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Abstract: Nonlinear flight controllers for fixed-wing unmanned aerial vehicles (UAVs) can poten-
tially be developed using deep reinforcement learning. However, there is often a reality gap between
the simulation models used to train these controllers and the real world. This study experimentally
investigated the application of deep reinforcement learning to the pitch control of a UAV in wind
tunnel tests, with a particular focus of investigating the effect of time delays on flight controller
performance. Multiple neural networks were trained in simulation with different assumed time
delays and then wind tunnel tested. The neural networks trained with shorter delays tended to be
susceptible to delay in the real tests and produce fluctuating behaviour. The neural networks trained
with longer delays behaved more conservatively and did not produce oscillations but suffered steady
state errors under some conditions due to unmodeled frictional effects. These results highlight the
importance of performing physical experiments to validate controller performance and how the
training approach used with reinforcement learning needs to be robust to reality gaps between
simulation and the real world.

Keywords: attitude control; deep reinforcement learning; fixed-wing aircraft; unmanned aerial
vehicle; wind tunnel test

1. Introduction

Machine learning has become a prevalent approach to train controllers for a variety of
applications in fields such as robotics, game playing and aviation. Neural networks can be
trained to act as nonlinear controllers that can cope with highly nonlinear plant dynamics
and accomplish complex tasks. Supervised learning is a common method of training,
where neural networks learn from training data generated using baseline controllers. In
the aviation domain, supervised learning has been proposed as an alternate decision-
making method [1], with the lookup table for a collision avoidance system being replaced
with a neural network, to increase the efficiency of the system. Supervised learning
has also been applied to flight control systems [2]. For example, the linear gains of an
existing control system were replaced with neural networks [3] and the benefits to control
performance were validated through simulation. In addition, nonlinear transformations for
feedback linearisation have been represented by neural networks with [4] and without [5]
recurrent architectures. These examples demonstrate the function approximation abilities
of neural networks.

Supervised learning is suited for creating neural networks that can be used as an
alternative to an existing flight controller. As part of this process a good baseline controller
is required. When an appropriate baseline controller does not exist, or the goal is to improve
performance beyond that of an existing controller, supervised learning is not a suitable
option. In contrast, deep reinforcement learning is a viable approach to perform training
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without baseline controllers. Agents with neural-network-based controllers interact with
environments and learn to maximise a reward function. The reward function is designed
to drive the neural networks to solve a task, e.g., to develop an optimum control law. This
process does not require a baseline control system. Through iterative interactions with
environments, the controller updates and adapts itself to the task, and learns to be accurate
and robust.

The powerful task solving capabilities of deep reinforcement learning were first
demonstrated in the game playing area [6,7], and its application has been extended to the
field of aviation in recent years. Deep deterministic policy gradient (DDPG) [8] has been
applied to trajectory planning, where the neural networks learnt to reach the goal while
avoiding specific areas [9]. This simulation study demonstrated successful trajectories and
improved efficiency in planner design. DDPG has also been utilised to train controllers
for aircraft landing [10]. With the robustness of the controller to wind disturbance being
demonstrated through simulation. Unmanned aerial vehicle (UAV) flocking has also
been a target for the application of deep reinforcement learning. Using simulation, a
flocking controller was trained to control a follower’s roll angle and velocity to keep a
certain distance from a leader to avoid collisions [11]. In terms of deep reinforcement
learning applied to control the attitude of aircraft, DDPG, trust region policy optimisation
(TRPO [12]) and proximal policy optimisation (PPO [13]) algorithms have been used for
quadrotors [14]. In these studies control performance was simulated and PPO showed
superior accuracy and agility over PID control systems. For fixed-wing UAVs, aerobatic
manoeuvres have been controlled based on normalised advantage functions (NAF [15]) [16],
and manoeuvres for roll, pitch and airspeed controlled based on PPO [17].

