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Abstract: In this paper, the study of stabilization accuracy of a satellite equipped with a set of reaction
wheels (RW) is presented. The model of motion takes into account possible static and dynamic
reaction wheel imbalances. Due to the complexity of the model, which leads to the numerical issues,
the effects of dynamic and static imbalances on inertial stabilization are studied analytically. As a
result, estimations of the attitude and stabilization accuracy are presented in closed form.
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1. Introduction

Modern small satellites are able to solve many scientific and applied problems, from
conducting measurements of the Earth’s magnetosphere to remote sensing. Most of these
problems require precise satellite pointing and stabilization, which is usually provided
by gyroscopic attitude control systems such as Reaction Wheels and Control Moment
Gyros. These actuators, thanks to miniaturization, now could be installed even on-board
the nanosatellites like 3–6U CubeSats [1–4].

RWs offer rather good performance and accuracy. However, there are several aspects
that should be taken into account. The first is the saturation problem, which can be
solved by auxiliary actuators such as magnetorquers. The second problem is the vibrations
affecting spacecraft hardware, its flexible parts and overall dynamics [5,6], which might
be crucial for some missions. One of the vibration sources is the RW imbalance. Typical
angular rate of RW is several thousand rotations per minute, therefore, even the small
imperfections in their balancing might significantly affect the performance of the attitude
control system. There are two types of imbalances that are usually distinguished. The first
is the static one, which appears when the RW center of mass is not located at its rotation axis.
The second is the dynamic imbalance, which corresponds to the misalignment between the
RW principal axis of inertia and the rotation axis (see Figure 1).
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Figure 1. RW imbalances: Static (left) and dynamic (right).
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There are a number of approaches that are used to reduce RW vibrations’ influence. In
the study of [7], small and low-speed RWs are used. In the study of [8], a special platform is
proposed and studied. A similar platform and mass dampers are described by the authors
of [9–11]. In the study of [12], a two-stage scheme is proposed for the satellite with precise
optical payload. In general, different vibration isolation techniques are presented in the
survey in [13]. The RW construction improvement is also considered. For example, in the
study of [14], the results of liquid RWs in flight operation are presented, and they show
low vibration level.

All abovementioned methods require special devices that should be installed on
the satellites. Unfortunately, these approaches are usually unavailable for small satellite
developers. This problem gets worse due to two additional factors. First, the masses and
sizes of the RW and spacecraft are comparable, the reaction wheels might occupy 0.5–1U of
3–6U CubeSat. Second, CubeSat RWs are usually rather cheap, therefore, their requirements
might be less strict than for conventional RWs. Therefore, CubeSat developers must pay
more attention to the study of stabilization and attitude accuracy.

This paper studies the problem of the attitude and stabilization accuracy in fully
coupled motion. The satellite model of motion that takes into account possible RW imbal-
ances is derived. In addition, we investigate how dynamic and static imbalances affect the
satellite inertial stabilization, and obtain analytical estimations on possible attitude and
stabilization errors. It must be noted that there are several papers that investigate the same
problem. For example, in the study of [15], the mathematical model of RW at suspension is
presented. The model is rather detailed but the influence of RW imbalances on satellite
attitude dynamics is not investigated. Similar results supplemented by experiments are
obtained in [16–20]. In the study of [21], the numerical study of the imbalance effect is
presented. However, the paper lacks the details. In the study of [22], the model of coupled
motion is derived. The detailed numerical study of the satellite angular dynamics is pre-
sented and ground tests are carried out. The dynamics model is presented in [23] where the
RW installation scheme is proposed to reduce vibrations. However, this model cannot be
directly implemented to RW imbalance effect study. The model which is presented in [24]
can be adapted to the problem but it requires considerable modification.

The most thorough model of motion is derived in [25] which is based on the first
principle and takes into account static and dynamic imbalances. The validation of the
model in [25] is carried out using kinetic energy and angular momentum conservation
laws. A similar model is derived in the paper, which might be more suitable for the
software adaptation. The validation procedure of the derived model is also similar, but the
momentum conservation law is added.

The literature study shows the lack of simple expressions for stabilization accuracy.
A precise mathematical model is rather complex, and it takes a considerable amount of
time to implement it and conduct all the necessary Monte Carlo simulations to estimate
the effect of imbalances. This problem occurs because the more angular rate of the RW
is—the more effect on the attitude would be. At the same time, high angular rate of the RW
requires a rather small integration step. This fact makes it difficult to analyze the dynamics
using numerical approach only. There are several ways to deal with this problem. For
example, in the study of [26], the general approach to estimate the effect of disturbances on
the attitude accuracy is suggested, but it works with a simple model of motion that does
not take into account RW imbalances. In the study of [27], the estimations were obtained
for the simple case of RW rotation axis deviation. In this paper, the general case of static
and dynamic imbalances are under consideration.

The main goal of this paper is to obtain the end form expressions for the attitude
and stabilization accuracy, which are useful for preliminary mission design. They require
neither program model implementation nor extensive numerical study.
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2. Preliminary Remarks

Paper [25] describes the coupled model of motion. We present the brief derivation of
a similar model here. It has a different final form that turned out to be more convenient for
the software implementation and analytical study.

The spacecraft consists of the main hull with several RWs attached. The hull and each
RW are supposed to be rigid bodies with known mass and inertia properties. Satellite
position is described by point O—it is the arbitrary fixed point of the hull. Each reaction
wheel is described by point Ok (any point of the RW rotation axis) and axis of rotation ek
(see Figure 2).
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The following reference frames are used in the paper. Inertial Frame is fixed in space
(e.g., it might correspond to J2000 coordinate system). Body Frame is located at the hull
point O, and its axes are fixed with respect to the hull, k-th RW Frame is attached to the RW
in such a way that its third axis corresponds to the rotation axis.

In order to derive the equations of motion the general equation of dynamics [28] for
the system with ideal constraints is used:

∑
l

(
ml

..
Rl − Fl

)T
δRl = 0 (1)

Here, the summation is for all points of the system (for rigid bodies, summation
is replaced by integration), l is the system point index, ml is the point mass,

..
Rl is its

acceleration, Fl is the total force affecting the point, δRl is the point virtual displacement.
Every point of the hull Ri and RW Rkj is described by (see Figure 1):

Ri = RO + ri,
Rkj = RO + ρk + ρkj,

where RO is the satellite radius-vector, ri is the vector from point O to the hull point,
ρk = OOk, ρkj is the radius-vector from point Ok to RW point. As was mentioned earlier,
Ok is the arbitrary point of RW rotation axis. It is reasonable to choose it as the projection
of RW center of mass at its rotation axis. In this case, if the center of mass is on the rotation
axis (no static imbalance) then Ok represents the RW center of mass. Index i indicates the
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hull point and index kj indicates the j-th point of the k-th RW in what follows. Virtual
displacements of the system points are:

δRi = δRO + δθ× ri,
δRki = δRO + δθ× ρk + (ekδϕk + δθ)× ρkj.

