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Abstract: This paper treats a robust adaptive trajectory-tracking control design for a rotorcraft us-
ing a high-fidelity math model subject to model uncertainties. In order to control the nonlinear
rotorcraft model which shows strong inter-axis coupling and high nonlinearity, incremental backstep-
ping approach with state-dependent control effectiveness matrix is utilized. Since the incremental
backstepping control suffers from performance degradation in the presence of control matrix uncer-
tainties due to change of flight conditions, control system robustness is improved by combining the
least squares parameter estimator to estimate time varying uncertainties contained in the control
effectiveness matrix. Also, by selecting a suitable gain set by investigating the error dynamics, a
uniform trajectory-tracking performance over operational flight envelope of the rotorcraft is ensured
without resorting to the conventional gain scheduling method. To evaluate the proposed controller,
comparative results between IBSC and Adaptive IBSC are provided in this paper with sequential
maneuvers from the ADS-33E-PRF. The proposed method shows improved tracking performance
under variations in control effective matrix in the flight simulation. Robust and stable parameter
estimation is also guaranteed due to the implementation of the DF-RLS algorithm for the least squares
estimator.

Keywords: trajectory tracking control; adaptive incremental backstepping; direction forgetting

1. Introduction

With recent advances in the flight control system (FCS) technology, enabling safe
and reliable operation of the aircraft became a fundamental requirement for FCS design.
However, many challenges arise when designing a safe and robust rotorcraft FCS due to its
highly nonlinear and inherently unstable dynamics. Jinshuo [1] thoroughly investigated the
flight control technology for large-scale helicopters and classified the current challenges in
the rotorcraft FCS design into the following four areas: (1) complicated dynamic response,
(2) multiple flight modes, (3) model uncertainties and (4) rapid varying and wide operating
conditions. This paper mainly focuses on an effective solution of these issues in the design
of the trajectory-tracking controller for the rotorcraft using the adaptive backstepping
control design.

The conventional linear control design has been still widely used for the rotorcraft
and representative successful applications can be found in its implementations on the
JUH-60A [2] and AH-64D [3]. It commonly uses multiple models linearized around a set of
trim points and applies the gain-scheduling strategy to cover the wide operating conditions.
Also, the associated control laws are typically layered by the outer-guidance and inner-
stabilization control loops for the trajectory-tracking control [4,5]. While this approach
allows an independent design of each loop, the overall close-loop system performance
should be rigorously evaluated through a series of ground simulations and flight tests.
In addition, the inner loops which is typically structured to mainly improve the on-axis
responses require extreme additional design workloads to reduce the inter-axis couplings
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with complex model uncertainties that cannot be adequately addressed in the linear-control
design. Therefore, it can be said that the traditional linear-control techniques may have
many limitations in solving the mentioned challenges currently faced in the rotorcraft
trajectory-tracking control design.

In the past three decades, advanced nonlinear control techniques such as nonlinear
dynamic inversion [6,7], backstepping [8–11] and sliding mode [12–14] alongside with the
use of nonlinear models have also gained much attention. Among them, the backstepping
control design (BSC) became widely used in rotorcrafts due to its flexibility and systematic
design process. However, the fact that BSC is highly sensitive to external disturbances
and model uncertainties became the major drawback of this approach. A highly accurate
nonlinear rotorcraft model is also very difficult to obtain in practice because of the complex
flap, lead-lag, and inflow dynamics. Regarding the aforenoted reasons, techniques such
as sliding mode observer [15,16], Neural nets [17,18] have been incorporated into BSC
to enhance the controller’s robustness under model uncertainties and disturbances. In
recent years, the control design with the incremental approach such as the incremental
nonlinear-dynamic inversion [19,20] and incremental BSC (IBSC) [21–23] have also proven
to be robust against model uncertainties. These sensor-based incremental methods use
only a control effectiveness model by replacing the rest of the model with the measured or
estimated acceleration, thereby reducing the model dependency related to system dynamics.
However, controllers with incremental framework remains still sensitive to uncertainties in
the control effectiveness matrix (CEM). Using parameter estimators with online update laws
to estimate such uncertainties, many of incremental controllers combined with adaptive
techniques such as least-squares (LS) [21,24], tuning-function (TF) [21,22], immersion and
invariance (I&I) [21,25], and radial basis function (RBF) [26] have been developed.

