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Abstract: In this study, dual-satellite lunar global navigation systems that consist of a constellation 
of two navigation satellites providing geo-spatial positioning on the lunar surface were compared. 
In our previous work, we proposed a new dual-satellite relative-positioning navigation method 
called multi-epoch double-differenced pseudorange observation (MDPO). While the mathematical 
model of the MDPO and its behavior under specific conditions were studied, we did not compare 
its performance with other dual-satellite relative-positioning navigation systems. In this paper, we 
performed a comparative analysis between the MDPO and other two dual-satellite navigation 
methods. Based on the difference in their mathematical models, as well as numerical simulation 
results, we developed useful insights on the system design of dual-satellite lunar global navigation 
systems. 

Keywords: GNSS; lunar exploration; TOA; FOA; navigation; lunar rover; microsatellite; nanosatel-
lite; interplanetary missions 
 

1. Introduction 
In recent years, communication and navigation architecture for lunar exploration 

programs has been of great interest [1]. In particular, the estimation of a rover vehicle’s 
position on the lunar surface is one of the key technologies for the successful operation of 
the rover, mapping resources, and making scientific observations on the lunar surface. It 
is well-known that cold-trapped volatiles, including water-ice, in lunar Permanently 
Shadowed Regions (PSRs) could be a high priority resource for future space exploration. 
As PSRs never receive direct sunlight, visual-odometry based navigation methods, such 
as simultaneous localization and mapping (SLAM), will be considerably constrained. 
Therefore, some alternative is needed to realize long and efficient exploration of the PSRs. 
Additionally, we aim to provide navigation information to multiple users on the lunar 
surface as the locations of various resources are not known precisely, and wide-range ex-
ploration by multiple small rovers is considered as promising approach [2]. With these 
two trends in mind, multiple-user navigation system that can be used in PSRs is of imme-
diate demand. 

As one feasible approach to establish the multiple-user navigation system for the lu-
nar surface applications, several groups have studied the use of weak signals, i.e., the 
spill-over of the beams irradiated from global navigation satellite systems (GNSS) that 
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serve Earth surface and proximity: the weak signals technology was investigated by [3] 
for the first time, and applications to the lunar navigation were extensively studied by a 
great deal of research [4–10]. While they are capable of providing navigation signals at the 
middle latitude of the lunar surface, they are not available at the far side and polar regions 
of the Moon due to invisibility. As an alternative method, constellations of global naviga-
tion satellites around the Moon have been studied [11,12]. Additionally, a combination of 
the weak signals and a relatively small constellation of global navigation satellites around 
the Moon has been studied [13]. While they can provide geo-spatial positioning to the 
entire Moon and its proximity, the transportation cost to inject satellites into multiple lu-
nar orbits, as well as the ground station cost to operate a large number of lunar satellites, 
is not affordable at the early stage of the lunar exploration programs. 

In an attempt to reduce the cost of global navigation satellite systems, dual-satellite 
lunar global navigation that consists of a constellation of two navigation satellites have 
been studied. Originally, dual-satellite global navigation methods have been studied for 
Earth GNSS in the literature [14,15] and applying them to lunar GNSS domain [16,17]. We 
also proposed a new dual-satellite relative-positioning navigation method called multi-
epoch double-differenced pseudorange observation (MDPO) [18]. While the mathemati-
cal model of the MDPO and its behavior under specific conditions were studied, we did 
not sufficiently compare its performance with other dual-satellite global navigation sys-
tems. In this paper, we show a comparative analysis between the MDPO and other se-
lected navigation methods. More specifically, we study and compare the following three 
navigation methods, (1) MDPO, (2) joint time difference of arrival and frequency differ-
ence of arrival (TDOA–FDOA) [15], and (3) two-way ranging [19], and discuss the pros 
and cons of each method. 

These three dual-satellite navigation methods use different types of observations, 
namely passive ranging, passing ranging, and Doppler, or active ranging (two-way rang-
ing), as shown in Table 1. As most dual-satellite navigation methods can be classified into 
one of these types of observations, a comparative analysis and evaluation of these meth-
ods will provide a benchmark of dual-satellite relative-positioning lunar GNSS. For in-
stance, recent work in joint Doppler and ranging (JDR) [16], which converts a differenced 
Doppler shift into a pseudo-pseudorange using the Law of Cosines and integrates it with 
pseudorange observation, can be classified as evolved families of joint TDOA–FDOA: oth-
erwise as evolved families of two-way ranging, if it employs two-way ranging observation 
instead of pseudorange observation. 