Here, δRO, δθ correspond to the hull virtual displacements, δϕk is the k-th RW infinites-
imal rotation. Displacements δRO, δθ, δϕk are independent and correspond to N = 6 + n
system degrees of freedom (n is the RW’s quantity, and 6 for translational and rotational
degrees of freedom for a rigid hull).

Accelerations of each satellite and RW points are:
..
Ri =

..
RO +

.
ω× ri +ω×ω× ri,..

Rkj =
..
RO +

.
ω× ρk +ω×ω× ρk +

( .
ω+

.
Ωk +ω×Ωk

)
× ρkj + (ω+ Ωk)× (ω+ Ωk)× ρkj,

whereω is the satellite angular velocity with respect to the Inertial Frame, Ωk =
.
ϕkek is

the RW angular velocity with respect to the hull. Finally, Equation (1) can be rewritten as
follows:

∑
i

(
mi

..
Ri − Fi

)T
δRi + ∑

k
∑

j

(
mkj

..
Rkj − Fkj

)T
δRkj = ∑

k
Mint

k δϕk

Here, Mint
k is the internal torque generated in the k-th RW axis that consists of the

control and friction torques.

3. Equations of Motion Derivation

In order to derive equations of motion, it is necessary to gather all terms for the same
virtual displacement and equate them to zero (since they are independent). This leads to
the following equations:

δRO : ∑
i

(
mi

..
Ri − Fi

)
+ ∑

k
∑
j

(
mkj

..
Rkj − Fkj

)
= 0,

δθ : ∑
i

ri ×
(

mi
..
Ri − Fi

)
+ ∑

k
∑
j

(
ρk + ρkj

)
×
(

mkj
..
Rkj − Fkj

)
= 0,

δϕk : eT
k

(
∑
j
ρkj ×

(
mkj

..
Rkj − Fkj

))
−Mint

k = 0.

These equations can be simplified. The exact derivation is rather bulky and presented
in the Appendix A. The final form of the motion equations is provided below.

Let us introduce the cross-product matrix:

[a]× :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

,

so a× b ≡ [a]×b. The hull center of mass position with respect to the point O is given by:

rs =

∑
i

rimi

ms
, ms = ∑

i
mi.

Similarly, the center of mass of k-th RW with respect to the point Ok is:

ρkc =

∑
j
ρkjmj

mk
, mk = ∑

j
mkj.
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Since the hull point O is arbitrary, it is convenient to choose it, so:

msrs + ∑
k

mkρk = 0 (2)

Total satellite mass m = ms + ∑k mk. Denote the hull tensor of inertia with respect to
the point O:

Js = −∑
i
[ri]×[ri]×mi

and k-th RW tensor of inertia with respect to the point Ok:

Ik = −∑
j

[
ρkj

]
×

[
ρkj

]
×

mkj

Total tensor of inertia of the system with respect to the point O is:

J = Js + ∑
k

(
−mk[ρk]×[ρkc]× −mk[ρkc]×[ρk]× −mk[ρk]×[ρk]× + Ik

)
The total forces acting on the hull and RW are:

Fs = ∑
i

Fi, Fk = ∑
j

Fkj.

Torques of the forces affecting RW with respect to the attachment point Ok are:

Mk = ∑
j
ρkj × Fkj

Similarly, the torque affecting the hull with respect to the point O is:

Ms = ∑
i

ri × Fi

To decrease the number of brackets in the equations, the following rule is used:

a1 × a2 × . . .× an ≡ a1 × (a2 × (. . . × an) . . .)

Full satellite state vector is described by the hull position RO, velocity VO =
.

RO,
attitude quaternion Q =

(
q0 q

)T , ‖Q‖ = q2
0 + q·q = 1 (optionally can be replaced by

different attitude representation, e.g., Euler angles or direction cosine matrices), angular
velocity ω, current RW rotation angle ϕk and its angular velocity Ωk =

.
ϕk. Satellite

kinematics are: .
RO = VO,

.
q0 = − 1

2 qTω,
.
q = 1

2 (q0ω+ q×ω),
.
ϕk = Ωk.

(3)

Equations of the satellite dynamics are:

S



.
VO.
ω
.

Ω1
...

.
Ωn

 = N. (4)

Here S is the following symmetrical matrix:
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S =



mE3×3 −
[

∑
k

mkρkc

]
×

−m1ρ1c × e1 . . . −mnρnc × en

−
[

∑
k

mkρkc

]
×

J
(
I1 −m1[ρ1]×[ρ1c]×

)
e1 . . .

(
In −mn[ρn]×[ρnc]×

)
en

−(m1ρ1c × e1)
T eT

1
(
I1 −m1[ρ1c]×[ρ1]×

)
I1 0 0

...
... 0

. . . 0
−(mnρnc × en)

T eT
n
(
In −mn[ρnc]×[ρn]×

)
0 0 In


,

where Ik = eT
k Ikek is the RW moment of inertia along its rotation axis, E3×3 is 3 × 3 identity

matrix, and N is:

N =



Fs + ∑
k

Fk −∑
k

mk(ω×Ωk)× ρkc −∑
k

mk(ω+ Ωk)× (ω+ Ωk)× ρkc

Nω

Mint
1 + eT

1 M1 − eT
1 (m1ρ1c ×ω×ω× ρ1 + I1(ω×Ω1) +ω× I1(ω+ Ω1))

...
Mint

n + eT
n Mn − eT

n (mnρnc ×ω×ω× ρn + In(ω×Ωn) +ω× In(ω+ Ωn))

,

where

Nω = Ms + ∑
k
(Mk + ρk × Fk)−ω× Jω

−∑
k

(
Ik −mk[ρk]×[ρkc]×

)
(ω×Ωk)

−∑
k

mk(ρk ×Ωk ×ω× ρkc + ρk ×ω×Ωk × ρkc + ρk ×Ωk ×Ωk × ρkc)

−∑
k
(Ωk × Ikω+ω× IkΩk + Ωk × IkΩk).