This paper seeks to incorporate the LS estimator into the IBSC design in order to
estimate and compensate uncertainties in CEM, which are strongly influenced by flight
condition variation. The most common and cost-effective way to estimate such time
varying uncertainties is to use Exponential forgetting recursive least squares (EF-RLS)
by discounting past information using a constant forgetting factor. One of the main
shortcomings of the EF-RLS is that accurate and stable estimates are only ensured in a case
when the persistent excitation condition is met. During low excitation of the system, the
covariance matrix may increase without bound (known as “covariance blow-up”), and the
estimates might diverge or drift from their true values. Such excitation may not be rich
for rotorcraft application where there exists little dynamic information when the rotorcraft
is in a steady flight like stabilized hover and unaccelerated level forward flight. Also,
the performance of EF-RLS is often sensitive to a pre-selected forgetting factor which is
typically chosen by a trial-and-error process.

Considering these issues, various techniques such as variable forgetting [27,28] and
direction forgetting [29–31] are widely investigated. A variable forgetting technique de-
veloped by Fortescue [27] determines the forgetting factor at each time step based on the
information content of the upcoming data. A direction forgetting algorithm forgets the
past information selectively by a pre-defined direction, ensuring the boundedness of the
covariance matrix. With rigorous investigations of relevant issues, this paper adopts the
direction forgetting recursive least squares algorithm (DF-RLS) of Cao and Schwartz [31]
to ensure a stable and robust estimation of the CEM.

For an efficient design of controller without resorting to the gain-scheduling strategy,
the present paper thoroughly investigates the tracking error dynamics and selects a gain set
which can guarantee a uniform trajectory-tracking performance over OFE of the rotorcraft.
The main contributions of this paper can be summarized as follows (1) The design of an
adaptive IBSC (AIBSC) using the LS-based parameter estimator, (2) its applications to the
rotorcraft trajectory-tracking problem using the high-fidelity math model, (3) the proposal
of the effective gain selection strategy uniformly applicable over OFE, and (4) the validation
of the proposed control solutions using various rotorcrafts’ mission-task-elements (MTEs)
over a wide range of operating conditions. The rest of the paper is organized as follows: In
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Section 2, the problem statement for the rotorcraft trajectory-tracking control is presented
considering uncertainties in an incremental dynamic framework. In Section 3, the LS-based
estimator with Direction forgetting technique is presented. In Section 4, the AIBSC design
based on a certainty equivalence principle is presented with the stability proof for overall
closed-loop system using the Lyapunov-based method. Results of numerical simulations
with BO-105 high fidelity model are presented in Section 5 to show the effectiveness of the
proposed method. Finally, conclusions are drawn in Section 6.

2. Dynamic Model with Uncertainties
2.1. Helicopter Motion Equation

The rotorcraft dynamics can be represented with the following Euler equation in the
body-fixed frame, and the kinematics for the linear and angular velocities:

.
v = 1

m fb −ω× v
.
ω = J−1(mb −ω× Jω)
v = Tv

.
r

ω = Tω
.

ϕ

(1)

where:

v =

 u
v
w

, ω =

 p
q
r

,ϕ =

 φ
θ
ψ

, r =

 x
y
z

 (2)

The mass and the moment-of-inertia matrix of the rotorcraft are denoted by m and J,
respectively. The transformation matrices are expressed with the definition of cx = cos x
and sx = sin x by:

Tv =

 CθCΨ CθSΨ −Sθ

SΦSθCΨ − CΦSΨ SΦSθSΨ + CΦCΨ SΦCθ

CΦSθCΨ + SΦSΨ CΦSθSΨ − SΦCΨ CΦCθ

, Tw =

 1 0 −Sθ

0 CΦ SΦCθ

0 −SΦ CΦCθ

 (3)

The position and heading angle are typically prescribed for the trajectory-tracking
problem and the dynamics for the associated states can be derived using Equation (2) as
follows:

.
v = Tv

..
r +

.
Tv

.
r

.
ω = Tω

..
ϕ+

.
Tω

.
ϕ

(4)

..
r = T−1

v
{

fb −
(
Tω

.
ϕ
)
×
(
Tv

.
r
)}
− T−1

v
.
Tv

.
r

..
ϕ = T−1

ω J−1{mb −
(
Tω

.
ϕ
)
×
(
JTω

.
ϕ
)}
− T−1

ω

.
Tω

.
ϕ

(5)