Table 1. Benchmark of dual-satellite lunar navigation systems. 

Method Observation Type 
Number of Sup-

ported Users 
Observation Time Navigation Accuracy 

Multi-epoch double-dif-
ferenced pseudorange 

observation 
Passive ranging  Multi-user Using observations from 

at least two epochs 2 
50 m under the condition 

used in Section 4.3. 

Double-differenced time 
of arrival (TOA)-fre-

quency of arrival (FOA) 

Passive ranging and 
Doppler  Multi-user 

Using observations from 
a single epoch 3 

100 m under the condi-
tion used in Section 4.3. 

Single-differenced two-
way ranging  

Active ranging Single-user at a 
time 1 

Using observations from 
a single epoch 3 

30 m under the condition 
used in Section 4.3. 

1 The second user needs another set of radio signals separately. 2 For example, 1 min (0.5 min × 2 epochs) such as set in this 
research. 3 For example, 0.5 min (0.5 min × 1 epoch) such as set in this research. 

Apart from these three types, dual-satellite navigation can be established only with 
Doppler observation. For example, in [17], it was successfully shown that Doppler Based 
Autonomous Navigation (DBAN) can operate with as few as one lunar orbiter and a ref-
erence station and enable autonomous positioning of crewed missions. However, we will 
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rule out Doppler-only navigation from this comparative analysis, as it requires a long ob-
servation period and is not able to provide position estimates as quickly as the other meth-
ods do. 

In this research, the target of our study comprises a micro-sized satellite and rover 
systems. In that case, power generation capability is limited by size and, consequently, 
not compatible with a high-standard clock source, such as the deep space atomic clock 
(DSAC) [20]. When the clock bias of space/user segment is not ignorable, or when satellite 
orbit determination error is not ignorable, the existing joint TDOA–FDOA method must 
be updated to a double-differenced form [21], the so-called double-differenced Time Of 
Arrival (TOA)–Frequency Of Arrival (FOA), to cope with the clock bias and orbit deter-
mination errors. Likewise, the two-way ranging method must be updated to a single-dif-
ferenced form, the so-called single-differenced two-way ranging, to cope with the orbit 
determination errors. These updates have been taken into account to give a fair compari-
son. 

The selected three navigation methods have different characteristics in terms of nav-
igation accuracy and system complexity. The comparative study of these three navigation 
methods is shown in Table 1, which could assist designers to choose an appropriate 
method for their own purposes. For example, MDPO can provide navigation information 
to multiple users at a time through passive ranging but requires observations from multi-
ple epochs. Double-differenced TOA–FOA can provide navigation information to multi-
ple users at a time with observation from a single epoch but requires Doppler observation 
and pseudorange observation. Single-differenced two-way ranging can provide relatively 
high-accuracy navigation information with observation from a single epoch but only to a 
single user per one set of radio signals at a time, and also requires an active ranging, i.e., 
radio signal power emission at the user segment. We also compared the navigation accu-
racy of these three methods by numerical simulations under the selected conditions. 

This paper consists of the following sections. In Section 2, we discuss the assumptions 
for our study. In Section 3, the mathematical models of the three navigation methods are 
presented. In Section 4, the achievable user position accuracies of three navigation meth-
ods are analyzed by numerical simulation and comparative studies are discussed. In Sec-
tion 5, we summarize the key insights by analyzing the simulation results, and provide 
suggestions from a system design point of view. 

2. Assumptions 
In recent years, NASA and private sectors have extensively studied and developed 

unmanned micro mobile robots for lunar surface exploration [22,23]. The target of our 
study comprises a micro-sized satellite and rover system whose power generation capa-
bility is limited by size and, consequently, not compatible with the deep space atomic 
clock (DSAC). In this case, the best current clock technology that is compatible with the 
micro-sized satellite is the Chip Scale Atomic Clock (CSAC). 

As reported in [24], while CSAC can suppress the frequency instability of the clock 
down to about 1 part per billion (ppb) for 24 h, CSAC incurs several tens to hundreds of 
meters of error in pseudorange observations after 24 h, which further increases over time. 
As a result, using CSAC inevitably requires pseudorange-based navigation systems to 
conduct frequent estimations of the satellite and/or user clock bias using Earth ground 
stations, which is very challenging in lunar GNSS due to the limitation of the availability 
and number of earth ground stations that are capable of Earth–Moon distance communi-
cation. In summary, the following assumptions were used: 
 The bias of the satellite clock is not ignorable due to the limited capacity of micro-

satellites; 
 The bias of the rover clock is not ignorable due to the limited capacity of micro-rov-

ers; 
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 The satellite orbit determination error is not ignorable due to the limitation of the 
availability and number of Earth ground stations. 