Note that the hull is considered to be a rigid body, so Js and rs remain constant in the
Body Frame. However, in general case, ρkc, Ik and J depend on the current RW rotation
angle ϕk, and will change in the Body Frame. In addition, satellite acceleration (i.e.,

.
VO) is

usually calculated in the Inertial Frame, while attitude dynamics are calculated in the Body
Frame, which must be taken into account during the simulation.

3.1. Important Special Cases

The first special case to be considered is when there is no so-called static imbalance
of RW, i.e., its center of mass is located at the rotation axis. In this case, it is reasonable
to choose Ok as RW center of mass. Therefore, O under Constraint (2) would denote the
center of mass of the whole system, and ρkc = 0. System Kinematics (3) remains the same,
and dynamics becomes:

m
..
RO = Fs + ∑

k
Fk,

J
.
ω = −ω× Jω−∑

k
Ik

.
Ωk

−∑
k
(Ik(ω×Ωk) + Ωk × Ikω+ω× IkΩk + Ωk × IkΩk)

+Ms + ∑
k
(Mk + ρk × Fk),

eT
k Ik

( .
ω+

.
Ωk

)
= Mint

k + eT
k Mk − eT

k (Ik(ω×Ωk) + (ω+ Ωk)× Ik(ω+ Ωk)).

(5)
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If, in addition, there is no dynamical imbalance (i.e., the rotation axis is the RW dynam-
ical symmetry axis), then Ik(ω×Ωk) + Ωk × Ikω = 0, Ikek = Ikek, eT

k (ω× Ikω) = 0.
This leads to the following equations of motion:

m
..
RO = Fs + ∑

k
Fk,

J
.
ω+ω× Jω = Ms + ∑

k
(Mk + ρk × Fk)−∑

k
Ik

.
Ωk −ω×∑

k
(IkΩk),

eT
k Ik

( .
ω+

.
Ωk

)
= Mint

k + eT
k Mk.

(6)

In the matrix form:

S =


mE3×3 0 0 . . . 0

0 J I1e1 . . . Inen
0 eT

1 I1 I1 0 0
...

... 0
. . . 0

0 eT
n In 0 0 In

, N =


Fs + ∑

k
Fk

Ms + ∑
k

Mkc −ω× Jω−∑
k

IkΩk(ω× ek)

Mk + eT
k Mk − eT

k (ω× Ikω)


The simplified conventional model of the satellite motion is (see e.g., [29]):

m
..
RO = Ftotal ,

J
.
ω+ω× Jω = Mtotal −∑

k
Ik

.
Ωk −ω×∑

k
IkΩk,

Ik
.

Ωk = Mint
k .

(7)

It is rather similar to the simplest Model (6), with the major difference in the equation
that describes the RW rotation: it is actually affected by satellite rotation and external
torques, e.g., by the gravity gradient torque. Note that internal torques from friction and
control devices are usually much larger than external ones, so the effect of these additional
terms is negligible.

3.2. Verification of the Motion Model

The model presented in Section 2 is rather complex. The conservation laws are used
to validate its software implementation. In case of no external forces and torques, the total
momentum in the Inertial Frame, angular momentum with respect to the system center
of mass in Inertial Frame, and kinetic energy of the system must preserve, i.e., they are
first integrals.

Total momentum of the system is:

P = ∑
i

miVi + ∑
k

∑
j

mkjVkj

Velocities of the satellite points are:

Vi = VO +ω× ri,
Vkj = VO +ω×

(
ρk + ρkj

)
+ Ωk × ρkj.

Hence, using Constraint (2), we obtain:

P =

(
ms + ∑

k
mk

)
VO + ∑

k
mk(ω+ Ωk)× ρkc

Total angular momentum with respect to the system center of mass is:

LC = ∑
i
(Ri −RC)×miVi + ∑

k
∑

j

(
Rkj −RC

)
×mkjVkj
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where RC is the system center of mass. Under Constraint (2) it can be written as follows:

RC =
1
m

(
ms(RO + rs) + ∑

k
mk(RO + ρk + ρkc)

)
= RO +

1
m∑

k
mkρkc.

In the case when RW center of mass is at the rotation axis RC = RO. Simplification
yields:

LC = Jsω+ ∑
k
(mkρk × (ω× (ρk + ρkc) + Ωk × ρkc) + mkρkc ×ω× ρk + Ik(ω+ Ωk))+

− 1
m

(
∑
k

mkρkc

)
×
(

∑
k

mk(ω+ Ωk)× ρkc

)
.

Total kinetic energy is:

T =
1
2∑

i
miV2

i +
1
2∑

k
∑

j
mkjV

2
kj

After simplification:

T = 1
2 mV2

O + 1
2ω

TJsω+ ∑
k

(
mkVT

O(ω+ Ωk)× ρkc + (ω× ρk)
T((ω+ Ωk)× ρkc)

)
+

+ 1
2 ∑

k

(
(ω× ρk)

T(ω× ρk) + (ω+ Ωk)
TIk(ω+ Ωk)

)
.

The numerical simulation is carried out to demonstrate the behavior of the abovemen-
tioned integrals with different integration steps. The system parameters are presented in
Table 1. RW parameters are taken from [30].

Table 1. System parameters.

Parameter Value

Hull inertia tensor, Js diag
(

0.027 0.03 0.01
)

kg·m2

Hull mass, ms 3.2 kg
RW static imbalance, s 6.7× 10−7 kg·m

RW dynamic imbalance, d 1.8× 10−9 kg·m2

RW mass, mk 0.119 kg
RW axis moment of inertia, Iax 1.67× 10−4 kg·m2

RW equatorial moment of inertia, Ieq 1.0× 10−4 kg·m2

Hull inertia tensor, Js diag
(

0.027 0.03 0.01
)

kg·m2

The set of three identical RWs is considered. Their nominal axes of symmetry are
aligned with the hull principal axes of inertia and each center of mass is shifted by 5 cm
along x-axis of the Body Frame, i.e., ρk =

(
0.05 0 0

)
m. The initial conditions are

presented in Table 2. Here, the satellite free motion is considered, and the initial conditions
for translational motion are zero.

Table 2. Initial conditions.