The external forces fb and moments mb are typically derived using the component-
based modeling techniques for the rotorcraft [4,32]. As an example, fb can be represented
by the sum of each contribution of the main rotor (mr), fuselage ( f us), stabilizer (stb), tail
rotor (tr), and gravity (grv) forces as:

fb = fmr + ffus + fstb + ftr + fgrv (6)

The pitch angles of the main and tail rotors are typically used for the control of a
conventional helicopter. In such a case, the primary controls up = (δ0, δ1C, δ1S, δTR)

T

consist of the collective, lateral-cyclic, longitudinal-cyclic pitches of the main rotor, and
the collective pitch of the tail rotor, respectively. These controls cause the flap, lead-lag,
and feathering motions of the rotor, which directly affect the forces (fmr, ftr) and moments
(mmr, mtr) produced by the rotors. The associated dynamics (flap and lead-lag), and the
resultant rotor force and moment are typically derived by applying the blade-element
method (BEM) for a high-fidelity math model and by numerically integrating the nonlinear
aerodynamic loads along the blade radial position [32].
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The high-fidelity models are generally nonaffine to the primary control up and may
suffer from a wide range of model uncertainties. The forces and moments generated
by the rotor are directly affected by uncertainties in the mass, aerodynamic, and elastic
properties of the rotor blade. In addition, the states associated with the inflow model
are typically defined in an averaged sense and non-measurable, which may add the
uncertainty in the math model. Considering the separated time scales in the rigid-body and
rotor dynamic modes, the dynamic rotor-trim approach is commonly adopted to design
the flight controller only with the rigid-body dynamics [33]. In such a case, the motion
equation which can be represented by the 2nd order dynamics for x = (x, y, z, φ, θ, ψ)T is
derived as:

..
x = fn

(
x,

.
x, up

)
+ dm

(
x,

.
x, up

)
(7)

Here, the force fn for the nominal plant corresponds to the right-hand-side terms of
Equation (5) with model uncertainties term dm.

2.2. Incremental Dynamics

The incremental dynamics corresponding to Equation (7) are derived from the refer-
ence dynamics

..
x0 = f0 + dm0 = fn

(
x0,

.
x0, up0

)
+ dm

(
x0,

.
x0, up0

)
represented by the known

or measured states x0 = x(t0) and controls up0 = up(t0) at the previous time step t0.
The incremental dynamics corresponding to the next time t = t0 + ∆t are derived using
incremental states x = x0 + ∆x and controls up = up0 + ∆up. Therefore, the force vector at
t = t0 + ∆t can be approximated using the first-order Taylor-series expansion where the
approximated dynamics can be derived as:

..
x ≈ f0(x0 + ∆x,

.
x0 + ∆

.
x, up0 + ∆up) + d(x0 + ∆x,

.
x0 + ∆

.
x, up0 + ∆up)

≈ f0 + dm0 + F0

(
∆x
∆

.
x

)
+ D0

(
∆x
∆

.
x

)
+ G0∆up + H0∆up

≈ ..
x + F0

(
∆x
∆

.
x

)
+ D0

(
∆x
∆

.
x

)
+ G0∆up + H0∆up

fn
(
x,

.
x, up

)
≈ f0 + F0

(
∆x
∆

.
x

)
+ G0∆up

dm
(
x,

.
x, up

)
≈ dm0 + D0

(
∆x
∆

.
x

)
+ H0∆up

x = x0 + ∆x,
.
x =

.
x0 + ∆

.
x

(8)

where F0 = ∂f0/∂
(
x,

.
x
)

is the system matrix and G0 = ∂f0/∂up is the control effectiveness
matrix (CEM). D0 = ∂dm0/∂

(
x,

.
x
)

and H0 = ∂dm0/∂
(
up
)
, each of which refers to uncertain-

ties in the system matrix and CEM. Since the dynamics related to incremental states ∆x, ∆
.
x

do not change significantly when the control input is updated in the infinitesimally small-
time increment ∆t the related terms can be neglected. Thus, the incremental dynamics of
the system is written as:

..
x ≈ ..

x0 + (G0 + H0)∆up (9)

At this point, it is worth mentioning the favorable properties of the above incremental
dynamics. First, the dynamics becomes affine to controls. Thus, they can be straightfor-
wardly used for the IBSC design. Secondly, only the measured or estimated acceleration
..
x0 and the uncertainties in the CEM mainly affect the stability of the system. Therefore,
assuming that sensor measurements are exact, the matched uncertainties H0 are contained
only in the linearized CEM. It can be claimed that the adverse effect of uncertainties can be
completely removed in the control design, once G0 is accurately estimated, that is, H0 ≈ 0.
This is one of the important reasons why this paper selects the incremental dynamics for
the rotorcraft trajectory-tracking control.

