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Abstract: In recent years, flight delay costs the air transportation industry millions of dollars and has
become a systematic problem. Understanding the behavior of flight delay is thus critical. This paper
focuses on how flight delay is affected by operation-, time-, and weather-related factors. Different
econometric models are developed to analyze departure and arrival delay. The results show that
compared to departure delay, arrival delay is more likely to be affected by previous delays and the
buffer effect. Block buffer presents a reduction effect seven times greater than turnaround buffer in
terms of flight delays. Departure flights suffer more delays from convective weather than arrival
flights. Convective weather at the destination airport for flight delay has a greater impact than
at the original airport. In addition, sensitivity analysis of flight delays from an aircraft utilization
perspective is conducted. We find that the effect of delay propagation on flight delay differs by
aircraft utilization. This impact on departure delay is greater than the impact on arrival delay. In
general, specific to the order of flights, the previous delay increases the impact on flight on-time
performance as a flight flies a later leg. Buffer time has opposite effects on departure and arrival
delay, with the order increasing. A decrease in buffer time with the order increasing, however, still
has a greater reduction effect on departure delay than arrival delay. Specific to the number of flights
operated by an aircraft, the more flights an aircraft flies in a day, the more the on-time performance
of those flights will suffer from the previous delay and buffer time generally.

Keywords: flight delay; delay propagation; empirical analysis

1. Introduction

With continuous development of the world economy, flight demands have witnessed
raid growth in the past decades. According to statistics from the World Bank, the number
of global air travelers grew tenfold between 1970 and 2019 [1]. To improve the efficiency
of the air traffic network, the air transportation sector has developed and implemented
new technologies. For example, traffic flow management (TFM) has been proposed to
control the overall flow of traffic in the national airspace system rather than control specific
flights, compared to the traditional air traffic control system. However, the runway and
airspace capacity are still not enough to manage a large number of flights. This situation
has led to serious en-route and terminal traffic congestion causing rampant flight delays.
According to the Joint Economic Committee report, flight delay cost the U.S. aviation
industry almost $12 billion in 2007 [2]. In China, the Civil Aviation Administration of
China (CAAC) introduced a series of new regulations to prevent flight delays, such as a
fine of up to 30,000 RMB when a serious flight delay occurs [3]. The European regulation
EU 2019/317 is used to push air navigation service providers in Europe to perform better
to improve flight on-time performance [4]. The airline industry itself has made significant
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efforts to mitigate the negative consequences of flight delays. An effective method for
airlines is to adjust flight schedules to absorb delays and prevent current delays from being
propagated [5,6].

Considering the spatiotemporal effect of flight delays, flight departure and arrival
delays are intertwined with other time components related to an aircraft. As shown in
Figure 1, departure (arrival) delay is the difference between the actual departure (arrival)
time and scheduled departure (arrival) time. Note that the delay mentioned in this paper
refers to gate delay. The previous delay of departure delay is the arrival delay of the
previous flight leg operated by the same aircraft, which is defined as “previous arrival
delay”, or Delay_PreArr. The delay immediately prior to the arrival delay refers to the
departure delay of the same flight, which is defined as “previous departure delay” in this
paper, or Delay_PreDep. During this turnaround time between the aircraft’s arrival and its
next departure, a series of operations are carried out, such as the unloading and loading of
baggage and onboard catering supplies, the exterior inspection of the plane, and refueling
if required. The time for the needed operations on the ground is called the “minimum
turnaround time” or “minimum connection time” (MCT). The “turnaround buffer time”,
referred to as TT_dif in this paper, is defined as the difference between the scheduled
turnaround time and the MCT. For flight airborne operation, the block time is calculated
between the arrival and departure time of the same flight. Similar to MCT, the time for the
needed operations for airborne is called minimum block time (MBT). The block buffer time
is defined as the difference between the scheduled block time and the MBT, named BT_dif.

Figure 1. Time components related to a flight.

The abovementioned time components involved in a flight provide some useful per-
spectives on what to consider when modeling flight delay. First, as the delay propagation
effect is a primary concern of the flight on-time performance in this paper, an important
factor to consider is Delay_PreArr (Delay_PreDep) when analyzing the departure (arrival)
delay of the current flight under study. When the difference between the actual turnaround
(block) time and the scheduled one is small, departure (arrival) delay is highly correlated
with Delay_PreArr (Delay_PreDep). The second important aspect is the buffer time during
the ground (airborne) operation, which can account for part of the delays from the pre-
vious arrival or departure. In reality, the airline tends to insert a buffer in the scheduled
time, which indicates that, except for in some extreme conditions, the actual turnaround
(block) time is shorter than the scheduled time. In other words, part of Delay_PreArr
(Delay_PreDep) can be absorbed when a flight is during turnaround (airborne).

In addition to delay propagation, other factors can contribute to serious delays, such
as convective weather and airport congestion. Given that flight delay is susceptible to
the air traffic environment, understanding the influencing factors is vitally important for
improving efficiency of the air traffic system, as appropriate strategies can be implemented
to alleviate the impacts of causes on flight delays both at the departure and arrival end
through an efficient allocation of equipment and personnel. Therefore, the purpose of this
paper is to provide effective and practical empirical models for studying flight departure
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and arrival delays considering aircraft utilization with operation-, time-, and weather-
related variables.

This paper makes two major contributions. First, compared with US and European
markets, empirical analyses on both departure and arrival delay considering the delay
propagation effect of the whole Chinese market for individual flights are limited. In
this paper, a comparative analysis of flight departure and arrival delay is conducted to
examine how departure and arrival delay are influenced by categorizing the various factors
into three groups, including the operation-, time-, and weather-related variables. Wong
and Tsai [7] model both departure and arrival delay with various factors for individual
flights; however, they only focus on a single OD pair of one airline. This paper provides a
perspective from the air traffic network to analyze flight delay.

Second, an additional component, flight order has largely been overlooked in the
existing literature. To fill this gap, the present study makes a second contribution by
performing sensitivity analysis of flight delay to OrdFltOfAC (the order of the flights
that an aircraft flies in a day) of a flight and NumFltOfAC (the number of the flights
that an aircraft flies in a day) of an aircraft. In most cases, flight operators may try to
extend buffer to make up for previous delays to improve punctuality. However, to increase
productivity, it is in an airline’s interest to minimize buffer in order to fly more flight legs.
Therefore, such a sensitivity analysis is essential to better understand the relationship of
delay propagation-related factors and flight legs.

The remainder of the paper is organized as follows. In Section 2, we present four key
hypotheses, which form the basis of our model specifications. Section 3 describes the data
sources and the data filtering process. Estimation results of the base model are reported
and discussed in Section 4. Further sensitivity analysis of the estimation results to aircraft
utilization is performed in Section 5. Findings of the paper are summarized in Section 6
along with suggestions for future research.