Parameter Value

Satellite angular velocity,ω
(

0.14 0.34 0.23
)

rad/s
Quaternion

(
0.5 0.5 0.5 0.5

)
RWs’ angular velocities

(
10 20 30

)
rad/s

RWs’ initial phase
(

0 0 0
)

Satellite position
(

0 0 0
)

m
Satellite velocity

(
0 0 0

)
m/s
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Integration method is the fourth-order Runge–Kutta method with constant step. There
are two time steps considered: h = 10−2 s and h = 10−3 s. Results are presented in
Figures 3–5, and demonstrate the relative errors of the corresponding values.
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As we can see from Figures 3–5, the variation of the presented values is lower and
more irregular for smaller integration step. So, the numerical model shows the same
conservation laws as the mathematical one. Note that in order to correctly simulate the
satellite dynamics, it is necessary to consider rather small time step, even for the relatively
low RWs angular velocities. In real space applications the RW angular velocity reaches
hundreds of radians per second. Additionally, the model includes a number of parameters:
inertia tensor, RWs’ placement vectors, imbalance and inertia parameters, RWs’ angular
velocities, as well as control coefficients, which gives at least 24 independent parameters
for a satellite with three identical RWs. To have informative enough numerical results, a
vast amount of numerical experiments should be carried out. So, the numerical analysis
becomes rather computationally expensive. Additionally, the problem of data visualization
arises. On the other hand, the analytical estimations on the attitude and stabilization
accuracy can be obtained. They allow avoiding extensive numerical simulations during the
satellite preliminary design stage. The following sections provide a rather simple end-form
expression for the inertial stabilization accuracy.

4. Effect of Dynamic Imbalances on Inertial Stabilization

In this section, we analyze the effect of the dynamic imbalances in the case of inertial
stabilization when the satellite is in the specific attitude with zero angular velocity. Without
loss of generality, let the desired attitude be the identity quaternion Qd =

(
1 0 0 0

)T .
All the external torques, as well as RWs’ friction, are neglected during the analysis. In
addition, we do not consider static imbalance, i.e., RWs’ centers of mass are located at their
rotation axes.

4.1. First-Order Equations of Motion

The dynamic imbalance appears when RW rotation axis is misaligned with the prin-
cipal axis of inertia, i.e., there are nondiagonal elements in the RW tensor of inertia Ik.
The magnitude of these elements d (such that

∣∣∣Ikj

∣∣∣ < d for k 6= j) is usually referred to as
dynamic imbalance value. It is rather small in comparison with the RW axial moment of
inertia Iax, therefore, we can introduce small parameter ε = d/Iax. The RW tensor of inertia
is then represented in the following way:

Ik = Ĩk + εδIk

where ε� 1, Ĩk is nominal RW tensor of inertia such that RW rotation axis ek is its axis of
dynamical symmetry, εδIk is the imbalance additional term. Since Ĩk is axially symmetrical,
it does not change in the Body Frame during the RW rotation. Total satellite tensor of
inertia in the case of absent static imbalance (i.e., ρkc = 0) is:

J = Js + ∑
k

(
Ĩk + εδIk −mk[ρk]×[ρk]×

)
= J̃ + ε∑

k
δIk

Again, here, J̃ is the nominal satellite full tensor of inertia, and ε∑k δIk corresponds
to the small deviations caused by imbalances. Usually, these imbalances are unknown,
so simplified equations of motions such as Equation (6) with nominal values of RW and
satellite tensors of inertia are used to construct attitude controller.

To analyze the effect of the dynamical imbalances consider equations of motion,
Equation (5), taking into account the differences between the nominal and real tensors of
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inertia. The orbital dynamics are decoupled, in addition, the effect of external torques can
be neglected since the time intervals are small. Thus, the system to be considered is:

J
.
ω+ ∑

k
Ik

.
Ωk = −ω× Jω

−∑
k
(Ik(ω×Ωk) + Ωk × Ikω+ω× IkΩk + Ωk × IkΩk),

eT
k Ik

( .
ω+

.
Ωk

)
= Mint

k − eT
k (Ik(ω×Ωk) + (ω+ Ωk)× Ik(ω+ Ωk)),

.
ϕk = Ωk,
.
q0 = − 1

2 q·ω,
.
q = 1

2 (q0ω+ q×ω).

To eliminate a small parameter in the left part of the equations, let us rewrite the first
two equations as follows:(

J̃ + ε∑
k

δIk

)
.
ω+ ∑

k

(
Ĩk + εδIk

) .
Ωk = a + εδa,

eT
k

(
Ĩk + εδIk

)( .
ω+

.
Ωk

)
= bk + εδbk,

where

a = −ω×
(

J̃ω+ ∑
k

ĨkΩk

)
,

δa = −∑
k
(δIk(ω×Ωk) + (ω+ Ωk)× δIk(ω+ Ωk)),

bk = Mint
k ,

δbk = −eT
k (δIk(ω×Ωk) + (ω+ Ωk)× δIk(ω+ Ωk)).

Finally, this system becomes:

(B + εδB)

( .
ω

.
Ω

)
=

(
a
b

)
+ ε

(
δa
δb

)
,

B =


J̃ Ĩ1e1 · · · Ĩnen

eT
1 Ĩ1 eT

1 Ĩ1e1 · · · 0
...

...
. . .

...
eT

n Ĩn 0 · · · eT
n Ĩnen

, δB =


δJ δI1e1 · · · δInen

eT
1 δI1 eT

1 δI1e1 · · · 0
...

...
. . .

...
eT

n δIn 0 · · · eT
n δInen

.

The main idea is to represent this system as:

B̃

( .
ω
.

Ω

)
=

(
ã
b̃

)
+ ε

(
δã
δb̃

)
+ O

(
ε2
)

where B̃ does not contain a small parameter ε. Detailed derivation is provided in the
Appendix B, and here we just present the result:(

J̃−∑
k

ĨkekeT
k

)
.
ω = c + εδc,

Ĩk
.

Ωk = bk − ĨkeT
k

(
J̃−∑

k
ĨkekeT

k

)−1
c

+ε
(

δbk − δIk
Ĩk

bk

)
+εδIkeT

k

(
J̃−∑

k
ĨkekeT

k

)−1
c − εeT

k δIk

(
J̃−∑

k
ĨkekeT

k

)−1
c

−ε ĨkeT
k

(
J̃−∑

k
ĨkekeT

k

)−1
δc.

(8)
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where

δIk = eT
k δIkek

c = a−∑
k

bkek,

δc = δa−∑
k

(
δbkek + bk

(
E3×3 − ekeT

k
) δIkek

Ĩk

)
−∑

k

(
δIk − δIkekeT

k − ekeT
k δIk + ekeT

k δIk
)(

J̃−∑
k

ĨkekeT
k

)−1(
a−∑

k
bkek

)
.

These equations are used later to analyze the satellite motion in the vicinity of the
desired position.