 

3. Mathematical Models of the Three Navigation Methods 
In this section, we derive the formulas for the three navigation methods listed in Ta-

ble 1. These navigation methods commonly use pseudorange observation and/or pseudo-
doppler observation. Therefore, we first introduce the formulas of pseudorange observa-
tion and pseudodoppler observation later to derive the formulas of the three different 
navigation methods. 

3.1. Pseudorange Observation 
In the conventional Time Of Arrival (TOA) algorithm, the pseudorange (𝜌) measure-

ment between one user (user1) and one satellite (satellite1) is presented by the following 
equation [14]; 𝜌ோௌሺ𝑡௜ሻ = 𝑟ோௌሺ𝑡௜ሻ + 𝑐 ቀ𝑑𝜏ோሺ𝑡௜ሻ − 𝑑𝑇ௌሺ𝑡௜௦ሻቁ + 𝜔௥ோௌሺ𝑡௜ሻ (1)𝑟ோௌሺ𝑡௜ሻ = ห𝑿௦ሺ𝑡௜௦ሻ − 𝑿ோ ሺ𝑡௜ሻ + 𝑑𝑿ோ௦௔ห (2)

where 𝑿௦ሺ𝑡௜௦ሻ = (𝑥ௌ (𝑡௜௦ሻ,𝑦ௌ (𝑡௜௦ሻ, 𝑧ௌ (𝑡௜௦ሻ)  is the satellite1 position at the time of signal 
transmission 𝑡௜௦; 𝑿ோ (𝑡௜) = (𝑥ோ(𝑡௜),𝑦ோ(𝑡௜), 𝑧ோ(𝑡௜)) is the user1 position at the time of signal 
reception 𝑡௜; 𝑐 is the speed of light; 𝑑𝜏ோ  is the user clock bias; 𝑑𝑇ௌ is the satellite clock 
bias; 𝑑𝑿ோ௦௔ corresponds to the user1 position transition due to the Sagnac effect; and 𝜔௥ோௌ  
is the range receiver observation error. In this study, we assume that the range receiver 
observation error 𝜔௥ோௌ  follows a white Gaussian distribution with the standard deviation 
of 𝜎ఠ௥. 

The coordinate frame of the satellite position and user position is based on a local 
topocentric frame, i.e., the x-axis points local east, the y-axis points local north, and the z-
axis points local up (East-North-Up), hereafter. The equations are formulated using the 
relative position between the satellite and the user, and both the user positions have a 
constant rotational offset with respect to the Moon-centered inertial frame. In other words, 
the user position is changed due to the Moon rotation during the signal traveling time 
from the satellite to the user, which appears as the Sagnac effect in Equation (2). The 
Shapiro effect was not considered, as the selected three methods do not aim to have a sub-
meter accuracy. 

3.2. Pseudodoppler Observation 
In the Frequency Of Arrival (FOA) algorithm, the pseudodoppler shift (𝛺ோௌ) between 

user1 and satellite1 is given as [14]; 𝛺ோௌ(𝑡௜) = 𝑓ோௌ(𝑡௜) + (𝑑𝑓ோ(𝑡௜)− 𝑑𝑓ௌ(𝑡௜௦)) + 𝜔ௗோௌ(𝑡௜) (3)

𝑓ோௌ(𝑡௜) = 𝑓଴𝑐 ൝(𝑽ோௌ(𝑡௜௦) + 𝑑𝑽ோ ௦௔ௌ ) ∙ ൫𝑿௦(𝑡௜௦) − 𝑿ோ (𝑡௜) + 𝑑𝑿ோ௦௔൯்ห𝑿௦(𝑡௜௦) − 𝑿ோ (𝑡௜) + 𝑑𝑿ோ௦௔ห ൡ (4)

where 𝑽ோௌ(𝑡௜௦) = (𝑉௫ோௌ(𝑡௜௦),𝑉௬ோௌ(𝑡௜௦),𝑉௭ோௌ(𝑡௜௦)) is the satellite velocity relative to the user at a 
time of 𝑡௜௦; 𝑓଴ is the radio wave frequency; 𝑐 is the speed of light; 𝑑𝑓ோ  is the user fre-
quency bias; 𝑑𝑓ௌ is the satellite frequency bias; 𝑑𝑽ோ ௦௔ௌ  corresponds to the satellite rela-
tive velocity variation due to the Sagnac effect; and 𝜔ௗோௌ  is the Doppler receiver observa-
tion error. In this study, we assume that the Doppler receiver observation error 𝜔ௗோௌ  fol-
lows a white Gaussian distribution with the standard deviation of 𝜎ఠௗ. 
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3.3. Multi-Epoch Double-Differenced Pseudorange Observation 
Multi-epoch double-differenced pseudorange observation (MDPO) is a multi-user, 

pseudorange-based navigation algorithm. Using multi-epoch double-differenced obser-
vations reduces the number of navigation satellites required from four to two, while deal-
ing with the instability of the satellite clock at the same time, as shown in Figure 1. 