2. Literature Review

Research on flight delays has been taking place for more two decades. The majority of
papers regard the delay propagation effect as an important variable. Boswell and Evans
examined delay propagation that resulted from late-arriving aircraft using Markov chains
and found an overall multiplier of 1.8, meaning that one minute of initial flight delay
generated an additional 0.8 min of delay when propagated downstream [8]. Beatty et al.
developed the concept of delay multipliers to analyze the delay propagation effect using
an American Airlines crew and aircraft connectivity through an actual airline operating
schedule. However, the turnaround buffer time did not account for delay propagation [9].
Later research noticed that turnaround buffer time is taken as a means to reduce propagated
delays from previous flight legs. Estimation methods, including survival analysis, quantile
regression, and Bayesian models, are used to analyze flight departure delay with delay
propagation-related factors [10–13]. Beside the effect of delay propagation on turnaround,
researchers also notice this effect when a flight is airborne. Similar to turnaround buffer
time, airlines usually assert block buffer time to improve the arrival on-time performance
by absorbing the departure delays. Thus, flight arrival delays tend to be shorter than delays
at the departure end in general. Departure delay and airborne buffer are used as important
explanatory variables to estimate or predict the arrival delay [7,14–17].

In addition to the delay propagation effect, other factors are also related to the flight
delays. Baumgarten et al. explore the relationship between hubbing activities and flight
delays in the United States from an airline-specific network perspective [18]. Time-related
variables, such as the time of day, the day of the week, and the season, are adopted by
many models to estimate flight delays. Periodic patterns are shown as significant variables
in empirical models in different airports and even in different countries [16,19–21]. Air
traffic flow management regulations will impact flight delays, which also increases the
delay cost [22]. Flight delay is closely associated with the weather conditions at the airports
of origin and destination, or en-route. Among the various causes of air flight delay, the
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weather condition has been observed as a dominant factor in many previous studies.
Adverse weather, such as high surface winds, low visibility, and thunderstorms, leads to
increasing takeoff or landing separations, and this further reduces the airport’s capacity
which is then likely to result in departure or arrival delays [23–26]. A larger part (nearly
75 percent) of system delays are related to adverse weather conditions [27]. Weather-
related variables, such as convective weather, reduced ceiling and visibility, and wind,
are presented as significant factors in the most airports [28,29]. Additionally, en-route
airspace weather is an important factor. Some studies specify meteorological factors by
incorporating various weather conditions to establish a Weather-Impacted Traffic Index
(WITI) model. WITI data are taken as the major factors to estimate flight delays [30,31].

In view of prior research, various factors, including both delay propagation and other
variables, are considered in the empirical analysis. However, seldom research compares the
impact of various factors for departure and arrival delay of individual flights. Furthermore,
this paper provides a different perspective of aircraft utilization when developing the flight
delay models. The results can assist airlines to improve the on-time performance when
scheduling the flights in the air traffic network.

3. Model Development

Based on the literature review and speculations in Section 1, in this section we identify
several factors that may affect flight delays. Four key hypotheses about the factors are
formalized in Section 3.1. Building on the hypotheses, multiple model specifications are
proposed in Section 3.2 to characterize the flight-delay behavior.

3.1. Hypotheses

Departure (arrival) delay is the difference between the actual departure (arrival) time
and the scheduled departure (arrival) time. Based on the Figure 1, the departure and arrival
delay can be established as Equations (1) and (2):

Departure delay = Actual departure time − Scheduled departure time, (1)

Arrival delay = Actual arrival time − Scheduled arrival time. (2)

Equations (1) and (2) are calculated from the definition of the departure and arrival
delay. However, the departure and arrival delay can also be obtained from the cause of
formation. Based on this, the departure and arrival delay can be obtained from Equations (3)
and (4).

Departure delay = Propagated arrival delay + Root departure delay, (3)

Arrival delay = Propagated departure delay + Root arrival delay. (4)

Propagated arrival delay and propagated departure delay, mentioned in Equations (3)
and (4), can be further extended in Equations (5) and (6), as propagated arrival (departure)
delay is impacted by Delay_PreArr (Delay_PreDep) and turnaround (block) buffer time.

Propagated arrival delay = Delay_PreArr − turnaround buffer time, (5)

Propagated departure delay = Delay_PreDep − block buffer time. (6)

By conjecturing Equations (3) and (5), as well as (4) and (6), we obtain:

Departure delay = Delay_PreArr − turnaround buffer time + Root departure delay, (7)

Arrival delay = Delay_PreDep − block buffer time + Root arrival delay. (8)

The difference between root departure delay and turnaround buffer time reflects the
difference between departure delay and previous arrival delay. Airborne flights have
more priorities than flights on the ground when using the runways, considering the fuel
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limitation and safety operation. This fact indicates that the root arrival delays are more
likely to be smaller than root departure delays. In addition, turnaround (block) buffer
time is likely to be small, as reducing buffer time leads to more flight legs per day of an
aircraft to earn more profit. Therefore, the ratio of Delay_PreDep over arrival delay may
correlate more highly than the ratio of Delay_PreArr over departure delay. Therefore, the
first hypothesis to be tested in the paper is formalized as follows:

Hypothesis 1 (H1). Departure (arrival) delay is relatively highly correlated with Delay_PreArr
(Delay_PreDep). Everything else being equal, departure (arrival) delay should increase with
Delay_PreArr (Delay_PreDep). The ratio of Delay_PreDep over arrival delay should be, on average,
more than that of Delay_PreArr over departure delay.

The second hypothesis also relates to delay propagation but from a different per-
spective. Previous delay of a flight not only increases the operating cost of the flight but
can propagate to downstream flights of the same aircraft. To mitigate delay propagation,
airlines tend to set a buffer time in flight scheduled turnaround or airborne operation
to absorb the previous arrival (departure) delay. If the buffer time becomes longer, then
the turnaround (block) time has greater capacity to absorb and prevent delay from being
propagated to the next departure or arrival. This leads to the second hypothesis of the
paper.

Hypothesis 2 (H2). The ratio of departure (arrival) delay over turnaround (block) buffer time
should be, on average, negative. If Hypothesis 1 can be confirmed, where the Delay_PreDep impact
on arrival delay is more than Delay_PreArr impact on departure delay, the absolute value of the
ratio of block buffer time over arrival delay should be, on average, more than that of turnaround
buffer time over departure delay.

The third hypothesis relates to the weather condition—especially for convective
weather. Convective weather inducing a large clearance or landing separation leads to
a widespread airport traffic congestion. Take offs and landings are even prohibited for
safety reasons in case of severe convective weather, which may cause severe flight delays.
Specifically, stakeholders prefer flights to holding on the ground than holding on the
airborne. Based on this policy, we propose our third hypothesis:

Hypothesis 3 (H3). Flights facing convective weather will have more restrictions to take off or
land at an airport, increasing departure or arrival delay. Moreover, the departure delay is affected by
convective weather more greatly than arrival delay.

Finally, our study considers that the delay propagation effect will be affected by the
aircraft utilization, which includes that the order of a flight operated by an aircraft per
day (OrdFltOfAC) and the number flights operated by an aircraft per day (NumFltOfAC).
Considering the cumulative effect of flight delays in multi-order propagation, the latter
order of a flight is, the more probability the flight on-time performance is affected by
the previous flight. In addition, the more flights an aircraft flies per day, the greater the
impact on downstream flights of an aircraft when delay propagation occurs. To this end,
airlines tend to use a better buffer setting strategy to absorb flight delays and keep on-time
performance efficiently.