4.2. Controller Design

Lyapunov-based attitude controller that ensures the convergence to the necessary [31,32]
attitude is:

Mctrl = −kωω− kqq +ω× J̃ω

Here, the simplicity of the desired motion (i.e., desired angular velocity and accelera-
tion are equal to zero) is already taken into account. In addition, we consider the case when
there are no external disturbances affecting the motion. Note that there is a nominal tensor
of inertia in the equation because the attitude control system does not have information
about small deviations in the satellite inertia. This is the ideal control torque to be produced
by the system of RWs. The necessary RWs’ angular accelerations are then defined by:

−∑
k

Ĩk
.

Ωk −ω×
(

∑
k

ĨkΩk

)
= Mctrl (9)

Note that:
Ĩk

.
Ωk = Ĩk

.
Ωkek, ĨkΩk = ĨkΩkek

Introducing:

G =
(

Ĩ1e1 . . . Ĩnen
)
, Ω =

(
Ω1 . . . Ωn

)T

Equation (9) is rewritten as follows:

G
.

Ω = −Mctrl −ω× (GΩ) (10)

This system of linear equations allows us to calculate the RWs’ accelerations using
information about current RWs’ angular velocities and the necessary control torque. To
ensure controllability of the system, it is necessary to install at least three RWs with non-
coplanar rotation axes. In this case, Expression (10) has a unique solution:

.
Ω = −G−1(Mctrl +ω× (GΩ)) (11)

The solution is not unique if there are more than three RWs. In this case, it is reasonable
to set an optimization problem:

∑
k

.
Ω

2
k → min

under Constraint (10) to reduce total RWs’ accelerations. Its solution is well-known and
given by the Moore-Penrose pseudoinverse:

.
Ω = −GT

(
GGT

)−1
(Mctrl +ω× (GΩ))
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Note that if there are only three RWs, then GT
(

GGT
)−1

= G−1, and the solution is
the same as in Equation (11). In a simple model RWs’ accelerations are:

Ĩk
.

Ωk = Mint
k

Hence, internal control torques are defined by:

Mint
k = − Ĩ2

k eT
k

(
GGT

)−1
(Mctrl +ω× (GΩ)). (12)

If all RWs in the system are identical (at least their nominal axial moments of inertia
Ĩk = Ĩ), then:

G = Ĩ
(

e1 . . . en
)
= ĨA

and (12) becomes:

Mint
k = −eT

k

(
AAT

)−1(
Mctrl + Ĩω× (AΩ)

)
.

4.3. Equations of Motion Analysis

Considered controller ensures asymptotic stability of simple system Equation (7),
hence we can expect that if ε is sufficiently small, the satellite motion would be in the
vicinity of the required one. Therefore, it is possible to linearize the equations of motion.
Then, the attitude quaternion is:

Q =

(
q0
q

)
≈
(

1
1
2ϕ

)
,

where ϕ =
(

ϕ1 ϕ2 ϕ3
)

correspond to three Euler rotation angles (sequence 1–2–3 at
angles ϕ1, ϕ2, ϕ3). From Kinematics (3), we also obtain that the satellite angular velocity in
linear approximation isω =

.
ϕ.

The solution of System (8) and linearized kinematics is represented in the power
series:

ω =ω0 + εω1 + . . .
Ωk = Ω0

k + εΩ1
k + . . . = ek

(
Ω0

k + εΩ1
k + . . .

)
q ≈ 1

2
(
ϕ0 + εϕ1 + . . .

)
.

Therefore, RWs’ controls become:

Mint
k ≈ eT

k

(
AAT

)−1(
kω

(
ω0 + εω1)+ kq

2
(
ϕ0 + εϕ1))ϕ1

= ∑
k

(
uk cos

(
α0

k + Ωkt
)
+ vk sin

(
α0

k + Ωkt
))

−eT
k

(
AAT

)−1
((
ω0 + εω1)×(J̃

(
ω0 + εω1)+ ∑

k
Ĩk
(
Ω0

k + εΩ1
k
)))

.

Their substitution in the equations of motion and comparison of terms with the same
powers of ε gives the system for the undisturbed motion (zero approximation):(

J̃−∑
k

ĨkekeT
k

)
.
ω

0
= −kωω

0 − kq
2 ϕ

0,

.
Ω

0
k = eT

k

(
AAT

)−1
(

kωω
0 +

kq
2 ϕ

0 +ω0 ×
(

J̃ω0 + ∑
k

ĨkΩ0
k

))
+ eT

k Ĩk

(
J̃−∑

k
ĨkekeT

k

)−1(
kωω

0 +
kq
2 ϕ

0
)

,

and equations for the first approximation of the satellite angular velocity:
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(
J̃−∑

k
ĨkekeT

k

)
.
ω

1
= −kωω

1 − kq
2 ϕ

1

+

 δa|
ω =ω0

Ωk = Ω0
k

−∑
k

 δbk| ω =ω0

Ωk = Ω0
k

ek + bk| ω =ω0

Ωk = Ω0
k

(
E3×3 − ekeT

k
) δIkek

Ĩk

−
−∑

k

(
δIk − δIkekeT

k − ekeT
k δIk + ekeT

k δIk
)(

J̃−∑
k

ĨkekeT
k

)−1(
−kωω

0 − kqq0)]
Zero approximation has an asymptotically stable solutionω0 = 0, ϕ0 = 0. This leads to:

δbk| ω =ω0

Ωk = Ω0
k

= 0, bk| ω =ω0

Ωk = Ω0
k

= 0, δa = −∑
k

Ω0
k × δIkΩ0

k

In addition, from the second equation of zero approximation, we can see that Ω0
k

→ const. Therefore, the equations for the first approximation are simplified:(
J̃−∑

k
ĨkekeT

k

)
.
ω

1
= −kωω

1 −
kq

2
ϕ1 −∑

k
Ω0

k × δIkΩ0
k (13)

Note that δIk is not constant in the Body Frame since the imbalanced RWs rotate. It
can be represented in the Body Frame as follows:

δIBF
k = DT

k δIRW
k Dk

where:

Dk =

 cos αk sin αk 0
− sin αk cos αk 0

0 0 1

D0
k , αk =

t∫
t0

Ωkdt + αk(t0) (14)

is the rotation matrix that corresponds to the current RW position, D0
k describes the rotation

from the Body Frame to the k-th RW Frame in the initial moment, δIRW
k = const is the RW

imbalance in k-th RW Frame. Since Ω0
k is constant in zero approximation, Dk describes con-

stant rotation and Equation (13) becomes the nonhomogeneous linear system of differential
equations:(