A successful implementation of IBSC design requires the accurate acceleration
..
x0 at the

previous time step. The linear accelerations are typically measured by the accelerometers
in the navigation system, whereas sensors to measure the angular acceleration are rarely
found on the market. As an alternative, many prediction algorithms have been developed
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and successfully used in the literatures [34,35]. The 1st order backward-difference formulas
(BDF) are the simplest one among them. It uses the measured angular velocities and applies
the following formula to estimate the angular acceleration at t = tk:

.
ωk =

1
∆t

(ωk −ωk−1) (10)

The 5th order BDF may provide a highly oscillatory estimate when there exists a
sharp change in the measured angular velocity. In addition, the filtering methods typically
requires a math model to determine the filter coefficients. Therefore, they highly depend
on a specific math model and cannot be generalized for other models. This paper adopts
the 1st order BDF for the prediction of the required angular acceleration and predicts the
linear accelerations with those computed during the simulation.

3. Least-Squares Estimator

The certainty-equivalence principle has been widely adopted in estimation-based
adaptive control design. There it is assumed that the uncertainty is exactly identified before
the controller is designed. Under this principle, the design of the identification module can
easily be separated from that for the controller and diverse range of estimation techniques
can be adapted. Successful applications of the LS-based design have been reported in
adaptive controls for aircraft [21,24]. As previously mentioned, an accurate estimation of
the CEM G0 is crucial to enhance the control robustness to model uncertainties in the IBSC
design. Since the exact system parameters of rotorcraft are nearly impossible to find due
to the complexity of rotor dynamics, analytically calculated Jacobian matrix using finite
differences is often used to approximate one.

Nevertheless, calculating Jacobian matrices at each time step implies a heavy com-
putational load due to the complexity of a high-fidelity rotorcraft model and is nearly
impossible to execute in practice since the incremental dynamics require a high control
update rate. Often, multiple linearized models obtained at different trim points along
the wide operating conditions are scheduled to avoid this issue. However, the scheduled
matrices may not represent the system dynamics when the aircraft is in an aggressive
maneuver since they are only valid around their trim points. For these purposes, this
paper adopts the LS-based estimator to estimate such time varying system parameters and
to avoid carrying heavy inboard model of a rotorcraft. System parameters in the flight
dynamic society are typically defined using the Euler equation in Equation (1), which is
represented in the aircraft body-fixed frame. Applying incremental dynamics in Euler
equation in Equation (1) gives:

.
n ≈ .

n0 + B∆up

n =

(
v
ω

)
,

.
n =

( .
v
.

ω

)
B =

(
Bv
Bω

)
=

(
∂

.
v/∂up

∂J
.

ω/∂up

) (11)

where
.
v0,

.
ω0 are obtained using the relationship of Equation (4) with

..
x0. The unknown

parameters corresponding to Equation (11) can be related to G0 using Equation (3) as
follows:

B0 =

(
Tv 0
0 Tω

)
0
G0 = T0G0 (12)

The present LS estimator is designed to estimate B0. The matrices required for the
implementation of AIBSC will be computed using G0 = T−1

0 . If the subscript j is used
for a time indicator like t = tj for the convenience of derivation, Equation (11) can be
represented by the expression:

Bj∆up,j ≈
.
nj −

.
nj−1 = cj (13)
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using the structured representation of Bj = (bj,1
∣∣bj,2|. . .|bj,4) . The estimation error in the

incremental control forces of Equation (13) can be derived when all of cj are available as:

ej = Φjbj − cj (14)

where the regressor matrix Φj and the unknown parameter vector bj are:

Φj = diag
(
∆nT , ∆nT , · · · , ∆nT) ∈ R6×24

bj = ( bj,1 bj,2 bj,3 bj,4 )
T ∈ R24×1 (15)