Hypothesis 4 (H4). The aircraft utilization will impact the delay propagation effect on flight
delays. Specifically, previous delay effect grows with OrdFltOfAC increasing; buffer effect grows
with NumFltOfAC increasing.

3.2. Model Specifications

Building on the hypotheses above, this subsection specifies econometric models for
departure and arrival delay to be estimated in the paper. The general form of the departure
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and arrival delay models are presented in Equations (9) and (10) in which explanatory
variables affecting departure and arrival delay are classified into three categories: operation
related, time related, and weather related. The specific variables considered in the model
specifications are listed in Table 1.

Departure Delay = f (Operation − related factors, Time − related factors, Weather − related factors), (9)

Arrival Delay = f (Operation − related factors, Time − related factors, Weather − related factors). (10)

Table 1. Description of variables.

Variables Description

Y-variables

DelayDep (min) Flight departure delay, which is the difference between actual departure time
and scheduled departure time

DelayArr (min) Flight arrival delay, which is the difference between actual arrival time and
scheduled arrival time

X-variables

Operation related

Delay_PreArr (min) Arrival delay of the previous flight of the same aircraft

Delay_PreDep (min) Departure delay of the current flight

TT_dif (min) Difference of the scheduled turnaround time and minimum turnaround time

BT_dif (min) Difference of the scheduled block time and minimum block time

CumDepDelay (min) Cumulated departure delay in the past hour of the airport under study

CumArrDelay (min) Cumulated arrival delay in the past hour of the airport under study

Widebody Takes value 1 if a flight is associated with a wide body aircraft

HubDep Takes value 1 if the flight departs from a hub airport

HubArr Takes value 1 if the flight arrives at a hub airport

Time related

DT Takes value 1 if the flight operates in the day (scheduled departure between
6:00 and 20:00), and 0 otherwise

Wkd Takes value 1 if the flight operates on a weekday, and 0 otherwise

Sprg Takes value 1 if the flight is scheduled to depart in Spring, and 0 otherwise

Sumr Takes value 1 if the flight is scheduled to depart in Summer, and 0 otherwise

Fall Takes value 1 if the flight is scheduled to depart in Fall, and 0 otherwise

Weather related

ConvecWthrDep Takes value 1 if a flight is in the convective weather at the departure airport

ConvecWthrArr Takes value 1 if a flight is in the convective weather at the arrival airport

TempDepDif (Celsius)
Absolute difference between the temperature at the actual departure time of a
flight and the average temperature associated with all departure flights of the
whole year at the same airport

TempArrDif (Celsius)
Absolute difference between the temperature at the actual arrival time of a
flight and the average temperature associated with all arrival flights of the
whole year at the same airport

WdspDep (meter per
second)

Wind speed during the actual departure hour of a flight at the corresponding
airport

WdspArr (meter per
second)

Wind speed during the actual arrival hour of a flight at the corresponding
airport

VisDep (kilometers) Log of visibility (in miles) plus one mile during the actual departure hour at
the departure airport

VisArr (kilometers) Log of visibility (in miles) plus one mile during the actual arrival hour at the
arrival airport
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To understand the impact of various factors on both departure and arrival delays,
two separate specifications are considered: one for departure delay, termed the DelayDep
model, as shown in Equation (9); the other for arrival delay, termed the DelayArr model,
as shown in Equation (10).

Operation-related factors include the previous delay, buffer time, airport congestion,
aircraft type, and hubs. For different explanatory variables of DelayDep and DelayArr
model, some variables, including the previous delay, buffer time, and airport congestion,
have different definitions in two models. Considering the different operational behaviors at
departure and arrival, three factors, including the previous delay, buffer time, and airport
congestion, have different definitions in the DelayDep and DelayArr models. For departure
delay, the three factors are defined as previous arrival delay, turnaround buffer time, and
cumulated departure delays in an airport. However, to analyze the arrival delay, the three
factors are defined as previous departure delay, airborne buffer time, and cumulated arrival
delays in an airport.

For operation-related variables, one variable is previous delay, which is intended to
capture the delay propagation effect from the previous departure or arrival. In addition,
propagated delay is one of the most important parts of the flight delays [17] (Tan et al.,
2021). The longer the previous delay is, the more likely the on-time performance of the
flight under study will be affected by the previous delay. In the DelayDep model, the
previous delay refers to Delay_PreArr. In the DelayArr model, the previous delay refers to
Delay_PreDep. This variable is used to test Hypothesis 1.

The variables TT_dif and BT_dif are constructed to test Hypothesis 2 for DelayDep
and DelayArr model, respectively. TT_dif (BT_dif) is defined as the difference between the
scheduled turnaround (block) time and MCT (MBT). To calculate MCT, CAAC documents
MCT values but does not provide details on how the values are obtained [32]. Another
method applies the statistical method to regard the 5th percentile observed turnaround time
follows the idea of existing work, which makes the calculation more robust to measurement
error and reduces the influence of unusually favorable conditions [15,33,34]. In this paper,
we prefer to use the latter method by regarding the 5th percentile observed turnaround
time as MCT. Similarly, the MBT calculation also follows this statistical method. The
expectation is that the less buffer time there is, the more difficult it is to maintain the
scheduled departure or arrival times of flights with large previous delays.

In this paper, we use the CumDepDelay for DelayDep model and CumArrDelay
for DelayArr model to present the departure and arrival congestion, respectively [11].
CumDepDelay and CumArrDelay respectively measure the departure and arrival delays
generated in the airports during the past hour. All the flight records departing from
(arriving at) the airports are used to calculate the CumDepDelay (CumArrDelay), if the
exact the time information (scheduled departure time, scheduled arrival time, actual
departure time, and actual arrival time) can be obtained. The expectation is that serious
airport delays may increase the flight delays. We use HubDep and HubArr to indicate
whether a flight takes off from or lands at the airline’s hub. We speculate that a flight
from or to a hub airport is likely to receive better ATC services in the terminal airspace. In
addition, an airline usually has more flying experience and a stronger relationship with
ATC service providers at its hub airports, which may improve flight operations.

The DelayDep and DelayArr models share a number of common time and weather-
related variables. Several time variables are considered in this paper. The first one is DT,
a dummy variable indicating whether a flight operates in the day or night. DT is set to
be 1 if the scheduled departure (arrival) time is between 6:00 and 20:00. We postulate
that there are more flights in the daytime than in the night, which will lead to traffic
congestion. Second, flight delays may vary depending on whether it is a weekday or the
weekend, again considering the difference in air traffic, particularly for business travel.
A Wkd variable is included, which takes the value of 1 if the scheduled departure day is
a weekday and 0 otherwise. Third, seasonal changes also affect the traffic demand and
thus impact airline operation strategies, which may further affect flight delays. To this end,
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three seasonable variables, including Sprg, Sumr, and Fall, are introduced as explanatory
variables.