J̃−∑
k

ĨkekeT
k

)
..
ϕ

1
= −kω

.
ϕ

1 −
kq

2
ϕ1 + ∑

k

(
gk cos

(
tΩ0

k + α0
k

)
+ fk sin

(
tΩ0

k + α0
k

))
(15)

which can be solved analytically. Note that α0
k is a constant initial phase. The value of the

phase depends on the actual transient motion before the satellites settle near the required
state. The solution of the homogeneous equation converges to zero asymptotically while
the partial solution is:

ϕ1 = ∑
k

(
uk cos

(
α0

k + Ωkt
)
+ vk sin

(
α0

k + Ωkt
))

where:
uk = −

(
M2 +

(
kωΩ0

k
)2E3×3

)−1(
kωΩ0

kfk + Mgk
)
,

vk =
(

M2 +
(
kωΩ0

k
)2E3×3

)−1(
kωΩ0

kgk −Mfk
)
,

M =

((
J̃−∑

k
ĨkekeT

k

)(
Ω0

k
)2 − kq

2 E3×3

)
.
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The angular velocity for the first approximation is:

ω1 = ∑
k

Ω0
k

(
−uk sin

(
α0

k + Ω0
kt
)
+ vk cos

(
α0

k + Ω0
kt
))

(16)

Hence the attitude stabilization error can be estimated by:

∆ω ≈ ε∑
k

Ω0
k

(
−uk sin

(
α0

k + Ω0
kt
)
+ vk cos

(
α0

k + Ω0
kt
))

(17)

For each i-th component, then:

∆ωi ≤ ε∑
k

Ω0
k

√
u2

ki + v2
ki (18)

This simple estimate might be utilized at the preliminary stage of a spacecraft design
to determine the dynamic imbalance requirements for RWs. Each term in Equation (18) is
equivalent to:

∆ωik ∼ Ω0
kd (19)

when Ω0
k is large enough, here, d is the dynamic imbalance magnitude.

4.4. Illustrative Example

Assume that each RW tensor of inertia in its own Frame is:

IRW
k =

 Ieq 0 0
0 Ieq 0
0 0 Iax

+ ∆IRW
k , ∆IRW

k =

 ∆Ik
11 ∆Ik

12 ∆Ik
13

∆Ik
12 ∆Ik

22 ∆Ik
23

∆Ik
13 ∆Ik

23 ∆Ik
33

,

where Ieq, Iax are the RWs’ equatorial and axial moments of inertia (all RW nominal values
are supposed to be identical). Note that ∆IRW

k is symmetric, and all its components are
considered small with respect to the axial moment of inertia.

In RW Frame:

Ω0
k × IkΩ0

k =
(

Ω0
k

)2
 −∆Ik

23
∆Ik

13
0


Let for all RWs ∆Ik

13 = 0, and ∆Ik
13 = −d is the dynamic imbalance. Small parameter

is introduced as follows:
ε = d/Iax

Let the nominal RWs’ axes of rotation coincide with J̃ principal axes of inertia. Then,
in the Body Frame:

Ω1 =
(

Ω1 0 0
)T , Ω2 =

(
0 Ω2 0

)T , Ω3 =
(

0 0 Ω3
)T .

Matrices that describe the rotation from the RW Frame to the Body Frame are:

D1 =

 0 0 1
sin α1 cos α1 0
− cos α1 sin α1 0

, D2 =

 cos α2 − sin α2 0
0 0 1

− sin α2 − cos α2 0

,

D3 =

 cos α3 − sin α3 0
sin α3 cos α3 0

0 0 1

.
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Here αk = α0
k + Ω0

kt, as in the previous section, corresponds to the current RW rotation
angle. Finally, the right part of the Equation (15) becomes:

∑
k

Ω0
k × δIkΩ0

k =

 0
sin
(
α0

1 + Ω0
1t
)

− cos
(
α0

1 + Ω0
1t
)
(Ω0

1
)2 Iax +

 cos
(
α0

2 + Ω0
2t
)

0
− sin

(
α0

2 + Ω0
2t
)
(Ω0

2
)2 Iax

+

 cos
(
α0

3 + Ω0
3t
)

sin
(
α0

2 + Ω0
2t
)

0

(Ω0
3
)2 Iax.

In this case, vectors fk and gk in Equation (15) are:

f1 =
(

0 −1 0
)T
(

Ω0
1

)2
Iax, f2 =

(
0 0 1

)T
(

Ω0
2

)2
Iax, f3 =

(
0 −1 0

)T
(

Ω0
3

)2
Iax

g1 =
(

0 0 1
)T
(

Ω0
1

)2
Iax, g2 =

(
−1 0 0

)T
(

Ω0
2

)2
Iax, g3 =

(
−1 0 0

)T
(

Ω0
3

)2
Iax

For the illustration purposes, consider the evolution of the angular velocity after
the transient motion. So, the satellite angular velocity is zero, quaternion is identical and
almost all initial angular momentum is stored in the RWs. System parameters are presented
in Table 1. The control parameters are kω = 0.01 N·m·s, ka = 0.001 N·m. The results are
presented in Figures 6–8. The red curves in figures are the numerical solutions, the blue
curves are the approximate solutions in Equation (16), the black horizontal lines are the
estimations in Equation (18). In order to test a more realistic scenario, we also include
gravity gradient torque into the simulation. This torque is rather small, so at sufficiently
small time spans, it would not affect the results.
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First of all, one can see from figures that estimations in Equation (18) are in good
accordance with the numerical simulation: numerical results are within the estimation
borders, and relative difference between the linearized model of motion and the full one is
around 3%. These estimations are of the utmost practical interest since these values show
the stabilization accuracy of the satellite. The evolution of the angular velocity components
is also close to the numerical solution. However, it should be noted that for the first and
second components (Figures 6 and 7), the phase difference increases by the end of the time
interval. This is due to the non-uniform evolution of the RWs’ angles of rotation. Figure 9
illustrates this effect.
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In Figure 9, one can see that the phase difference for the third RW is large, which
results in the noticeable difference between the numerical and approximate solutions for
the first and second angular velocity components.

The following numerical example is considered for the Relation (19) illustration. The
first RW angular velocity is taken as Ω1 = 10 rad/s for the first case, Ω1 = 50 rad/s for
the second one and Ω2 = Ω3 = 0 for both cases. Other parameters are the same. Results
are presented in Figure 10.
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From Figure 10, one can see that if Ω1 increases fivefold then the amplitude of angular
velocity oscillations also increases fivefold (the angular velocity amplitude increases by the
factor of 5.04). So, the Relation (19) is in good accordance with numerical simulation.