These projects have highlighted the success of the application of deep reinforcement
learning to UAV control in a simulation environment; however, using reinforcement
learning based controllers in a real environment is known to often be challenging due to
gaps between simulation and reality. Recent efforts on closing this gap include experimental
work applying a general-purpose flight controller for multirotor UAVs, where translational
and rotational accelerations commands are computed and then mapped into rotor speeds,
producing a control strategy applicable to various UAV configurations [18]. However, the
theoretical performance of trained controllers is often not achieved if the actual aircraft
exhibits different dynamics or is subject to external perturbations that are not considered
during training. Wind tunnel testing has previously shown the reality gap effect for a
UAV’s pitch control using the asynchronous advantage actor-critic (A3C [19]) approach
with discrete action spaces [20]. Time delay, which was not included in the training,
induced fluctuating pitch behaviour. In contrast to the majority of the previous studies that
have only been tested in simulation, this work emphasised the importance of experimental
investigation to gauge real world performance.

There have been different possible approaches proposed to reduce the effect of the
reality gap between simulation and the real world. In robotics, approaches such as domain
randomisation have been used [21]. Training neural networks with some randomised
model uncertainties has been shown to help produce controllers which are robust to mod-
elling errors. In such a study, the neural network controllers had a long short term memory
(LSTM) layer, which functioned as a time-dependent block and captured the mismatch
between simulation and the real world. For UAV flight control, in addition to domain ran-
domisations, an error integral term has been included in the state input, which functioned
as the integral term of a PID controller [22] and reduced steady-state drift errors. In this
case, the history information was encoded in the integral block. These studies indicate the
importance of considering the reality gap in relation to deep reinforcement learning.

This study aimed to gain understanding of the typical relationships between the
model error in the training and the consequence of these errors when it comes to real world
application. Such knowledge provides the motivation for improving the design of training
approaches, and contributes to the understanding of how to develop reliable controllers
using reinforcement learning. For this purpose, this study experimentally investigated
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the attitude control of a fixed-wing UAV using flight controllers developed using a deep
reinforcement learning approach. Specifically, the performance of a one-degree-of-freedom
pitch controller was examined using wind tunnel tests. The experimental model was
inherited from the previous study [20]. This study is different in that the neural network
controller has an LSTM layer, which is expected to be an effective measure against time
delay, and is trained with a continuous action space in relation to elevator driven manoeu-
vres, where previously discrete actions were used. Using such a controller, the effect of the
time delay was investigated. By varying the time delay in training, various amplitudes of
the reality gap for multiple neural network controllers were studied. Through experiments
and simulation, the relationship between the training conditions and real world control
performance was investigated.

2. Methods
2.1. Experimental Model

The span-wise half of an off-the-shelf radio control aircraft (WOT4 Foam-E Mk2+,
Ripmax) was used for the one-degree-of-freedom pitch control experiment as depicted in
Figure 1. The model was allowed to pitch freely around the shaft, which was mounted
to the side wall of the wind tunnel. The dimensions of the wind tunnel test section were
2.13 m × 1.52 m. The wind speed range in the experiments was 10 m/s to 20 m/s, with
the wind speed held constant for each test case. The model was equipped with an air
speed sensor (custom-built based on SDP31, Sensirion), a servo motor for the elevator
and an inertial measurement unit (IMU)(Pixhawk 1, 3DR) for measuring the pitch angle
and pitch rate. These sensors and servo were connected to a microcontroller unit. The
microcontroller unit was connected via USB to a computer, which conducted the data
recording and signal processing. The signal processing ran at 20 Hz control rate, which was
also assumed in numerical simulations. The deep reinforcement learning was completed
offline in simulation, and then the trained neural networks were used as an elevator
controller for online closed-loop control. The offline training was performed in a Python
environment using a custom implementation of the A3C algorithm. In the experiments
and numerical simulations, a doublet wave form with an amplitude of 5° were given as a
target angle-of-attack schedule. The controller performance was evaluated based on the
accuracy with which they could follow this schedule.