 
Figure 1. Overview of the multi-epoch double-differenced pseudorange observation (MDPO) 
method. 

In this paper, we only explain important equations which are necessary to clarify the 
differences between the MDPO and other methods, while the complete formulation deri-
vation of the MDPO can be found in our prior research [18]. 

MDPO uses double-differenced pseudorange observations to eliminate the clock bias 
of the space segment and user segment as well as satellite orbit determination error, by 
subtracting four pseudorange measurements between two users (user1 and user2) and 
two satellites (satellite1 and satellite2) as shown in Equations (5)–(9): 𝜌ଵଵ(𝑡௜) = 𝑟ଵଵ(𝑡௜) + 𝑐 ቀ𝑑𝜏ଵ(𝑡௜)− 𝑑𝑇ଵ (𝑡௜ଵ)ቁ + 𝜔௥ଵଵ(𝑡௜) (5)

 𝜌ଵଶ(𝑡௜) = 𝑟ଵଶ(𝑡௜) + 𝑐 ቀ𝑑𝜏ଵ(𝑡௜)− 𝑑𝑇ଶ(𝑡௜ଶ)ቁ+ 𝜔௥ଵଶ(𝑡௜)  (6)

 𝜌ଶଵ(𝑡௜) = 𝑟ଶଵ(𝑡௜) + 𝑐 ቀ𝑑𝜏ଶ(𝑡௜)− 𝑑𝑇ଵ (𝑡௜ଵ)ቁ + 𝜔௥ଶଵ(𝑡௜)  (7)

 𝜌ଶଶ(𝑡௜) = 𝑟ଶଶ(𝑡௜) + 𝑐 ቀ𝑑𝜏ଶ(𝑡௜) − 𝑑𝑇ଶ(𝑡௜ଶ)ቁ + 𝜔௥ଶଶ(𝑡௜)  (8)
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 ∆∇𝜌(𝑡௜) = 𝜌ଵଵ(𝑡௜) − 𝜌ଵଶ(𝑡௜) − ൫𝜌ଶଵ(𝑡௜) − 𝜌ଶଶ(𝑡௜)൯= 𝑟ଵଵ(𝑡௜) − 𝑟ଵଶ(𝑡௜) − ൫𝑟ଶଵ(𝑡௜) − 𝑟ଶଶ(𝑡௜)൯ + 𝜔௥ଵଵ(𝑡௜) −𝜔௥ଵଶ(𝑡௜) − ቀ𝜔௥ଶଵ(𝑡௜) −𝜔௥ଶଶ(𝑡௜)ቁ= ∆∇𝑟(𝑡௜) + ∆∇𝜔௥(𝑡௜) 
(9)

where ∆∇(∙) is the double difference operator. In order to remove the satellite and user 
clock bias errors effectively from the double-differenced observations, time synchroniza-
tion between the two receivers is essential. In the common GNSS systems, the time syn-
chronization can be achieved in the position calculation process by estimating the user 
clock bias at the same time. However, the user clock bias is removed in the double-differ-
enced observation and cannot be estimated. In our proposed method, the time synchroni-
zation is assumed to be achieved by the frame synchronization of the navigation message. 
As the maximum range rate of the pseudorange observation from the low lunar orbiting 
satellite is about 1.3 km/s, the resulting range error is no larger than 1.3 m if the time syn-
chronization error is maintained under 1 ms. It is acceptable if the targeting navigation 
accuracy is tens of meters. 

In the double difference method, user2 is used as a reference station whose position 
is fixed and known, and the position of user1 is estimated in relation to the position of 
user2;, i.e., user2′s position is referenced as the origin of navigation (0,0,0). In a lunar nav-
igation system, the lander can be used as a reference station (user2), and its geodetic po-
sition is used as the origin of navigation. The geodetic position of the lander must be ob-
tained in advance of the start of the rover navigation by other means, such as identification 
by satellite image: this is proven technique such as the Lunar Reconnaissance Orbiter 
Camera (LROC) successfully identified the landing coordinates of China’s Chang’e 5 
lander with a reported accuracy of ± 20 m [25]. Hereafter, the rover corresponds to user1, 
and the lander corresponds to user2. 