The estimation of bj should be accurate enough for control-design applications when
they are predicted using the most recent data inasmuch as possible. For this purpose, the
recursive LS estimator with the exponential forgetting algorithm (RLS-EF) is widely used to
capture the time-varying natures of the unknown parameter. Considering the algorithmic
features mentioned above, bj ≈ b̂ can be computed by the following well-known RLS-EF
formulation using a constant forgetting factor λ:

b̂k = b̂k−1 + PkΦT
k
(
ck −Φkb̂k−1

)
P−1

k = λP−1
k−1 + ΦT

k Φk
(16)

However, one of the widely known disadvantages of the RLS-EF algorithm is that the
regressor Φ has to be ‘persistently exciting (PE)’ to ensure stable estimation. Such assump-
tion may not hold for aircraft application where there exists little dynamic information
when the aircraft is in a steady flight or hover situation. With poor excitation of the system,
the covariance matrix P may grow up to a large value leading to a “covariance blow-up”
issue [36]. Thus, the estimation process becomes extremely sensitive to small disturbances
and noises, leading to an inaccurate estimations. The property of stable estimation is of
foremost importance to our research since the aircraft may be in a control failure if the
estimated parameter diverges to a large value. To avoid such problem, the concept of
“direction forgetting (DF)” has been widely studied in the field [29–31]. The basic concept
of DF is to discount the covariance matrix only in the certain direction of the current excited
data when the input data is rich. In this paper, we take the DF algorithm of Cao and
Schwartz [31], which determines the forgetting direction based on the orthogonal decom-
position of the information matrix Rk = P−1

k along the excited data Φk. The information
matrix, Rk is updated in the form of:

Rk = Rk,1 + λRk,2 + ΦT
k Φk

where
Rk,1ΦT

k = 0, Rk,2ΦT
k = RkΦT

k

(17)

where Rk,1 contains the information orthogonal to the excited data Φk and Rk,2 contains part
of the information matrix which is in the same parameter space of the current excitation.
Equation (17) implies that forgetting is only applied to the part of covariance matrix Rk,2,
which is in the direction of the incoming data. By following the detailed derivations
and proofs in [31], the covariance matrix can be bounded using the complete Directional
Forgetting RLS (DF-RLS) shown as follows:

b̂k = b̂k−1 + PkΦT
k
(
ck −Φkb̂k−1

)
Pk = Pk −

(
ΦkPkΦT

k + I
)−1PkΦT

k ΦkPk,j

−
Pk =

{
Pk−1 if ‖Φk‖ ≤ εDF

Pk−1 +
1−λ

λ

(
ΦkP−1

k−1ΦT
k

)−1
ΦT

k Φk if ‖Φk‖ > εDF

(18)

where the dead zone εDF is determined based on the noise level of the data.
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4. Design of Incremental Backstepping Control Law
4.1. Incremental Backstepping Control

The IBSC control law will be designed based on the Lyapunov-function-based method
using the dynamics shown in Equation (9). In a case when the position and heading of the
aircraft is prescribed for the trajectory-tracking control, the corresponding system dynamics
can be written as: ..

x ≈ ..
x0 + G0∆up

y = (x, y, z, ψ)T (19)

where the estimated parameter G0 is obtained from Equation (12) and Equation (18). Since
up first appeared at the second differentiation

..
y of the system output, Equation (19) has

system dimensions of n = 12, with its relative degree ρr = 8. Therefore, there exist four
unobservable internal attitude dynamics for

(
φ,

.
φ, θ,

.
θ
)

. To effectively handle such an
underactuated system, the slack-variable approach has been proposed by Kim [37] and
Lee [38] to obtain the fully actuated form of the system dynamics. Thereby, the standard
process for the iBSC design becomes applicable in an integrated manner by assuming that
the trajectories for all internal states are known or designated a priori.

The fully actuated system dynamics corresponding to Equation (19) can be derived by
adding the slack control matrix Gs and the incremental stack variables ∆us ∈ R2. Thereby
formulating the system dynamics in an affine form of ∆u for convenience:

..
x =

..
x0 + G0∆u + ξ

y = x
(20)

where:
G0 = (G0, Gs)
ξ = −Gs∆us

∆u =

(
∆up
∆us

) (21)

The control effectiveness matrix Gs for the slack variables is typically chosen to get a
well-conditioned square matrix for G0. In this paper, Gs is simply designated by:

Gs = (02×4, I2×2, 02×1)
T (22)

The slack-variable vector ξ will be estimated to meet the Lyapunov stability criteria.
Using their estimates ξ̂, the corresponding errors ξ̃ are related to the exact ones ξ. Assuming
that ξ is slowly varying, the error dynamics can be expressed by:

.