5. Effect of Static Imbalance on Inertial Stabilization

We apply the similar technique to the study of the effect of static imbalance. Its value
is usually higher than the one for the dynamic imbalance. In addition, it turns out that the
stabilization accuracy in this case depends not only on the pure imbalance parameters.
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Using the same approach as in Section 3, the following first order approximation
equations are obtained (here Ik are supposed to be axially symmetrical):(

J̃−∑
k

ĨkekeT
k

)
.
ω

1
= −kωω

1 −
kq

2
ϕ1 −∑

k
mkρk ×Ω0

k ×Ω0
k × δρkc (20)

Here δρkc represents the vector from point Ok to the RW center of mass and depends
on RW rotation angle:

δρBF
kc = DkδρRW

kc

where Dk is determined by Equation (14). The resulting equations are similar to Equation
(15), so the resulting equations of motion are also similar.

∆ω ≈ ρkδρkc∑
k

Ω0
k

(
−uk sin

(
α0

k + Ω0
kt
)
+ vk cos

(
α0

k + Ω0
kt
))

(21)

Note that attitude stabilization accuracy depends on the RW position with respect
to the system center of mass ρk, i.e., the farther RWs are placed from the system center of
mass, the worse stabilization accuracy is. This result is especially useful as it allows us
to reduce the effect of vibrations caused by static imbalance at the early stage of satellite
design.

Consider the same illustrative example as in Section 4.4. The following param-
eters are taken additionally: ρ1 =

(
0 0 0.01

)T m, ρ2 =
(

0.01 0 0
)T m, ρ2 =(

0.01 0 0
)T m and ρkc =

(
s

mk
0 0

)T
(s is the static imbalance, see Table 1) for

all RWs. All other parameters are the same (without dynamic imbalance). This leads to:

∑
k

mkρk ×Ω0
k ×Ω0

k × ρkc = sρ1
(
Ω0

1
)2

 sin
(
α0

1 + Ω0
1t
)

0
0

+ sρ2
(
Ω0

2
)2

 0
− sin

(
α0

2 + Ω0
2t
)

0

+

+sρ3
(
Ω0

3
)2

 0
0

cos
(
α0

2 + Ω0
2t
)
.

In this case vector fk and gk in Equation (15) are:

f1 =
(
−1 0 0

)T
(

Ω0
1

)2
sρ1, f2 =

(
0 1 0

)T
(

Ω0
2

)2
sρ2, f3 =

(
0 0 0

)T

g1 =
(

0 0 0
)T , g2 =

(
0 0 0

)T , g3 =
(

0 0 −1
)T
(

Ω0
3

)2
sρ3

The results of illustrative numerical simulation are presented in Figures 11–13. Black
lines are the analytical estimations, red and blue lines are the numerical simulation results.

The example shows that the Expressions (21) are in a good accordance with numerical
simulations. As one can see from the close-ups, the difference between analytical estima-
tions and numerical simulation results is rather small and is constrained to 5% in the worst
case. The difference can be explained by the gravity gradient torque which is included in
the numerical model but is not taken into account in the analytical study.

As one can see, both dynamic and static imbalances lead to the additional terms in
the right parts of Equations (15) and (20), which do not depend on satellite state vector
components for the first order approximation, so the total stabilization accuracy is the sum
of Equations (17) and (21).
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6. Conclusions

In this paper, the satellite motion analysis is carried out. The model includes RWs’
static and dynamic imbalances along with coupling orbital and angular satellite motion
with RW rotation. Software implementation of the model is validated using the momentum,
angular momentum, and kinetic energy conservation laws. The simulations show that
the integration step should be rather small due to the high values of typical RW angular
velocities. This fact makes purely numerical analysis difficult. In order to solve this problem,
the analytical approximations for the satellite stabilization accuracy are obtained in closed
form for the static and dynamic imbalances’ presence in the inertial stabilization case. The
comparison of the numerical simulation and approximate solution shows that they are in
a good accordance (relative error is about several percent). The explicit expressions can
easily be implemented and are useful during the preliminary satellite design stage.

The estimations of the attitude accuracy are obtained for the case of the satellite’s
inertial stabilization. The case of orbital stabilization is the main goal of future research.

Author Contributions: Results analysis, D.I.; original draft preparation, D.R.; model of motion
verification, Y.M.; software implementation, S.T.; work coordination, M.O. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Aerospace 2021, 8, 252 22 of 25

Appendix A

In order to derive equations of motion, the general equation of dynamics is used.
Terms for each independent virtual displacements are:

δRO : ∑
i

(
mi

..
Ri − Fi

)
+ ∑

k
∑
j

(
mkj

..
Rkj − Fkj

)
= 0,

δθ : ∑
i

ri ×
(

mi
..
Ri − Fi

)
+ ∑

k
∑
j

(
ρk + ρkj

)
×
(

mkj
..
Rkj − Fkj

)
= 0,

δϕk : eT
k

(
∑
j
ρkj ×

(
mkj

..
Rkj − Fkj

))
−Mint

k = 0.

(A1)

We start with the equations of motion for point O (first equation). Since:

..
Ri =

..
RO +

.
ω× ri +ω×ω× ri,..

Rkj =
..
RO +

.
ω× ρk +ω×ω× ρk +

( .
ω+

.
Ωk +ω×Ωk

)
× ρkj + (ω+ Ωk)× (ω+ Ωk)× ρkj,

it can be rewritten as follows:(
ms + ∑

k
mk

)
..
RO +

.
ω×

(
msrs + ∑

k
mk(ρk + ρkc)

)
+ ∑

k
mk

( .
Ωk +ω×Ωk

)
× ρkc+

+ω×ω×
(

msrs + ∑
k

mkρk

)
+ ∑

k
mk(ω+ Ωk)× (ω+ Ωk)× ρkc = Fs + ∑

k
Fk.

where:

rs =

∑
i

rimi

ms
, ρkc =

∑
j
ρkjmj

mk
, mk = ∑

j
mkj, ms = ∑

i
mi, Fs = ∑

i
Fi, Fk = ∑

j
Fkj.

Since point O is an arbitrary fixed hull point, it is reasonable to choose it, so:

msrs + ∑
k

mkρk = 0 (A2)

Then:

m
..
RO + ∑

k
mk

( .
ω+

.
Ωk +ω×Ωk

)
× ρkc + ∑

k
mk(ω+ Ωk)× (ω+ Ωk)× ρkc = Fs + ∑

k
Fk.