In the MDPO method, multiple double-differenced pseudorange observations, i.e., ∆∇𝜌(𝑡௞), … ,∆∇𝜌(𝑡௞ାேିଵ), are obtained from multiple epochs, i.e., 𝑡௜ = 𝑡௞, … , 𝑡௞ାேିଵ, where 
N is the number of observation epochs, and k is the epoch number at which the estimation 
starts. It is important to note that the rover position must be fixed in place during all multi-
epoch observations taken, in order to keep the number of estimation parameters lower than 
the number of observation equations. Otherwise, the rover position cannot be identified de-
terministically by the MDPO, and the rover position accuracy changes depending on the 
quality of other navigation information used during multi-epoch observations. Hereafter, 𝑿ோ (𝑡௞) = (𝑥ோ(𝑡௞),𝑦ோ(𝑡௞), 𝑧ோ(𝑡௞)) represents a fixed rover position during multi-epoch ob-
servations 𝑡௞ − 𝑡௞ାேିଵ. 

The rover position can be estimated by solving the following Newton–Raphson equa-
tions iteratively. The following equations correspond to ‘2D MDPO’ in [18], which calcu-
lates an estimated two-dimensional (X–Y) position by the Newton-Raphson equation and 
a rover altitude (Z) by using a lunar digital elevation model (DEM) as we discuss later. In 
2D MDPO, the number of multi-epoch observations can be reduced to as low as 2 (N = 2). 
The formulation for three-dimensional position calculation can be found in our previous 
paper [18]. First, we define a new parameter 𝑅 for 𝑡௜ = 𝑡௞, … , 𝑡௞ାேିଵ: 𝑅(𝑡௜) = ∆∇𝜌(𝑡௜)− ∆∇𝑟଴ (𝑡௜) 𝑖 = 𝑘, … ,𝑘 + 𝑁 − 1  (10)

where 𝑅 is the difference between the measured double-differenced pseudorange value, 
i.e., ∆∇𝜌, and the calculated double-differenced range on an initial estimated value of the 
rover position 𝑿ோ଴(𝑡௞), i.e., ∆∇𝑟଴ . Then, the following equations can be derived: 𝑹 = 𝑮𝑑𝑿 + 𝒘 (11) 𝑹 = ሾ𝑅(𝑡௞) ⋯ 𝑅(𝑡௞ାேିଵ)ሿ்   (12)
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 𝑑𝑿 = ሾ𝑑𝑥,𝑑𝑦ሿ  (13) 𝒘 = ሾ∆𝛻𝜔௥(𝑡௞) ⋯ ∆𝛻𝜔௥(𝑡௞ାேିଵ)ሿ்  (14)

 𝑮 = ൤𝜕𝑹𝜕𝑥 𝜕𝑹𝜕𝑦൨  (15)

where 𝑮 in Equation (15) is called an observation matrix, which is equivalent to the Jaco-
bian of 𝑹 with regard to 𝑿. 

By solving the least-square problem that minimizes the residual error |𝑹 − 𝑮𝑑𝑿|, an 
estimated value of 𝑑𝑿, defined as 𝑑𝑿෢ , is obtained: 𝑑𝑿෢ = (𝑮்𝑮)ିଵ𝑮்𝑹. (16)

Then, a new estimated value 𝑿ோଵ (𝑡௞) = (𝑥ோଵ(𝑡௞),𝑦ோଵ(𝑡௞), 𝑧ோଵ(𝑡௞)) is given by Equation 
(17), which provides a better fit to the observation. 𝑿ோଵ (𝑡௞) = 𝑿ோ଴(𝑡௞) + 𝑑𝑿෢ . (17)

This estimation process continues until the number of iterations reaches the designed 
value 𝑛, i.e., 𝑿ோଵ ,𝑿ோଶ ⋯𝑿ோ௡, and then the final estimated value 𝑿ோ௡(𝑡௞) is acquired. 