ξ̃ = −
.
ξ̂ using ξ =

^
ξ + ξ̃ (23)

As in the IBSC control design, the tracking errors in the position and velocity trajecto-
ries are defined using the pseudo control α as:

z1 = x− xd
z2 =

.
x− α

(24)

By differentiating Equation (24) the error dynamics are derived as:

.
z1 = z2 + α− .

xd.
z2 =

..
x0 + G0∆u + ξ − .

α
(25)

The BSC design typically defined the controller structure using the recursive approach
consisting of the sequential definition of the control Lyapunov function (CLF) and deriva-
tion of the corresponding stability conditions. In this paper, the integrated approach is
adopted, and stability can be proved based on the following CLF V:
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V =
1
2

zT
1 Q−1z1 +

1
2

zT
2 z2 +

1
2

ξ̃TΓ−1
ξ ξ̃ (26)

The weight matrices of Q, Γξ , and
{

Λj
}j=N

j=1 are positive definite and typically defined
using the diagonal ones. The controller structure can be defined using the stability condition
.

V ≤ 0. Using Equation (25),
.

V can be derived in detail as follows:

.
V = zT

1 Q−1 .
z1 + zT

2
.
z2 + ξ̃TΓ−1

ξ

.

ξ̃

= zT
1 Q−1(α− .

xd
)
+ zT

2

(
Q−1z2 +

..
x0 + G0∆u + ξ − .

α
)
+ ξ̃TΓ−1

ξ

.

ξ̃
(27)

The control structure becomes definable by putting condition on
.

V to become negative
definite. Using Equation (28) with the parameter matrices of K1, K2 > 0, leads to:

α = −QK1z1 +
.
xd

∆u = −G0
−1
( ..

x0 + Q−1z2 + K2z2 + ξ̂ − .
α
) (28)

With:
.

V = −zT
1 K1z1 − zT

2 K2z2 + ξ̃T
(

Γ−1
ξ

.

ξ̃ + z2

)
(29)

Using Equation (29), the dynamics for the update of ξ̂ can be defined to obtain the
final stability condition shown in Equation (30):

.
ξ̂ = Γξz2 (30)

.
V = −zT

1 K1z1 − zT
2 K2z2 ≤ 0 (31)

The application of control law Equation (28) and updated Equation (30) satisfies the
stability condition as proven in Equation (31). Hence, by Lyapunov stability theory, the
system is globally asymptotically stable.

4.2. Tuning the Controller Gains

The gain tuning process of the proposed incremental backstepping controller may
be a time-consuming task. In order to ensure high tracking performance over an entire
flight region with a single gain, the gain selection method is derived in this section through
tracking error dynamics. The error dynamics of z1 can be obtained as follows:

..
z1 =

..
x− ..

xd = f + G0∆u + d + ξ − ..
xd (32)

By substituting Equation (32) with the control input in Equation (28), the error dynam-
ics becomes:

..
z1 = −Q−1z1 −K2

( .
z1 + QK1z1

)
−QK1

.
z1 + ξ̃ (33)

Rearranging it into a 2nd order ordinary difference equation gives:

..
z1 + (K2 −QK1)

.
z1 +

(
K2QK1 + Q−1

)
z1 = ξ̃ (34)

Therefore, the control gains and weight matrices are directly related to the tracking
performance of the controller. With the selected natural frequencies and damping ratio for
each axis, the gains can be selected in the following manner:

k2j + qjk1j = 2ζ jωj
k2jqjk1j + qj = ω2

j
(35)
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Rearranging into an equation with each gain gives:

k1j =
1
qj

(
ζ jωj ±

√
1
qj
−
(

1− ζ2
j

)
ω2

j

)
(36)

k2j = ζ jωj ∓
√

1
qj
−
(

1− ζ2
j

)
ω2

j (37)

Also, the range of gain qj is determined considering the range of damping ratio:

1
ω2

j
≤ qj ≤

1(
1− ζ2

j

)
ω2

j

(38)

The maximum value of Equation (38) is selected in this paper to avoid selecting the
remaining gains by a near 0 value:

qj =
(

ω2
j −ω2

j ζ2
j

)−1
(39)

Therefore, by selecting the gain according to Equation (37), one can reduce the de-
sign workloads and ensure that the desirable response characteristics of Equation (34) is
uniformly met in the OFE:

k1j =
ζ jωj

qj
, k2j = ζ jωj, qj =

1(
1− ζ2

j

)
ω2

j

(40)