Two theoretical models were built for the deep reinforcement learning based on results
from an elevator sweep experiment, the first one a linear model and the second a linear
model incorporating a friction model. To estimate the parameters of the theoretical models,
the Output Error Method (OEM) was employed [23]. The OEM was implemented in
MATLAB Version 9.6, Release 2019a (MathWorks, Inc., Natick, Massachusetts), using the
fmincon algorithm to solve the optimisation problem. A comparison of the response of
these models to the experimental data is shown in Figure 2. The angle of attack and pitch
rate responses were recorded while the elevator was actuated within±45°. The wind speed
was 14 m/s. The black lines represent the experimental results, with the blue and red lines
representing the linear and linear with friction models, respectively. The system cut-off
frequency was estimated to be 1.3 Hz. The linear model used to approximate the model
dynamics is given by [23]:

Iyyα̈ =
1
2

ρV2ScCM, (1)

CM = CM0 + CMα α + CMq

c
2V

q + CMδe
δe, (2)

where Iyy is the moment of inertia for pitch, ρ is the air density, V is the air speed, S is
the wing area, c is the chord length, α is the angle of attack, q is the pitch rate and δe is
the elevator angle. Each of the CMx terms represents individual aerodynamic coefficients,
and their corresponding identified values are given in Table 1. Note that the identified
parameters should capture any wind tunnel wall effects, and that these were considered
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negligible as the larger part of both lifting surfaces was outside the boundary layer. The
simulation results showed larger amplitudes in the angle of attack and pitch rate responses
particularly at higher frequencies. In addition, the initiation of the angle of attack variation
in response to the elevator sweep at 0 s was instantaneous in simulation, while it showed a
delay in the experiment. These differences were related to the effect of friction around the
pitching shaft.The linear model incorporating a friction model [24] is given by

Iyyα̈ =
1
2

ρV2ScCM − g4 tanh(g5q), (3)

where only the Coulomb friction effect was considered and the coefficients were estimated
as g4 = 8.53× 10−1 Nm and g5 = 100.0 s/rad. The amplitudes of the responses at higher
frequencies agreed well with the experiment, and the initiation delay was also in agreement.
In this study, the linear model was used for the deep reinforcement learning, which means
that the fidelity of the training model was low. The use of this low-fidelity model caused a
problem commonly known as a reality gap that emerges when the actual environment is
different from the training environment. The high-fidelity friction model was utilised for
theoretical analysis of the effect of the reality gap on the control performance.

The system experienced communication time delay between the time at which the
controller output was generated in the computer and the time of its arrival at the micro-
controller unit connected to the elevator servo. The histogram of the measured delay for
15,000 data points is shown by the red plot in Figure 3. The peak occurred at 15 ms. The
blue plot was simulated data by an approximated log-normal probability density function,
f (x), expressed as

f (x) =
1

(x− t0)σ
√

2π
exp(− (log(x− t0)− µ)2

2σ2 ), for x > t0, (4)

where x is time in milliseconds, t0 is offset, σ is 1.67 and µ is −5.27. Note that to match the
experimental data t0 was set as 15 ms. In addition to this type of communication delay,
mechanical delays due to physical phenomena such as the elastic deformation of the servo
link are expected to have been present. The total effective delay was difficult to measure
directly and would have directly affected the control performance. The effect of the time
delay on the control performance was investigated by changing t0 in simulations.

Table 1. Parameters of wind tunnel model.

Parameter Units Value

Iyy kg m2 1.90 × 10−1

ρ kg/m3 1.23
S m2 3.06 × 10−1

c m 2.54 × 10−1

CM0 – −3.00 × 10−3

CMα – −2.25 × 10−1

CMq – −5.46
CMδe

– −5.35 × 10−2
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Wind tunnel wall
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Figure 1. Schematic of the aircraft model in the wind tunnel.