To capture the impacts of weather on flight delays, we consider convective weather,
temperature, wind speed, and visibility at the departure and arrival airports of a flight.
The convective weather (ConvecWthrDep and ConvecWthrArr) is the key variable among
the weather-related factors, measuring whether there is a thunderstorm at the departure
or arrival end. A thunderstorm can affect an aircraft’s operation safety, further leading to
severe delays. For temperature, we assume that both hot and cold temperatures present
adverse weather and impact the flight delays. Hot temperature negatively affects aircraft
engine performance [35], whereas cold temperature is often associated with foggy and
snowy days, which may cause poor performance on the airport surface and thereby also
negatively affect flight delays. The absolute difference between the temperature at the
scheduled departure (arrival) time of a flight and the average temperature associated with
all departure (arrival) flights of the whole year at the same airport are considered (Tem-
pDepDif and TempArrDif). The wind-speed variables (WdspDep and WdspArr) provide
the speed of the wind at the departure (arrival) airport during the hour of the scheduled
departure (arrival) time of the flight. The visibility variables (VisDep and VisArr) are simi-
larly defined but taking logarithmic values to capture the plausible nonlinear relationship
between visibility and flight delay. For example, visibility decreasing from 1 km to 0.5 km
impacts flight operations more than decreasing from 8 km to 7.5 km. As some records have
visibility of zero miles, we add one to the exponent: VisDep = ln(Departure Visibility + 1)
and VisArr = ln(Arrival Visibility + 1). Eight weather variables, including ConvecWthrDep,
ConvecWthrArr, TempDepDif, TempArrDif, WdspDep, WdspArr, VisDep, and VisArr, are
all considered in departure and arrival delays. This is because the departure flights will
be delayed if the weather condition at the arrival airport is not appropriate for landing.
The weather condition at the departure airport may extend the taxiing time or even keep
waiting until aircraft enters the runway to further impact arrival delays.

Following the discussions, below are the complete DelayDep and DelayArr model
specifications. In the specifications, α’s and β’s are the coefficients to be estimated, and ε
and υ are the error terms.

DelayDep = α0 + α1Delay_PreArr + α2TT_dif + α3CumDepDelay + α4Widebody + α5HubDep
+α6HubArr + α7DT + α8Wkd + α9ConvecWthrDep + α10ConvecWthrArr

+α11TempDepDif + α12TempArrDif + α13WdspDep + α14WdspArr + α15VisDep+α16VisArr + ε,
(11)

DelayArr = β0 + β1Delay_PreDep + β2BT_dif + β3CumArrDelay + β4Widebody + β5HubDep
+β6HubArr + β7DT + α8Wkd + β9ConvecWthrDep + β10ConvecWthrArr

+β11TempDepDif + β12TempArrDif + β13WdspDep + β14WdspArr + β15VisDep
+β17VisArr + υ.

(12)

4. Data
4.1. Data Source

The data needed for model estimation come from several sources. For operation- and
time-related variables, flight-level records are collected for the year 2016 from the Air Traffic
Management Bureau of CAAC. This results in the collection of 3,705,093 flight records
in China, including commercial and general aviation flights. Each record documents the
departure and arrival airports, departure and arrival dates, airline to which the flight
belongs, aircraft type of the flight, tail number of the aircraft, the scheduled departure
time, the actual departure time, the scheduled arrival time, and the actual arrival time. The
time information allows us to construct DelayDep, DelayArr, Delay_PreDep, Delay_PreArr,
TT_dif, BT_dif, CumDepDelay, CumArrDelay, DT, Wkd, and the seasonal dummy variables.
For weather-related variables, the Meteorological Terminal Aviation Routine (METAR)
weather reports of top 30 airports provide weather information including temperature,
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wind speed, visibility, and convective weather at each airport covered in the dataset at
60-min intervals.

4.2. Data Filtering

Two data filtering steps are performed to ensure data consistency. First, flight records
with missing variable values are eliminated from the data. For instance, flights for which
the actual arrival time is empty in the dataset are treated as cancelled flights and have
been omitted from this paper. Second, as the original dataset is not collected completely,
several crucial items in the dataset—especially for actual departure time, actual arrival time,
aircraft type, and aircraft tail number—are abnormal or incorrect, leading to erroneous
calculations of explained or explanatory variables. Such records have been omitted.

In addition to the above, insofar as we are interested in flight delays of commercial
flights of Chinese airlines, other flights have been removed. Furthermore, we focus on
flights between airports that have high levels of traffic and are thus subject to congestion.
In this study, we focus on flights that flew between the top 30 airports in terms of total
flight operations in 2016. These airports are shown in Appendix A and are also listed in
Appendix A. This process reduces the number of flight records to 1,469,909 for modeling.
However, we notice that there are some flight records with delays (both for departure and
arrival) earlier than a day or some records with negative buffer time (both for turnaround
and block buffer). These records are also regarded as abnormal records and deleted from
the dataset. When analyzing the departure delays, 1,426,688 records are retained. As for
studying arrival delays, 1,459,634 records are retained. The summary statistics for some of
the variables are reported in Table 2.

Table 2. Summary statistics of the variables in the specified models after data cleaning.

Variable Flight Phase Mean Std. Dev. Min. Max.

Delay * Departure 13.2 53.2 −1432 1407
Arrival 15.3 52.9 −1437 1410

Previous
delay *

Departure 9.1 38.8 −883 1408
Arrival 14.2 54.4 −1432 1407

Buffer *
Departure 269.7 391.6 0 9444

Arrival 344.8 473.0 0 11,646

CumDelay * Departure 24.3 50.2 0 462.3
Arrival 4.8 5.3 0 1345.0

TempDepDif Departure 8.7 6.3 0.2 52.2
Arrival 8.7 6.2 0.4 50.4

TempArrDif Departure 8.7 6.3 0.3 52.3
Arrival 8.7 6.2 0.3 51.3

WdspDep Departure 3.4 2.1 0.0 18.0
Arrival 3.4 2.1 0.0 22.0

WdspArr Departure 3.4 2.1 0.0 17.0
Arrival 3.4 2.1 0.0 17.0

VisDep Departure 2.1 0.4 0 2.4
Arrival 2.1 0.4 0 2.4

VisArr
Departure 2.1 0.4 0 2.4

Arrival 2.1 0.4 0 2.4
* Delay for Departure refers to DelayDep, Delay for Arrival refers to DelayArr; * Previous delay for Departure
refers to DelayDep, Previous delay for Arrival refers to DelayArr; * Buffer for Departure refers to TT_dif, Buffer
for Arrival refers to BT_dif; * CumDelay for Departure refers to CumDepDelay, CumDelay for Arrival refers to
CumArrDelay.
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5. Estimation Results

This section presents the estimation results of the DelayDep and DelayArr models
specified in Section 2. To analyze the marginal effect of each variable, we estimate the
DelayDep and DelayArr models using ordinary least square (OLS) with clustered standard
error departure airports and arrivals, respectively, which is more efficient than to use
conventional standard errors when heteroskedasticity is present [36].

