be fairly subtle, with differences of less
than 0.4 dB overall (see Figure A11).
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Focusing then on approach scenarios, we repeat the noise prediction associated with
flights AA3 (cf. Appendix C.2), BA1 and BA2 (cf. Section 4.2.1). Here too, the impact of the
bank angle is rather modest, with no more than 0.5dB differences overall (see Figure A12).
These differences are again positive or negative, depending on how each observer perceives
the relative depression angle.
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All the above observations, which are fully consistent with those obtained in Section 4.3.1,
further confirm that the noise impact is not that sensitive to the bank effect of turning
flight segments. Even though of secondary importance, this effect however helps the noise
prediction to better reflect real-life aircraft operations.
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