Figure 2. Elevator command (top) and related angle of attack (middle) and pitch rate (bottom)
responses. The wind speed was 14 m/s [20].
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Figure 3. Histogram of system time delay. The red plots are measured data and the blue plots are
simulated data by the approximate equation [20].

2.2. Training Algorithm

The neural-network-based pitch controllers were trained using A3C, which is a model-
free and actor-critic deep reinforcement learning algorithm [19]. Agents have a policy
function (actor network) and a value function (critic network). In the training, the policy
function is updated in a gradient ascent manner based on the advantage, and the value
function is updated in a supervised manner to estimate the advantage. The advantage is
the indicator of the merit of performing the selected action. The advantage is calculated by
subtracting the action-value from the state-value and helps reducing the variance of the
gradient estimation. In this policy-based approach, the policy is applicable to continuous
action spaces.

The architecture of the actor (policy) and critic (value) networks is shown in Figure 4.
The architecture was empirically designed. The policy and value functions shared the
neurons except for the output layer. The first two hidden layers had 128 neurons each with
a leaky rectified linear unit (leaky ReLU) activation functions with 0.1 negative slopes. An
LSTM layer was used for the third layer. The LSTM layer had recurrent loops that connected
previous information to the present action, which functioned as memory modules, i.e.,
remembering time series of data. This characteristic was expected to be an effective measure
against time delay during the control task. In the output layer, the policy output had two
neurons that corresponded to deterministic and variation variables, i.e., the mean and the
standard deviation of the action probability. The activation functions for the mean and the
standard deviation were softsign and softplus, respectively. The value output was linearly
activated. The training was conducted in the Pytorch environment. The neural network
parameters were initialized by the method described in [25] using a normal distribution.
The initialization gain was 0.1 for the hidden layers and 1.0 for the output layer. The input
consisted of the five neurons that corresponded to the state elements. They were the error
between the target and observed angles of attack, eα = αtarget − α, observed angle of attack
α, pitch rate q, elevator angle δe, and wind speed V. The output action was the elevator
angle rate. The elevator angle rate rather than the absolute elevator angle was used so
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that the output was directly used in a penalty function as described later. The range of the
elevator angle rate was within ±300 °/s. The absolute elevator angle was saturated within
the working range of ±45°.

In the training simulations, episodes were set with 30 s duration and 600 time steps,
assuming a control rate of 20 Hz. The target angle-of-attack schedules and constant wind
speeds were randomly assigned for each episode. The wind speed range was from 8
to 22 m/s. The black lines in Figure 5 show three examples of the target angle-of-attack
schedules with different random seeds. The schedules were generated by utilizing the
Ornstein–Uhlenbeck process [26], which calculated signals that drifted in the same direction
for a longer duration rather than oscillating around the mean. The initial point was
randomly set within ±0.5°, and 15 discrete points with 2.14 s intervals were calculated by
the process with mean µ = 0, volatility σ = 2 and reverting rate towards the mean θ = 0.1.
The calculated points are indicated with the circle plots in Figure 5. The adjacent points
were linearly interpolated. Eventually, the target angle of attacks varied approximately
within ±10°. For reference, the blue line in Figure 5 shows the doublet schedule used to
evaluate the control performance after training. In practice, the random angle-of-attack
schedules for training do not match with the doublet profile, allowing the generalized
performance of the controllers to be explored. For the other state elements, the initial angle
of attack was set as α = αtarget, which meant eα = 0. The initial pitch rate q was randomly
set within the range of ±5 °/s. During training, state observation noise was applied at
every time step. The angle-of-attack and wind speed noise signals were sampled from a
normal distribution both with means equal to zero as well as 0.03° and 0.1 m/s standard
deviations, respectively. The pitch rate noise was sampled from a uniform distribution
with mean equal to zero and standard deviation of ±3 °/s. The elevator angle state was not
measured but calculated from the elevator command values, hence noise was not applied.