The estimation results are presented in Table 3. Looking at the individual coefficients,
the previous delay coefficients are 0.698 of Delay_PreArr and 0.826 of Delay_PreDep for
the departure delay and arrival delay, which matches Hypothesis 1’s speculation that
the previous delay, including Delay_PreArr and Delay_PreDep, would present positive
effects and relatively high correlation with departure and arrival delay, respectively. The
marginal effect of arrival delay over Delay_PreDep is more than that of departure delay
over Delay_PreArr. We also observe that the coefficient of Delay_PreDep is more than
that of Delay_PreArr, implying that the flight arrival delay is more likely to be impacted
by the propagated effects. The next variable of interest is the buffer effect, including
TT_dif in the DelayDep model and BT_dif in the DelayArr model, which presents the
propagation effect from different perspectives with the previous delay. Both TT_dif and
BT_dif indicate negative signs for departure and arrival delay, respectively, and thus
confirm Hypothesis 2, that flights with larger buffer times will have more capacity to
reduce flight delays. Specifically, we observe that the BT_dif has a much larger reduction
(0.744 min) for flight delays—about nine times greater—than the reduction of TT_dif (0.082
min). Therefore, inserting buffer time when the aircraft is airborne can obtain the flight
on-time performance more efficiently and also help airlines save time for operating more
flight legs.

Table 3. Base models for flight delays for both departure and arrival.

Departure Arrival

Variable Est. Std. Err. Est. Std. Err.

Delay_PreArr 0.698 *** 0.016
Delay_PreDep 0.826 *** 0.009

TT_dif −0.082 *** 0.006
BT_dif −0.744 *** 0.025

CumDepDelay 0.033 *** 0.003
CumArrDelay 0.009 *** 0.001

Widebody 6.908 *** 1.795 −0.973 0.909
HubDep −5.699 *** 1.535 0.197 0.433
HubArr 0.884 * 0.481 0.129 0.814
Daytime 0.559 0.630 2.234 *** 0.288
Weekday 0.397 *** 0.123 0.626 *** 0.074

Sprg −0.551 0.480 −1.143 *** 0.377
Sumr 1.950 *** 0.579 −0.626 * 0.357
Fall 1.681 *** 0.358 −1.204 ** 0.461

ConvecWthrDep 16.818 *** 2.813 9.232 *** 0.448
ConvecWthrArr 21.817 *** 1.433 13.967 *** 1.126

TempDepDif 0.014 0.047 0.134 *** 0.019
TempArrDif 0.013 0.035 0.001 0.039
WdspDep 0.423 *** 0.107 0.014 0.049
WdspArr 0.475 *** 0.068 0.410 *** 0.105
VisDep −1.892 *** 0.816 −1.857 *** 0.259
VisArr −3.401 ** 0.340 −0.980 ** 0.417
Cons 7.076 *** 1.591 5.867 *** 0.808

R2 0.364 0.772
Num. Obs. 1,426,688 1,459,634

*** p < 0.01, ** p < 0.05, * p < 0.10.
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For the remaining operation-related variables, the CumDepDelay (CumArrDelay)
variable has a significant coefficient in the DelayDep (DelayArr) model. In particular, the
coefficient of CumDepDelay is larger than that of CumArrDelay, which indicates that arrival
delay is less affected by airport congestion than departure delay. A probable explanation is
that arrival flights have priority in using the runway, when airport congestion exists. In
reality, ATC controllers prefer to have flights waiting on the ground, because the airborne
holding time for arrival flights is limited, considering the fuel supply the aircraft must have
to safety stay in flight. Aircraft type, simplified into wide body and non-wide body aircraft
in this paper, is positive, with a larger magnitude (almost seven minutes) in departure
delay as opposed to a negative but smaller (less than one minute) and insignificant for the
arrival delay, which indicates that aircraft type plays an important role in departure delays.
A possible explanation is that the wide body aircraft has stricter conditions to take off from
the runway [37].

For the hub airport variables, the negative coefficients of the departure model reveal
that using a hub airport either at the departure or arrival will help reduce departure delays.
The HubDep effect is larger than the HubArr effect in the departure model, with 5.7-min
decrease, which is the most significant reduction to occur at the departure end. This is
reasonable as such flights may receive better ATC support near the terminal airspace.
However, for arrival delays, the hub factors present tiny impacts; even the arrival hub
presents an insignificant coefficient. In fact, except that the departure hub for the departure
model shows a notable effect, either hub factor for the arrival model or the arrival hub
for the departure model has tiny effect in terms of delays. Facing of a complex operation
environment at the destination airport, the landing aircraft has more priority than the
take-off aircraft, as waiting for a long time in the airborne will increase the operational risk
both for aircraft and terminal airspace.

For the time-related variables, DT takes positive values for departure and arrival
delays, with the coefficient for the departure model presenting insignificantly. It indicates
that, on average, departure flights in the daytime will generate delays less than arrival
flights. Positive coefficients in both models indicate that larger traffic demands during
weekdays also lead to greater delays both for departure and arrival flights. With regard
to seasonal effects, the departure model reveals that flights generally have the longest
departure delays in the summer and the longest arrival delays in the winter. Seasonal
effects are stronger for departure flights, with a 2.5-min difference between the “longest”
and the “shortest” seasons, while for arrival delays, this difference is only 1.2 min.

Turning to the weather-related variables, the variables of departure delay have more
impact than those for arrival delays. This indicates that aircraft on the ground are more
likely to keep waiting on a better weather condition than airborne aircraft, mainly to ensure
flight safety. Convective weather variables (ConvecWthrDep and ConvecWthrArr) are
the two dominant coefficients among all dummy variables. Furthermore, the influence of
convective weather variables is much higher than the rest of the weather-related factors,
even if the rest factors reach the severe condition. Convective weather presents positive
coefficients significantly both at the origin and destination airports, while convective
weather at the destination airport plays a more important role for delays. Moreover,
convective weather impacts departure flights more than arrival flights. This matches
Hypothesis 3 that the convective weather will affect the flight on-time performance greatly,
and departure delay is more susceptible than arrival delay. Temperature and wind speed
at the airport surface generally present small effects. For departure delays, temperature at
the origin and destination airports present positive effects. However, for arrival delays,
only temperature at departure airports is impactful. Both departure and arrival delays
increase as the wind speed increases. With the exception of convective weather, visibility
is the most important factor affecting both departure and arrival delays; better visibility
helps decrease separation while forming the take-off sequence or landing queue, which
contributes to reducing delays.
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6. Sensitivity Analysis to Aircraft Utilization

Aircraft fly to numerous airports sequentially according to their flight plans. Consid-
ering the spatiotemporal effect of delay propagation in the air traffic network, this section
investigates the sensitivity of the estimation results to aircraft utilization (OrdFltOfAC
and NumFltOfAC). OrdFltOfAC focuses on the sequence of flights operated by an aircraft;
NumFltOfAC considers the number of flights operated by an aircraft within a day.