In GNSS terminology, (𝑮்𝑮)ିଵ is known as the dilution of precision (DOP) matrix, 
which is used to specify error propagation as a mathematical effect of the navigation sat-
ellite geometry on positional measurement precision. We define the DOP matrix as 

𝑫𝑶𝑷 = ൥(𝜎஽ை௉ ଵଵ)ଶ ⋯ (𝜎஽ை௉ ଵே)ଶ⋮ ⋱ ⋮(𝜎஽ை௉ ேଵ)ଶ ⋯ (𝜎஽ை௉ ேே)ଶ൩ = (𝑮்𝑮)ିଵ (18)

where 𝜎஽ை௉ is the elements of 𝐷𝑂𝑃. Using 𝐷𝑂𝑃, the achievable rover position error, i.e., 𝑑𝑿෢ − 𝑑𝑿, at a time of 𝑡௞ can be obtained by 

𝑈𝑃𝐸(𝑡௞) = ห𝑑𝑿෢ (𝑡௞) − 𝑑𝑿(𝑡௞)ห =  ඩ෍൫𝜎஽ை௉ ௝௝൯ଶே
௝ୀଵ  × 𝜎∆ఇఠ (19)

where 𝜎∆ఇఠ  is the standard deviation of double-differenced receiver observation errors 
and 𝑈𝑃𝐸 represents user position error, which is the distance between the rover’s true 
position and an estimated rover position. It is important to highlight that the standard 
deviation of MDPO’s double-differenced receiver observation errors, i.e., 𝜎∆ఇఠ, is ampli-
fied from the standard deviation of the original receiver observation errors, i.e., 𝜎ఠ௥, as a 
result of the double-differencing process, in particular 𝜔௥ଵଵ(𝑡௜) − 𝜔௥ଵଶ(𝑡௜) − ቀ𝜔௥ଶଵ(𝑡௜) −𝜔௥ଶଶ(𝑡௜)ቁ in Equation (9), and becomes as large as 𝜎∆ఇఠ = ට𝜎ఠ௥ଶ + 𝜎ఠ௥ଶ + 𝜎ఠ௥ଶ + 𝜎ఠ௥ଶ =2𝜎ఠ௥ assuming that the receiver observation errors follow a white Gaussian distribution. 
Further, by defining 𝐺𝐷𝑂𝑃 as 

𝐺𝐷𝑂𝑃 = ඩ෍൫𝜎஽ை௉ ௝௝൯ଶே
௝ୀଵ  (20)

Equation (19) can be written as 𝑈𝑃𝐸(𝑡௞) = 𝐺𝐷𝑂𝑃 × 𝜎∆ఇఠ (21)

As mentioned in the previous section, we assume that the receiver observation errors 
follow a normal distribution with a zero mean (i.e., Gaussian white noise). As such, 𝑈𝑃𝐸 
also follows a 1D Gaussian distribution, and 95 percent of it lies inside the interval from −2𝑠 to +2𝑠, where 𝑠 is the standard deviation. As a performance index, this research 
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uses 2drms (2𝑠 or 95 percent confidence), which is commonly used in two-dimensional 
position estimation problems: 𝑈𝑃𝐸(𝑡௞)(2𝑑𝑟𝑚𝑠) = 𝐺𝐷𝑂𝑃 × 2𝜎∆ఇఠ (22)

Moreover, considering that the 𝑈𝑃𝐸  value, as well as the 𝐺𝐷𝑂𝑃  value, changes 
over time according to the satellite positions relative to the rover, an indicator that repre-
sents the overall 𝑈𝑃𝐸 over the course of the mission time is needed. For this purpose, the 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 is newly defined, along with the 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃, as below: 

𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸(2𝑑𝑟𝑚𝑠) = ඩ1𝑚෍(𝑈𝑃𝐸(𝑡௞)(2𝑑𝑟𝑚𝑠))ଶ௠  = 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 × 2𝜎∆∇ன (23)

 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 = ඩ1𝑚෍(𝐺𝐷𝑂𝑃)ଶ௠   (24)

where 𝑚 is the number of MDPO estimations over the course of the mission time. 𝜎∆ఇఠ 
is independent of time, and can be excluded from the square root without losing general-
ity. 

In the 2D MDPO, the rover altitude 𝑧ோ is pre-estimated using a lunar digital eleva-
tion model (DEM). As shown in Equation (25), DEM is a function of longitude and lati-
tude, which are not known at the start. The estimation of sequences proceeds in the fol-
lowing sequence: First, 𝑿ோ଴(𝑡௞) is estimated using the rover position before its relocation, 
i.e., 𝑿ோ଴(𝑡௞) = 𝑿ோ (𝑡௞ିଵ)  =  (𝑥ோ(𝑡௞ିଵ),𝑦ோ(𝑡௞ିଵ), 𝑧ோ(𝑡௞ିଵ)). Then, a new estimated rover po-
sition, i.e., 𝑿ோଵ (𝑡௞), is estimated as 𝑿ோଵ (𝑡௞)  = (𝑥ோଵ(𝑡௞),𝑦ோଵ(𝑡௞), 𝑧ோ(𝑡௞ିଵ)) by Equation (17). 𝑧ோ is not updated at this moment. After that, the altitude of the rover is updated to 𝑧ோଵ(𝑡௞) 
using 𝑥ோଵ(𝑡௞) and 𝑦ோଵ(𝑡௞) by Equation (25), i.e., 𝑿ோଵ (𝑡௞) = (𝑥ோଵ(𝑡௞),𝑦ோଵ(𝑡௞), 𝑧ோଵ(𝑡௞)). The 
calculation continues until the number of iterations reaches the designed value, i.e., 𝑛. 𝑧ோ௜ (𝑡௞) = 𝑧ோ ஽ாெ ቀ𝑥ோ௜ (𝑡௞), 𝑦ோ௜ (𝑡௞)ቁ (25)