The neural networks were trained with the basic A3C algorithm and generalized
advantage estimation (GAE) [27]. The calculation details are described in a previous
study [20]. The hyperparameters that were empirically chosen for this pitch control task
are listed in Table 2. Seven agents collected training data and an Adam optimizer updated
the neural networks [28]. The agents learnt to control the aircraft pitch to maximize the
expected reward. The reward function was defined as

r = −(|eα|+ 0.1|q|+ 0.1|a|), (5)

where a (°/s) is the action output of the neural network. The pitch rate |q| and the action
penalty |a| aimed to contribute to smooth and stable pitch manoeuvres.

To investigate the effect of delay during training, five amplitudes of delay were
defined, namely, 0 (no delay), 100, 200, 300 and 400 ms delay. Five neural networks with
different random seeds were trained for each delay group, hence 25 agents were trained in
total. In the training simulations, the controller action was pooled at every time step and
activated after the time delay passed. For ease of implementation, the time delay was held
constant throughout each simulation steps and across episodes.

Table 2. Hyperparameters in deep reinforcement learning.

Parameter Value

Weight for policy loss 1
Weight for value loss 0.5
Weight for regularization with policy entropy 0.01
Discount factor 0.99
Number of forward steps in advantage estimation 20
Exponential weight parameter in GAE 1
Learning rate 0.0001
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Figure 4. Neural network architecture.

Figure 5. Examples of the angle-of-attack command schedules. Black lines show the schedules used
in training with different random seeds. Blue line shows the doublet schedule used to evaluate the
control performance.

3. Results
3.1. Training Results

Figure 6 shows the learning curves for the trained neural networks. The groups with
larger delays tended to show variations over 5 training samples for the first 2 × 104 episodes.
However, all the learning curves were saturated to the same total rewards, which indicated
successful convergence.

The theoretical control performance of the 25 trained neural networks were investi-
gated in simulation. In simulation, the doublet angle-of-attack target was scheduled, and
the stochastic delay expressed in Equation (4) was applied. The delay was calculated and
assigned for every time step, and the action output was pooled and activated when the
assigned time delay had passed. Only the most recent actions were applied, i.e., when
the assigned time delay had passed, the latest action was applied and all other previous
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actions were discarded. For each neural network, 11 cases of wind speeds from 10 to
20 m/s with a 1 m/s interval were evaluated. For each wind speed 10 simulations were
run, each with different random seeds to measure mean performances under random
state noise. In total, 110 simulations were run for each neural network. Figure 7 shows
the calculated control performance, where the mean total reward over the 110 samples
are plotted. Each graph represents one of the five training groups. The neural networks
trained with 0 ms delay were labelled as NN0A, NN0B, ..., and NN0E. Those with 100 ms
delay were NN100A, NN100B, and so on. The letter at the end of each identifier string
represents each of the individual neural networks in each training group. To examine
delay tolerance, the delay amplitudes were changed by applying t0 = 15, 50, 100, 150, . . . ,
400 ms, as defined by Equation (4), which corresponded to the horizontal axis in Figure 7.
For example, in the 0 ms delay group, the neural networks showed good performance
even when the applied delay was t0 = 15 ms, with a value of approximately −10 for total
reward. The performance significantly degraded for larger t0 values. As seen particularly
in the 0, 100 and 200 ms delay groups, severe performance degradation occurred when
the applied delay t0 was larger than the delay assumed for training. This tendency was
difficult to infer from individual neural network performance, as some neural networks
suffered severe degradation, while others maintained their relative performance. For both
the 300 ms and 400 ms delay groups, the performance degradation was limited. Inspection
through simulation was critical to gauge the real performance, particularly when the actual
delay could be larger than assumed for training. This was because while the delay toler-
ance differed by individual neural network the learning curves did not show significant
differences within the same training group.