6.1. Sensitivity to the Order of Flight Leg

Flights tend to present different on-time performances in different orders of flight leg.
In the early orders of the flights per day, flights are less likely to be affected by previous
legs, especially for the flight of the first order with no delay propagation impact. In contrast,
in the late orders of an aircraft, flight on-time performance is likely to be affected by many
previous flight legs. Considering that flights in different orders may show the different
delay propagation effects, the buffers during the turnaround and en-route also affect the
difference in flight delays. Figure 2 illustrates the distribution of flights for departures
and arrivals in seven groups based on OrdFltOfAC: 1, 2, 3, 4, 5, 6, and >6. Obviously,
as the OrdFltOfAC increases, the number of flights decreases. Both for departures and
arrivals, the flights of the first four order accounted for nearly 90 percent of the total flights,
which indicates that there are few flights above the fourth order. Flights with the first order
accounted for nearly thirty percent of the total flights among the top 30 airports, indicating
that nearly thirty percent of the flights are not affected by the previous arrival delay at the
departure ends.

Figure 2. Distribution of the order of flight legs flown by aircraft in China.

Table 4 reports the estimation results for each of the seven flight groups for both
departure and arrival delays. All standard errors in the departure and arrival models are
clustered by departure and arrival airports, respectively. In this subsection, we focus on the
coefficients for previous delay (Delay_PreArr in the departure model and Delay_PreDep
in the arrival model) and buffer effect (TT_dif in the departure model and BT_dif in the
arrival model), where all of the point estimates and 95% confidence intervals are plotted in
Figure 3. In Figure 3a, the coefficients of both Delay_PreArr and Delay_PreDep follow an
increasing trend matching Hypothesis 4, and the increase is more prominent in departure
delays. This indicates that the latter order of an aircraft in a day suffer a heavy delay, which
is propagated by the previous arrival (departure). One possible explanation is that the
on-time performance of the latter-order flight can be affected by more than one previous
flight leg. For example, if the delays generated in the second order, which are not fully
absorbed in the third order, this will continue to affect the on-time performance of the
fourth order. Moreover, arrival delays are more likely to be impacted by the previous delay
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(the coefficients of Delay_PreDep are larger than that of Delay_PreArr). When OrdFltOfAC
is above two, the coefficients of Delay_PreDep in arrival model are all greater than 0.9. This
indicates that all the departure delays are almost propagated to the arrival delays. The
impacts of Delay_PreArr and Delay_PreDep on flight delays reach the maximum while
OrdFltOfAC is above six (up to 0.866 when modeling departure delay, up to 0.985 when
modeling arrival delay). This indicates that all the departure delays are almost propagated
to the arrival delays.

Table 4. Estimation results of flight delays for departure and arrival in different OrdFltOfAC.

Departure 1 2 3 4 5 6 >6

Delay_PreArr 0 0.642 *** 0.653 *** 0.782 *** 0.711 *** 0.813 *** 0.866 ***
TT_dif 0 −0.084 *** −0.106 *** −0.140 *** −0.123 *** −0.191 *** −0.147 ***

CumDepDelay 0.037 *** 0.036 ** 0.033 *** 0.026 *** 0.026 *** 0.018 *** 0.013 ***
Widebody 9.284 *** 5.307 *** 3.236 * 7.000 *** 6.714 ** −0.657 0
HubDep −6.028 ** −4.924 *** −3.899 *** −4.622 *** −3.133 ** −4.942 *** −8.085 **
HubArr −0.123 0.331 1.509 ** 1.216** 2.484 ** 1.548 −0.389
Daytime −33.425 *** 5.038 *** 1.514 0.821 1.582 2.888 ** 0.142
Weekday 0.677 ** 0.509 ** 0.549 ** 0.216 −0.515 * −0.053 1.209

Sprg 1.652 * −1.145 ** −1.769 *** −0.938 −0.868 −1.172 −0.766
Sumr 3.208 *** 2.613 *** 1.264 1.954 ** 1.913 *** 0.783 −0.337
Fall 2.065 *** 1.867 *** 2.258 *** 2.546 *** 2.291 *** 0.108 −0.911

ConvecWthrDep 13.225 *** 18.063 *** 18.212 *** 17.448 *** 18.151 *** 15.808 *** 22.173 ***
ConvecWthrArr 15.319 *** 28.221 *** 23.924 *** 20.517 *** 18.674 *** 18.457 *** 12.325 **

TempDepDif 0.004 0.025 −0.001 0.016 −0.045 −0.019 0.102
TempArrDif 0.064 −0.025 0.008 −0.085 ** −0.011 −0.016 −0.306 **
WdspDep 0.568 ** 0.233 ** 0.165 0.178 −0.059 0.124 0.416
WdspArr 0.546 *** 0.287 *** 0.357 *** 0.097 0.089 −0.201 −0.600 **
VisDep −4.578 *** −1.331 * −1.287 −0.76 −1.683 ** −0.17 1.537
VisArr −6.267 *** −3.897 *** −2.768 *** −1.964 *** −1.833 *** −1.096 ** 2.083
Cons 45.059 *** 7.262 *** 8.191 *** 6.312 *** 8.480 *** 3.478 * −6.508

Num. Obs. 394,275 338,801 289,459 242,664 105,433 51,612 4444
R2 0.083 0.426 0.468 0.604 0.551 0.650 0.630

Arrival 1 2 3 4 5 6 >6

Delay_PreDep 0.596 *** 0.904 *** 0.906 *** 0.946 *** 0.958 *** 0.943 *** 0.985 ***
BT_dif −0.743 *** −0.752 *** −0.741 *** −0.712 *** −0.742 *** −0.674 *** −0.605 ***

CumArrDelay 0.020 *** 0.008 *** 0.006 *** 0.005 *** 0.004 *** 0.003 *** 0
Widebody −1.169 −2.564 *** −1.944 *** −1.317 1.374 −1.603 −28.534 ***
HubDep 1.904 ** −0.431 −1.887 *** −1.099 * −1.817 ** −0.872 −4.596 **
HubArr −0.503 0.007 0.31 0.613 0.529 −0.143 0.189
Daytime −6.322 *** −2.851 *** −0.068 2.168 *** 1.556 *** 4.958 ** 3.925 **
Weekday 0.810 *** 0.481 *** 0.371 *** 0.166 * 0.402 *** 0.284 * 0.776

Sprg −2.701 *** −0.065 −0.787* −0.201 0.406 −0.1 −0.244
Sumr −1.111 *** −0.819 * −0.636 −0.867 * −0.302 −0.875 0.261
Fall −1.405 ** −1.960 *** −1.048 ** −1.319 ** −0.877 * −0.518 0.281

ConvecWthrDep 14.856 *** 6.222 *** 7.266 *** 7.566 *** 10.857 *** 6.071 *** 6.015 **
ConvecWthrArr 17.781 *** 14.357 *** 11.001 *** 12.176 *** 12.891 *** 10.455 *** 13.680 ***