Here, 𝑧ோ ஽ாெ is a lunar DEM that is a function of latitude and longitude. According to 
Equation (25), as 𝑧ோ  changes along with 𝑥ோ  and 𝑦ோ , errors in the X–Y position induce 
errors in the Z position, which ultimately induce errors in estimated 𝑥ோ  and 𝑦ோ , and as 
a result, the 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 deteriorates stochastically. In our research, we did not apply the 
case in which the rover altitude changes too rapidly, such as the rover dropping off the 
cliff or roving on steep slopes. In that case, the 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 would not deteriorate too sig-
nificantly, which was confirmed by numerical simulations in our prior research [18]. 

3.4. Double-Differenced TOA–FOA 
The conventional TDOA–FDOA approach uses single-differenced TOA observation 

and FOA observation to cope with the satellite clock bias or the user clock bias, but is not 
designed to cope with the satellite clock bias and the user clock bias at the same time [15]. 
Therefore, we updated the conventional TDOA–FDOA into a double-differenced form, 
the so-called double-differenced TOA–FOA. Double-differenced TOA–FOA can deter-
mine the user position using double-differenced pseudorange observations and pseudo-
doppler observations from a single epoch, as shown in Figure 2. 
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Figure 2. Overview of the double-differenced TOA–FOA method. 

Double-differenced TOA observations were formulated using Equations (5)–(9). Sim-
ilarly, double-differenced FOA observations can be formulated: 𝛺ଵଵ(𝑡௜) = 𝑓ଵଵ(𝑡௜) + (𝑑𝑓ଵ(𝑡௜) − 𝑑𝑓ଵ(𝑡௜ଵ)) + 𝜔ௗଵଵ(𝑡௜) (26)𝛺ଵଶ(𝑡௜) = 𝑓ଵଶ(𝑡௜) + (𝑑𝑓ଵ(𝑡௜) − 𝑑𝑓ଶ(𝑡௜ଶ)) + 𝜔ௗଵଶ(𝑡௜) (27)𝛺ଶଵ(𝑡௜) = 𝑓ଶଵ(𝑡௜) + (𝑑𝑓ଶ(𝑡௜) − 𝑑𝑓ଵ(𝑡௜ଵ)) + 𝜔ௗଶଵ(𝑡௜) (28)𝛺ଶଶ(𝑡௜) = 𝑓ଶଶ(𝑡௜) + (𝑑𝑓ଶ(𝑡௜) − 𝑑𝑓ଶ(𝑡௜ଶ)) + 𝜔ௗଶଶ(𝑡௜) (29)∆∇𝛺(𝑡௜) = 𝛺ଵଵ(𝑡௜) − 𝛺ଵଶ(𝑡௜) − ൫𝛺ଶଵ(𝑡௜) − 𝛺ଶଶ(𝑡௜)൯= 𝑓ଵଵ(𝑡௜) − 𝑓ଵଶ(𝑡௜) − ൫𝑓ଶଵ(𝑡௜)− 𝑓ଶଶ(𝑡௜)൯ + 𝜔ௗଵଵ(𝑡௜) −𝜔ௗଵଶ(𝑡௜)−  ቀ𝜔ௗଶଵ(𝑡௜) −𝜔ௗଶଶ(𝑡௜)ቁ= ∆∇𝑓(𝑡௜) + ∆∇𝜔ௗ(𝑡௜) 

(30)

In order to remove the satellite and user frequency bias errors effectively from the 
double-differenced observations, it is assumed that time synchronization is achieved by 
the frame synchronization of the navigation message as we discussed earlier. 