Eight neural networks, namely NN0A, NN0B, NN100A, NN100B, NN200A, NN200B,
NN300A and NN400A, were chosen and used in both simulations and experiments to
produce the results presented in the following sections. They are indicated with blue lines
in Figure 7. It was observed that the neural networks trained with larger delay did not
always show better performance than the ones trained with smaller delay. For example,
NN0B showed higher total reward than NN100A. The same happened for NN100B when
compared to NN200A.

Figure 6. Learning curves. The solid lines are mean learning curves. The shaded areas are the minimum to maximum
ranges over 5 random seeds.
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Figure 7. Simulated mean total reward for the doublet angle-of-attack schedule. Variations of the delay offset t0 was applied.

3.2. Simulation Results

To demonstrate examples of theoretical pitch control behaviour, Figure 8 shows
simulated angle of attack and elevator manoeuvre histories when NN0B was used as
the controller. Delay offsets of t0 = 15, 150 and 250 ms were applied. Comparing the
histories, higher wind speed and larger delays induced fluctuating behaviour, with the
corresponding angle of attack fluctuating in response to the elevator manoeuvre. To
evaluate and compare these control performances quantitatively, the root mean square
error (RMSE) of the angle of attack and the total reward were calculated. For the data
collected with NN0B as the controller, both the RMSE and the total reward are shown in
Figure 9. In this case, a higher RMSE value and a lower total reward were characteristic
of a controller with lower performance. When it comes to the group with t0 = 150 ms,
there was no significant difference in RMSE between the 10 and 20 m/s wind speed cases.
However, the RMSE values did not capture the fluctuations observed at 20 m/s wind speed.
The RMSE value was sensitive to the offset error at the 0°, 5° and −5° steady phases in
the 10 m/s wind speed case, and the effect of the fluctuation at 20 m/s was less evident.
On the other hand, the total reward criteria was sensitive to the fluctuations, and agreed
with the intuitive quality of control. This was because the pitch rate and action penalties
in the reward function effectively weighted the fluctuating behaviour. Empirically, the
control simulation results that had a total reward less than −15 were unstable and showed
fluctuating behaviour. It was noteworthy that, from a training point of view, reward
functions should be sensitive to undesirable behaviour such as fluctuations.

3.3. Experimental Results

Figure 10 shows experimental pitch control results for wind speeds from 10 to 20 m/s.
The eight neural network controllers defined in Section 3.1 were used. In Figure 10, the
eight neural networks are ordered from top to bottom in the order of the theoretical perfor-
mance from low to high, as indicated in Figure 7. Under certain wind speed conditions,
some controllers experienced fluctuating behaviour, these are plotted in red. These fluctua-
tions were visually judged. The total reward criteria (<−15) could not effectively judge
fluctuations because there were steady state errors. The neural networks trained with
smaller delay suffered fluctuating behaviour, and higher wind speeds also induced fluctua-
tions. Considering that NN200B and NN300A did not fluctuate, the effective delay, which
includes system delay and mechanical delay, was considered to be between 200 and 300 ms.
The neural networks trained with larger delay did not suffer fluctuations, however, they
tended to exhibit large offset errors. This is particularly evident for lower wind speeds. For
example, NN400A with 10 m/s wind speed showed a large offset error for 22.5–30.0 s. This
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was considered to be due to mechanical friction. There was friction around the pitching
shaft and at low wind speeds the model did not produce sufficient moment to rotate to
the target α value. When the controllers were trained to be tolerant to delay, they became
conservative and tended to avoid rapid manoeuvres. In such cases, the controllers became
susceptible to friction effects.

(a) Delay offset t0 = 15 ms. (b) t0 = 150 ms

(c) t0 = 250 ms
Figure 8. Simulated angle of attack and elevator angle histories for the NN0B controller. The doublet
angle-of-attack schedules were plotted with black lines. Wind speeds were 10 m/s (blue lines) and
20 m/s (orange lines). Applied time delay was t0 = 15 ms (a), 150 ms (b) and 250 ms (c).