TempDepDif 0.232 *** 0.081 *** 0.156 *** 0.093 *** 0.045 0.049 −0.02
TempArrDif 0.032 0.026 −0.044 0.007 −0.026 −0.028 0.056
WdspDep 0.203 *** −0.114 * −0.129 ** −0.132 ** 0.03 0.032 0.053
WdspArr 0.480 *** 0.354 *** 0.322 *** 0.487 *** 0.454 *** 0.434 *** 0.539 *
VisDep −3.969 *** −1.387 *** −1.435 *** −1.044 *** −0.960 *** −0.806 ** 1.059
VisArr −1.347** −0.844** −0.904** −0.72 −0.889* 0.239 −0.583
Cons 17.441 *** 9.065 *** 7.667 *** 2.880 ** 3.944 *** 0.067 −3.476 *

Num. Obs. 390,292 350,531 300,773 247,605 111,705 53,761 4967

R2 0.551 0.825 0.848 0.894 0.900 0.900 0.961

*** p < 0.01, ** p < 0.05, * p < 0.10.

Figure 3b shows the Buffer coefficient estimates in different OrdFltOfAC, revealing
that the changing trends of buffer coefficient for departure and arrival models are in
opposite directions. While the Buffer effect increases with OrdFltOfAC in the departure
models, it presents a decreasing trend for arrival on-time performance. Nonetheless, block
buffer (BT_dif) presents a better delay absorption than turnaround buffer (TT_dif) in any
OrdFltOfAC. This inspires airlines to insert buffers when aircraft are airborne, which
increases the efficiency to reduce flight delays. In the first order of flight legs, the difference
in the Buffer coefficient between the departure and arrival models is nearly 0.75. However,
after sixth flight order, the difference in buffer effect between two models is less than 0.45.
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Figure 3. Delay propagation effect variation with OrdFltOfAC. (a) Previous delay effect against OrdFltOfAC. (b) Buffer
effect against OrdFltOfAC.

6.2. Sensitivity to the Number of Flight Legs

In addition to the OrdOfFltAC affecting the flight-delay behavior, the NumOfFltAC
will also impact flight on-time performance due to the delay propagation effect. The longer
the NumOfFltAC, the more latter flights will be affected by the previous ones. Different
from the flight order of an aircraft operating per day, this subsection focuses on the number
of flight legs that the aircraft associated with the flight under study flies in a day, which is
denoted as NumFltOfAC. Similar to the analysis of sensitivity to OrdFltOfAC, the flights of
departure and arrival are also classified into seven groups based on NumFltOfAC: 1, 2, 3, 4,
5, 6, and >6. The distribution of the seven groups is shown in Figure 4. As Figure 4 shows,
flights with a NumFltOfAC equaling four possess the largest part of the total flights both
for departures and arrivals. In particular, the number of flights with a NumFltOfAC of
four is twice that of flights with five NumFltOfACs, which is the second largest proportion.
Flights associated with more than six legs a day only occupied less than two percent of the
total flights.

Figure 4. Distribution of the number of legs flown by aircraft in China.

Similar to the analysis of OrdFltOfAC, the estimation results are presented for each of
the seven flight groups by NumFltOfAC for both departure and arrival delays in Table 5.
Again, all standard errors in the departure and arrival models are clustered by departure
and arrival airports, respectively. Figure 5 plots the point estimates of the previous delay
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and buffer effect for different NumFltOfACs in the departure and arrival models along
with 95% confidence intervals. The coefficient variations of previous delay (Delay_PreDep
and Delay_PreArr) are shown in Figure 5a. Delay_PreDep effect on arrival delays are larger
overall than the Delay_PreArr effect on departure delays, which indicates that no matter
how many flight legs an aircraft flies in a day. The propagation effect on arrival delays
is larger than the effect on departure delays. The previous delay effect for arrival flights
presents an increasing trend in general, except for a slight decrease when the NumFltOfAC
is less than three. When an aircraft flies more than three flights in a day, the previous delay
effect to flight delay tends to increase. For departure models, the influence of the previous
delay presents a slight increasing trend, except when an aircraft flies more than six legs
per day.

Table 5. Estimation results of flight delays for departure and arrival in different NumFltOfAC.

Departure 1 2 3 4 5 6 >6

Delay_PreArr 0 0.712 *** 0.640 *** 0.714 *** 0.692 *** 0.762 *** 0.710 ***
TT_dif 0 −0.078 *** −0.070 *** −0.092 *** −0.085 *** −0.116 *** −0.103 ***

CumDepDelay 0.041 *** 0.046 *** 0.037 *** 0.031 *** 0.026 *** 0.023 *** 0.019 ***
Widebody 18.589 *** 6.303 *** 4.767 *** 2.896 4.772 *** 6.724** −7.107 ***
HubDep −19.101 *** −11.233

*** −6.505 *** −5.259 *** −4.610 *** −3.467 *** −4.138 **
HubArr −13.569 ** 0.077 1.940 ** 0.759 0.531 0.31 −0.768
Daytime −24.972 * 1.386 0.155 0.911 0.051 2.126 *** 1.065
Weekday 0.34 0.254 0.491 0.418 *** 0.496 *** 0.143 0.564

Sprg 4.75 0.993 0.385 −0.89 −0.898 ** −1.039 ** −0.399
Sumr 15.269 *** 6.254 *** 3.756 *** 1.255 * 1.055 −0.373 0.116
Fall 8.772 *** 3.771 *** 2.740 *** 1.778 *** 1.607 *** 0.158 0.665

ConvecWthrDep −3.393 12.513 20.152 *** 17.319 *** 18.852 *** 14.230 *** 15.126 ***
ConvecWthrArr 18.629** 29.693 *** 27.843 *** 23.059 *** 18.928 *** 14.022 *** 11.846 ***

TempDepDif 0.233 0.129 0.035 −0.017 −0.036 −0.01 0.033
TempArrDif 0.171 0.02 −0.001 0.002 0.023 −0.005 0.005
WdspDep 0.999 0.741 ** 0.609 *** 0.427 *** 0.242 *** 0.231 ** 0.196
WdspArr 1.804 ** 0.942 *** 0.733 *** 0.447 *** 0.302 *** 0.133 ** −0.159
VisDep −18.987 *** −6.215 *** −2.116** −1.12 −0.38 0.024 −1.537 **
VisArr −22.714 *** −8.940 *** −5.576 *** −1.935 *** −1.516 *** −1.019 *** −1.675 **
Cons 103.344 *** 22.097 *** 9.622 *** 3.638 ** 2.913 * 0.23 7.087 ***

Num. Obs. 26,144 111,656 213,746 550,703 258,848 243,084 22,507
R2 0.080 0.322 0.332 0.445 0.46 0.544 0.511

Arrival 1 2 3 4 5 6 >6

Delay_PreDep 0.778 *** 0.765 *** 0.751 *** 0.857 *** 0.884 *** 0.913 *** 0.983 ***
BT_dif −0.422 ** −0.805 *** −0.778 *** −0.739 *** −0.778 *** −0.760 *** −0.920 ***