Introducing:

Ms = ∑
i

ri × Fi, Mk = ∑
j
ρkj × Fkj,

Js = −∑
i
[ri]×[ri]×mi, Ik = −∑

j

[
ρkj

]
×

[
ρkj

]
×

mkj.

and utilizing properties:

a× (ω× b) = −a× (b×ω) = −[a]×[b]×ω,
a× (ω× (ω× a)) = −ω× (a× (a×ω)) = −ω×

(
[a]×[a]×ω

)
,

a× (ω× (ω× b)) + b× (ω× (ω× a)) = −ω×
((
[a]×[b]× + [b]×[a]×

)
ω
)
,



Aerospace 2021, 8, 252 23 of 25

equations of hull angular motion are derived from the second Equation of (A1):(
ms + ∑

k
(ρk + ρkc)mk

)
×

..
RO+

+

(
Js + ∑

k

(
−mk[ρk]×[ρkc]× −mk[ρkc]×[ρk]× −mk[ρk]×[ρk]× + Ik

)) .
ω+

+∑
k

(
−mk[ρk]×[ρkc]× + Ik

) .
Ωk +ω×

(
Js −∑

k
mk[ρk]×[ρk]×

)
ω+

+∑
k

(
mkρkc ×ω×ω× ρk +

(
−mk[ρk]×[ρkc]× + Ik

)
(ω×Ωk)+

+mkρk × (ω+ Ωk)× (ω+ Ωk)× ρkc + (ω+ Ωk)× Ik(ω+ Ωk))
= Ms + ∑

k
(Mk + ρk × Fk).

Under Constraint (A2) and using total satellite tensor of inertia:

J = Js + ∑
k

(
−mk[ρk]×[ρkc]× −mk[ρkc]×[ρk]× −mk[ρk]×[ρk]× + Ik

)
it becomes:

∑
k

mkρkc ×
..
RO + J

.
ω+ω× Jω+ ∑

k

(
−mk[ρk]×[ρkc]× + Ik

) .
Ωk+

+∑
k

((
−mk[ρk]×[ρkc]× + Ik

)
(ω×Ωk) + mkρk ×Ωk ×ω× ρkc + mkρk ×ω×Ωk × ρkc+

+mkρk ×Ωk ×Ωk × ρkc + Ωk × Ikω+ω× IkΩk + Ωk × IkΩk) = Ms + ∑
k
(Mk + ρk × Fk).

From the third equation of (A1), we derive:

eT
k

(
mkρkc ×

( ..
RO +

.
ω× ρk +ω×ω× ρk

))
+ eT

k ∑
j

mkjρkj ×
(( .
ω+

.
Ωk +ω×Ωk

)
× ρkj + (ω+ Ωk)× (ω+ Ωk)× ρkj

)
= Mint

k + eT
k Mk

After simplification:

eT
k

(
mkρkc ×

( ..
RO +

.
ω× ρk +ω×ω× ρk

)
+ Ik

( .
ω+

.
Ωk +ω×Ωk

)
+ (ω+ Ωk)× Ik(ω+ Ωk)

)
= Mint

k + eT
k Mk

Appendix B

We consider the system of equations:(
J̃ + ε∑

k
δIk

)
.
ω+ ∑

k

(
Ĩk + εδIk

) .
Ωk = a + εδa,

eT
k

(
Ĩk + εδIk

)( .
ω+

.
Ωk

)
= bk + εδbk,

Ĩkek = Ĩkek, eT
k Ĩkek = Ĩk, eT

k δIkek = δIk,

(A3)

and want to eliminate small parameter ε near the highest order derivatives
.
ω,

.
Ωk. Since

Ωk = ekΩk, from the second Equation:

.
Ωk =

bk+εδbk−eT
k (Ĩk+εδIk)

.
ω

( Ĩk+εδIk)

= 1
Ĩk

(
1− ε δIk

Ĩk

)(
bk + εδbk − eT

k

(
Ĩk + εδIk

) .
ω
)
+ O

(
ε2). (A4)
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Substitution in the first equation of (A3) yields:(
J̃ + ε∑

k
δIk −∑

k

(
1
Ĩk

(
1− ε δIk

Ĩk

)(
Ĩk + εδIk

)
ekeT

k

(
Ĩk + εδIk

))) .
ω

+∑
k

(
Ĩk + εδIk

)
ek

1
Ĩk

(
1− ε δIk

Ĩk

)
(bk + εδbk) = a + εδa.

(A5)

Second row can be rewritten as follows:

a + εδa−∑
k

(~
Ik + εδIk

)
ek

1
Ĩk

(
1− ε δIk

Ĩk

)
(bk + εδbk)

= a−∑
k

ekbk + ε

[
∑
k

(
− δIkek

Ĩk
bk +

δIk
Ĩk

bkek − ekδbk

)
+ δa

]
+ O

(
ε2)

Note that:
J̃ + ε∑

k
δIk −∑

k

1
Ĩk

(
1− ε δIk

Ĩk

)(
Ĩk + εδIk

)
ekeT

k

(
Ĩk + εδIk

)
= J̃−∑

k
ĨkekeT

k + ε∑
k

(
δIk + ekeT

k δIk − ekeT
k δIk − δIkekeT

k
)

=

(
E3×3 +

[
ε∑

k

(
δIk + ekeT

k δIk − ekeT
k δIk − δIkekeT

k
)](

J̃−∑
k

ĨkekeT
k

)−1
)(

J̃−∑
k

ĨkekeT
k

)
Using:

(E3×3 + εA)−1 = E3×3 − εA + O
(

ε2
)

, ε� 1

Equation (A5) becomes:(
J̃−∑

k
ĨkekeT

k

)
.
ω

=

(
a−∑

k
ekbk

)
−ε∑

k

(
δIk + ekeT

k δIk − ekeT
k δIk − δIkekeT

k
)(

J̃−∑
k

ĨkekeT
k

)−1(
a−∑

k
ekbk

)
+ε

[
δa−∑

k

(
δIkek

Ĩk
bk − δIk

Ĩk
bkek + ekδbk

)]
= c + εδc

Coming back to (A4) yields:

Ĩk
.

Ωk = bk − ĨkeT
k

(
J̃−∑

k
ĨkekeT

k

)−1
c

+ε
(

δbk − δIk
Ĩk

bk

)
+εδIkeT

k

(
J̃−∑

k
ĨkekeT

k

)−1
c − εeT

k δIk

(
J̃−∑

k
ĨkekeT

k

)−1
c

−ε ĨkeT
k

(
J̃−∑

k
ĨkekeT

k

)−1
δc.
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