To compare with the theoretical performance, Figure 11 shows simulated pitch control
results. In the simulations, a time delay t0 = 250 ms was applied. The red plot colour
scheme was taken from Figure 10, i.e., it indicates the controller and wind speed conditions
where fluctuations were observed in the experiment. In general, the fluctuations were
satisfactorily reproduced by simulation. It was observed that the simulation study was
useful to evaluate theoretical performance and to predict fluctuating behaviour. However,
these simulations did not model friction, and hence did not reproduce the offset errors that
were observed for cases with lower wind speeds and neural networks trained with larger
delays. Therefore, it was essential to conduct experiments to validate the real performance.
In addition, comparing the various controllers allowed the estimation of the effective delay.
Such an approach, combining parameter study and experimental validation, was effective
to identify the reality gap and to select the most suitable controllers.
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Figure 9. Root mean square error (RMSE) of the angle of attack (top) and total reward (bottom)
for the doublet pitch control when NN0B was used. Wind speeds were 10 m/s (blue) and 20 m/s
(orange). The applied time delay was t0 = 15 ms (left), 150 ms (middle) and 250 ms (right).

Figure 10. Experimental pitch control results. Wind speeds were from 10 m/s (left) to 20 m/s (right). The controllers are
ordered from top to bottom in the order of theoretical performance in Figure 7. The vertical and horizontal axes correspond
to the angle of attack and time, respectively. The target angle-of-attack schedules are shown with black lines. Red plots
indicate the results where fluctuating behaviour was observed.
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Figure 11. Simulated pitch control results. A time delay t0 = 250 ms was applied. Wind speeds were from 10 m/s (left)
to 20 m/s (right). The controllers are ordered from top to bottom in the order of theoretical performance in Figure 7. The
vertical and horizontal axes correspond to the angle of attack and time, respectively. The target angle-of-attack schedules
are shown with black lines. Red plots indicate the results where fluctuating behaviour was observed in the experiment as
seen in Figure 10.

4. Discussion on Friction Effect

While it was not considered during training, friction existed in the experimental
setup. This reality gap was investigated through comparisons between the experiments
and simulations that included a friction model. Figure 12 shows pitch control results when
NN0B and NN400A are used. The histories of the angle of attack, elevator angle and
elevator rate are plotted. The elevator rate corresponded to the neural network output. The
experimental results are plotted with black lines. The simulation results using the linear
model in Equation (1) are plotted with blue lines and the ones for the friction model in
Equation (3) are plotted with red lines. A wind speed of 12 m/s was selected, as both NN0B
and NN400A did not exhibit fluctuating control behaviour under this condition. Therefore,
the friction effect was noticeable for these controllers. NN0B was trained without delay
and therefore resulted in an “aggressive” controller. The elevator rate was unstable in
the experiment, and the elevator angle exhibited rapid transitions. The elevator angles in
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equilibrium were −25° and 17° for the angle of attacks of 5° and −5°, respectively, which
were overshot in both experiment and simulations. The simulated angle of attack histories
showed overshooting behaviour when the linear model was used. For the experiment
and simulation with friction results, the angle of attack smoothly transitioned to the target
values. On the other hand, NN400A was trained with larger delay and resulted in a
“conservative” controller. The elevator rate was stable and the elevator angle smoothly
transitioned to the equilibrium angles. These smooth manoeuvres generally produced
smaller pitching moments, which contributed to stable control under delay. At the same
time, it did not produce sufficient pitching moment when friction was significant. The
angle of attack was effectively controlled in the simulation using the linear model, however,
large offset errors remained in both the experiment and the simulation with friction.