5. Applications and Discussions

Results of a numerical simulation will now be presented to validate the effectiveness of
the proposed Adaptive Incremental backstepping controller. To show superior performance
of the proposed method, trajectory tracking with: (1) incremental backstepping (IBSC)
and (2) adaptive incremental backstepping (AIBSC), are performed. The highly fidelity
flight dynamics model of a BO-105 from HETLAS [32] is used to simulate a sequence of
maneuvers in ADS-33E-PRF [39]. The rotorcraft is initially trimmed at a steady-level flight
condition with hovering condition at h = 100 ft. The flight simulation is conducted under a
time step size of 0.001 s with the 4th order Runge-Kutta integrator. A control update rate of
100 Hz chosen in order to satisfy the underlying assumption of the incremental framework.

Reference trajectories are generated using the spline-trajectory generator. The trajec-
tory consists of the following maneuvers. The rotorcraft initiates an acceleration maneuver
up to 60 knots from the initial hover position. Then, a sequence of slalom, transient
turn, and helical turn maneuver is performed at 60 knots and the rotorcraft decelerates
to 30 knots. After performing pop-up maneuver the rotorcraft decelerate back to 0 knot
and performs a pirouette maneuver. The summarized sequence of maneuvers is shown in
Table 1.

Table 1. Maneuver specification for trajectory tracking.

Maneuvers Time Length (s) Velocity Range (kts) Notes

Initial Condition 0 Hover Initial Height: 100 ft
Acceleration 0~20 0 to 60 /

Slalom 20~45 60 /
Transient Turn 45~75 60 180 deg turn
Helical Turn 75~135 60 720 deg turn
Deceleration 135~150 60~30 /

Pop up 150~160 30 100ft ascent
Deceleration 160~175 30~0 /

Pirouette 175~220 0 Radius: 100 ft



Aerospace 2021, 8, 248 10 of 18

During the maneuver, rotor trim solutions are used to eliminate the effect of high-
frequency oscillatory forces and moments related to the rotor and inflow dynamics. The
generated trajectories are shown in Figures 1–3.
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Here, simulations are conducted to validate the usefulness of the present method
compared to the IBSC. For both controllers, the natural frequency and the damping ratio
for gain selection are selected as ζ j = 0.75 and ωj = 2.0 uniformly for all axes. For
parameter estimation, an initial covariance matrix is set as P0 = 101 I with εDF = 10−4.
Simulations with IBSC and AIBSC are performed in order to show increased performance of
the proposed controller. First, Figures 4–6 show simulations with various control effective
matrices with IBSC. Each component of the control effective matrices bi,j are multiplied
by a random constant factor α with normal distribution of zero mean in order to generate
uncertainties within 10%, 20%, and 30% of its exact value. Simulation results are presented
in Figures 4–6.

b̂i,j = (1 + α)bi,j (41)
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Figure 4. Simulation results of the trajectory tracking control with IBSC–Aircraft States.

From the results, one can see that system stability is not heavily affected within
20% inaccuracy of CEM. However, with 30% inaccuracy of CEM, the simulation showed
severe control oscillations, particularly in aggressive maneuvers (slalom, transient turn
and, helical turn). Although tracking performance is well maintained, even in the presence
of control oscillations, such fluctuations are too severe for practical implementation on the
actual rotorcraft. Also, in order to acquire exact CEM, finite differences must be used with a
high-fidelity rotorcraft model which may burden the flight control computer with a heavy
computational load. To show the improved robustness of AIBSC to uncertainties in CEM,
simulations are performed with constantly updated control matrix using a LS-Estimator
with DF-RLS algorithm and EF-RLS algorithm. Results are shown in Figures 7–9.
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The AIBSC shows superior tracking results without undesirable oscillatory control
inputs The time varying control derivatives are constantly identified to make up for the
instability resulting from the CEM mismatch. Figure 10 shows the estimation results of key
control derivatives of CEM using: (1) EF-RLS and (2) DF-RLS, with different forgetting fac-
tors. The remaining control derivatives are omitted since their effectiveness is considerably
small compared to the terms shown in Figure 10 or did not differ from their initial values
throughout the simulation.