CumArrDelay 0.011 *** 0.014 *** 0.012 *** 0.008 *** 0.006 *** 0.005 *** 0.002
Widebody −13.384 *** −6.244 *** −2.419 *** −2.080 *** 1.928 * 1.143 −8.532
HubDep −3.825 1.992 *** −1.987 *** 0.228 −0.974 * −0.653 −0.86
HubArr −4.318 * −0.906 −1.915 ** 0.027 0.19 −0.235 0.253
Daytime 0.168 3.714 *** 3.366 *** 2.357 *** 1.711 *** 1.587 *** 2.185 **
Weekday 0.125 0.548 * 0.688 *** 0.504 *** 0.623 *** 0.472 *** 0.479 *

Sprg −4.083 *** −1.789 *** −2.545 *** −1.058 ** −0.457 0.321 0.86
Sumr 2.039 1.142 ** 0.075 −0.949 ** −0.65 −1.409 ** −1.320 *
Fall 1.009 −0.517 −0.776 −1.375 ** −0.760 * −0.954 ** −0.498

ConvecWthrDep 18.410 *** 12.115 *** 11.308 *** 7.909 *** 8.623 *** 5.658 *** 1.559
ConvecWthrArr 22.917 *** 15.803 *** 14.907 *** 12.579 *** 12.841 *** 10.333 *** 12.009 ***

TempDepDif 0.161 * 0.179 *** 0.144 *** 0.152 *** 0.082 *** 0.061 ** −0.06
TempArrDif −0.005 0.004 0.014 −0.013 −0.005 −0.01 0.148 **
WdspDep 0.341 0.215 * 0.041 −0.049 −0.088 −0.012 −0.058
WdspArr 1.209 *** 0.679 *** 0.460 *** 0.335 *** 0.361 *** 0.287 *** 0.185 *
VisDep −4.253 *** −3.559 *** −2.864 *** −1.624 *** −1.381 *** −1.153 *** 0.167
VisArr −3.802 *** −2.146 *** −1.542 *** −1.194 *** −0.432 −0.026 0.786
Cons 33.857 *** 13.321 *** 12.186 *** 5.470 *** 4.119 *** 2.709 *** −2.052

Num. Obs. 25,721 114,904 218,321 558,678 266,015 252,094 23,901

R2 0.71 0.731 0.720 0.803 0.814 0.843 0.930

*** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure 5. Delay propagation effect variation with NumFltOfAC. (a) Previous delay effect against NumFltOfAC. (b) Buffer
effect against NumFltOfAC.

Figure 5b shows that the point estimates of Buffer coefficients decrease (negative
direction) with NumFltOfAC increasing, matching Hypothesis 4, both for departure and
arrival models. The coefficients of block buffer (BT_dif) in arrival models is much smaller
than that of turnaround buffer (TT_dif) in departure models, which indicates that flight
airborne time absorbs more previous delays than aircraft on the ground no matter how
many flight legs an aircraft flies in a day. In the arrival models, the BT_dif shows a decrease
trend in general. The more flights an aircraft flies in a day, the longer the potential delay
propagation chain is. A strong buffer effect can inhibit the delay propagation effect for
flights with a large NumFltOfAC. Unlike in Section 6.1, the gap between TT_dif and BT_dif
increases from 0.4 to 0.8 with the growth of NumFltOfAC.

7. Conclusions

Acknowledging the ever-growing demands of flights and the consequent serious
flight delays, understanding the behaviors of flight delays is of critical importance. One
contribution of this research is that econometric models are used to study the departure and
arrival delays considering the operation-, time-, and weather-related variables in the main
airports of China’s air traffic network. Applying econometric models, the main results
obtained show that arrival flights suffer more previous delays than departure flights, and
the Buffer effects for arrival flights are also much greater than those of departure flights.
Therefore, airlines can insert more buffer time in the airborne than on the ground, which
is more efficient to mitigate the delay propagation effect. Convective weather is the most
significant variable for both departure and arrival flights delays, and both are less impacted
by convection weather in the original airport than that in the destination airport. However,
the impact of convective weather on arrival delays is about half the impact of that of
departure delays. Another major contribution of this paper is that sensitivity analysis on
aircraft utilization is introduced so as to analyze the marginal effect of previous delays
and buffer time varying with different NumFltOfAC and OrdFltOfAC. When airlines
scheduling flights, this paper provides a perspective from aircraft utilization to improve
on-time performance. For OrdFltOfAC, the later the flight order, the stronger the influence
of the previous delay. Buffer effect shows the opposite situation, presenting an increased
trend for departure flights and a reduction for arrivals. Therefore, for flights with a large
OrdFltOfAC, inserting large block buffer time may not a useful strategy to decrease the
arrival delay efficiently. For NumFltOfAC, the previous delay and buffer effect grow with
the NumFltOfAC increasing. This result allows us to gauge the importance of flight order
to delay propagation effect specific to individual flights when estimating departure and
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arrival delays. It indicates that providing more ground buffer is useful to reduce departure
delay if an aircraft operates many flight legs per day.

The present approaches can be further extended in a few directions. First, a further
direction is to provide a comparative analysis between China and the US, as both have the
largest domestic air traffic industries. Analyzing the trend of the previous delay and buffer
effect can provide a view of the delay propagation effect variation under different policies
of both countries. Second, beside the aircraft utilization, more sensitivity analysis can be
applied to describe the flight delays. One indicator is the complexity of en-route network.
The more complex the en-route network, the more time aircraft spend cruising and on the
ground, which makes flight delays propagate more easily in the network. Furthermore, it
would be interesting to model flight delays by focusing not only on an airport network but
also on an en-route network.
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Appendix A. Major Hub Airports in China

Airlines Hub Airports

Air China

Beijing Capital International Airport (PEK)
Chengdu Shuangliu International Airport (CTU)
Shanghai Pudong International Airport (PVG)
Shanghai Hongqiao International Airport (SHA)

Eastern Airlines

Shanghai Pudong International Airport (PVG)
Shanghai Hongqiao International Airport (SHA)
Beijing Capital International Airport (PEK)
Kunming Changshui International Airport
Xi’an Xianyang International Airport (XIY)

Southern Airlines

Guangzhou Baiyun International Airport (CAN)
Beijing Capital International Airport (PEK)
Ürümqi Diwopu International Airport (URC)
Chongqing Jiangbei International Airport (CKG)
Shanghai Pudong International Airport (PVG)

Hainan Airlines
Haikou Meilan International Airport (HAK)
Beijing Capital International Airport (PEK)
Xi’an Xianyang International Airport (XIY)

Xiamen Airlines

Xiamen Gaoqi International Airport (XIA)
Fuzhou Changle International Airport (FOC)
Hangzhou Xiaoshan International Airport (HGH)
Changsha Huanghua International Airport (CSX)

Shanghai Airlines Shanghai Pudong International Airport (PVG)
Shanghai Hongqiao International Airport (SHA)

Shandong Airlines
Jinan Yaoqiang International Airport (TNA)
Qingdao Liuting International Airport (TAO)
Xiamen Gaoqi International Airport (XIA)
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