Considering behaviours of NN0B and NN400A, there was a trade-off. The conserva-
tive controller was tolerant to delay but susceptible to friction, while the opposite was true
for the aggressive controller. To address these issues, one potential approach is to train
controllers with a high-fidelity model that included both delay and friction. This approach
is straightforward but not practical in some cases, in particular when obtaining an accurate
model is challenging. In this example, the experimental angle of attack for NN400A did
not exhibit the offset error for the 5° to −5° transition, whereas it did for the −5° to 0°
transition. This non-symmetric behaviour would be difficult to predict and model. One
of the bottlenecks of the high-fidelity model training approach is that controllers do not
accommodate for model error. The elevator angle histories for NN400A were consistent
and agreed between the experiment and simulations even though there were clear angle-
of-attack errors as seen in Figure 12. This suggests that the controllers simply learnt the
equilibrium angles, and they could not adapt to the reality gap. This illustrates one of the
limits of the high-fidelity model training approach. To train a controller that is robust to
this reality gap, an adaptive approach such as domain randomisation would be another
viable option [21]. Model parameters are randomly changed at every episode in training,
and as a result, the controllers becomes robust to model uncertainties. This approach will
be investigated in future work.

In the majority of previous studies on the application of deep reinforcement learning
to UAV attitude control, assessment of control performance has been based on simulation
results [16,17]. This study demonstrates the benefit of also considering experimental
results. The delay effect was evaluated through experimental and simulated parameter
study, and the effective delay threshold was derived. The controllers trained with larger
time delays than this effective delay threshold did not exhibit fluctuating behaviour. The
comparison between experimental and simulated control behaviour indicated that the
friction in the system was non-symmetric and caused offset errors. Based on these results,
it is suggested that training approaches that are robust to the reality gap have advantages
over simply using higher fidelity models. The experiments not only validated the real
control performance but also suggested ways in which training parameters and approaches
could be evaluated and designed.
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(a) NN0B was used for controller. (b) NN400A was used for controller.
Figure 12. Experimental and simulated angle of attack, elevator angle and elevator rate histories. Wind speed was 12 m/s.
Applied time delay in simulation was t0 = 250 ms. The doublet angle-of-attack schedules are plotted with black dotted
lines. The black, blue and red lines indicate the results of the experiment, simulation with linear model and simulation with
friction model, respectively.

5. Conclusions

An A3C-based deep reinforcement learning was applied to a pitch control task in a
wind tunnel test. To investigate tolerance to time delay, five groups of neural networks
were trained with different delay assumed in training. The training was successful, and the
learning curves had small variations between training samples. However, simulated control
performance varied even among the same training groups. Some controllers exhibited
severe performance degradation particularly when the applied delay was larger than
assumed for training. It was also noted that the stability of the neural networks trained
with larger delay was not always better than for the ones trained with smaller delay. This
suggest that individual inspections for the trained controllers is essential to understand the
real performance.

As a general trend, the neural networks trained with smaller delay were susceptible to
delay and suffered fluctuating behaviour. The comparison of fluctuations for the different
controllers helped estimating the effective delay in the experimental environment. The
effective delay could be used as a threshold, meaning that controllers trained with delay
larger than the effective delay could be less likely to exhibit fluctuating behaviour. On
the other hand, the neural networks trained with larger delay behaved as conservative
controllers and suffered friction effect. This conservative manoeuvring did not produce
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sufficient pitching moment to rotate the model when friction existed. Nonlinear and non-
symmetric dynamics, such as friction, are not always easy to model. This requires a new
training approach, where a controller learns to adapt to the difference between training
models and actual environments, i.e., when a reality gap exists.

This study’s contribution is to experimentally demonstrate the reality gap effect on
an aircraft attitude control task, by considering time delay and friction. They are common
concerns for control problems, and also a major challenge for deep reinforcement learning
approaches. This study highlights the importance of performing experiments to validate
real control performance. The lessons learnt on the effect of the reality gap for a pitch
control task can be generalised to different attitude control tasks and different aircraft
models. In the future, approaches for mitigating the reality gap will be investigated.
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