The dash-dotted black line in Figure 10 indicates the approximated control derivatives
using finite differences from straight and level flight at hover to 60 knots. The results show
that EF-RLS is highly sensitive to a selection of forgetting factor as in choosing λ = 0.995 in
EF-RLS caused the estimates to diverge with an unstable closed loop stability and control
failure in Figure 7. Since control input increments are rarely given (∆up ≈ 0) in 50~75 s,
that is, the persistent excitation condition is not met, the covariance matrix P grows without
bound in EF-RLS. Thus, the estimator becomes extremely sensitive that estimates diverge
even in the presence of small noises. One can see that the estimates did not diverge by
choosing λ = 0.9995 in EF-RLS since the duration of stationary control inputs did not
exceed the asymptotic memory length of the estimator. However, such condition may
not hold in practical applications. This shows the main reason why DF-RLS is adopted
in in this paper. The covariance matrix P remains bounded through direction forgetting
technique, allowing the robustness of estimation to be guaranteed even when only poor
control signals are given.

Pin-point accurate estimation of control derivatives was not guaranteed in some part
of the flight envelope. The assumption that F0∆x and F0∆

.
x are left out in incremental

dynamics of Equation (9) and the fact that angular accelerations are only a predicted value
of the exact ones affect the estimation accuracy. The lack of persistently exciting signals also
limits the estimator from converging to its true values although divergence of parameter is
prevented through DF-RLS. Indirect adaptive controllers can be expected to misbehave,
since such trajectories are obviously not persistently exciting in some maneuvers. To
tackle this problem, robust control techniques can be additionally considered such as
incremental backstepping sliding mode control to passively tolerate a wide range of model
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uncertainties [40]. Additional harmonic control inputs without regarding the tracking
problem may also be considered [41]. In the latter case, additional excitation inputs must
be preferably small to avoid losing track of desired trajectories. Examination between
the tracking error and the magnitude of additional control inputs to ensure both accurate
estimation and robust tracking performance remains as a further research. Nevertheless.
Simulation results show that estimates are accurate enough to be used in the AIBSC
controller to successfully track the desired trajectories. This is due to the property of
IBSC that minor uncertainties in CEM does not heavily affect the stability of the system
as in Figures 4–6. Therefore, it can be claimed that the trajectory tracking of a helicopter
can be successfully conducted in a wide range of flight envelope using AIBSC with the
DF-RLS algorithm. The present design can be used to provide an excellent trajectory-
tracking performance without depending on a heavy inboard flight model nor the complex
calculation of the control Jacobian using a rotorcraft model.
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6. Conclusions

This paper proposes an adaptive incremental backstepping controller for the trajectory
tracking of a large-scale helicopter. With the incremental approach, the system dynamics
can be shown in an affine from which is a combination of control effectiveness matrix and
the acceleration measurements. Assuming that angular acceleration measurements are
exact, only the CEM affects the control system stability. For a conventional fixed wing
application, the system can straightforwardly be shown in a control affine form such as
a fixed wing aircraft. Unfortunately, with the complex and nonlinear rotor dynamics of
the helicopter, analytical solutions of the CEM cannot be easily obtained, and thus finite
differences are used to estimate one. However, calculation of a control Jacobian using
complex rotorcraft models during flight may impose a heavy computational burden on
the flight computer. With the need of high sampling rate for the incremental dynamics,
limitations may exist in practical applications.

To effectively identify the control effective matrix without the use of a computationally
heavy inboard rotorcraft model, a certainty equivalence controller by incorporating the
least squares parameter estimator is proposed. A simple and most common solution
is to use the exponential forgetting recursive least squares method. Such a solution,
however, causes any estimate to diverge when persistent excitation conditions are not met.
That is, the robustness of the estimation was not guaranteed when the input signals are
poor. A more attractive solutions is to use a direction forgetting technique which bounds
the covariance matrix. The control method of integrating a direction forgetting based
estimator and the incremental backstepping control update law for the rotorcraft trajectory
control significantly improves the trajectory tracking performance and the response of the
rotorcraft.

The gain selection process has also been incorporated to maintain uniform tracking
performance along the flight and avoid conventional gain selection by trial and error. By
constantly using estimated model parameters and a unified gain obtained through selection
process, the proposed controller is uniformly applicable over the whole operational flight
envelope without resorting to the conventional gain scheduling method. The validation
of the proposed control solutions using various rotorcraft mission task elements from
ADS-33E-PRF are shown in this paper.
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