Similar to the MDPO, we can use the Newton–Raphson method to solve the equa-
tions. First, we define new parameters 𝑅ଵ and 𝑅ଶ at 𝑡௜ = 𝑡௞: 𝑅ଵ(𝑡௞) = ∆∇𝜌(𝑡௞) − ∆∇𝑟଴ (𝑡௞) (31)
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𝑅ଶ(𝑡௞) = ∆∇𝛺(𝑡௞) − ∆∇𝑓଴(𝑡௞) (32)

where 𝑅ଵ is the difference between the measured double-differenced pseudorange value, 
i.e., ∆∇𝜌, and the calculated double-differenced range on an initial estimated value of the 
rover position 𝑿ோ଴(𝑡௞), i.e., ∆∇𝑟଴ ; and 𝑅ଶ is the difference between the measured double-
differenced pseudodoppler value, i.e., ∆∇𝜌ௗ, and the calculated double-differenced Dop-
pler on an initial estimated value of the rover position, i.e., ∆∇𝑓଴. Then, the following 
equations can be derived:  𝑹 = ሾ𝑅ଵ(𝑡௞) 𝑅ଶ(𝑡௞)ሿ்   (33) 𝒘 = ሾ∆∇𝜔௥(𝑡௞) ∆∇𝜔ௗ(𝑡௞)ሿ்  (34)

The following process is same as the Equations (11), (13), and (15)–(25) with the ex-
ception that the double-differenced receiver observation error, i.e., 𝜎∆ఇఠ , is amplified 
from the standard deviation of the original receiver observation errors, i.e., 𝜎ఠ௥ and 𝜎ఠௗ, 
during the double-differencing process and becomes as large as 𝜎∆ఇఠ =ට𝛼 × ቀ𝜎ఠ௥ଶ + 𝜎ఠ௥ଶ + 𝜎ఠ௥ଶ + 𝜎ఠ௥ଶቁ + ቀ𝜎ఠௗଶ + 𝜎ఠௗଶ + 𝜎ఠௗଶ + 𝜎ఠௗଶቁ where 𝛼  changes de-

pending on the geometrical relationship between the satellites and receivers such as 𝑽ோௌ . 
Under the conditions used in this study, 𝛼 is small to negligible. It is also important to 
highlight that the above formulation corresponds to a DEM-aided form that calculates an 
estimated two-dimensional (X–Y) position using a rover altitude that is given by Equation 
(25). 

3.5. Single-Differenced Two-Way Ranging 
Two-way ranging method determines Time of Arrival (TOA) of radio signal in round 

trip and then calculates the distance between the nodes by multiplying the round-trip time 
by the speed of light. 

When the two-way ranging radio signal is initiated at the satellite side and the user 
is fixed on the lunar surface, as shown in Figure 3, the pseudorange observation is pre-
sented as 𝜌ோௌ(𝑡௘௠௜௧ௌ ) = 𝑟ோௌ(𝑡௘௠௜௧ௌ ) + 𝜔௥ோ (𝑡௥௘௖௘௜௩௘ோ ) + 𝜔௥ௌ ൫𝑡௘௠௜௧ௌ + 𝑡௥௢௨௡ௗ௧௥௜௣ௌିோ + 𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ ൯ (35)𝑟ோௌ(𝑡௘௠௜௧ௌ ) = ห𝑿௦(𝑡௘௠௜௧ௌ ) − 𝑿ோ + 𝑑𝑿ோ௦௔ห+ ห𝑿௦൫𝑡௘௠௜௧ௌ + 𝑡௥௢௨௡ௗ௧௥௜௣ௌିோ + 𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ ൯ − 𝑿ோ + 𝑑𝑿ோ௦௔ห (36)

where 𝑡௘௠௜௧ௌ  is the time of signal emission at the satellite; 𝑡௥௘௖௘௜௩௘ோ  is the time of signal re-
ception at the rover; 𝑡௥௢௨௡ௗ௧௥௜௣ௌିோ  is a signal round-trip time that is the sum of the onward 
and return signal traveling time; and 𝑡௣௥௢௖௘௦௦௜௡௚ோ  is the time to process the signal and re-
broadcast at the rover, which are also visually shown in Figure 3. 𝜔௥ோ  and 𝜔௥ௌ  are the 
range receiver observation error at the user and satellite, respectively. In this study, we 
assume that the range receiver observation error 𝜔௥ோ  and 𝜔௥ௌ  follow a white Gaussian 
distribution. 



Aerospace 2021, 8, 191 11 of 26 
 

 

 
Figure 3. Two-way ranging. 

In Equation (36), 𝑟ோௌ is written as a function of 𝑡௘௠௜௧ௌ  based on the fact that 𝑡௥௢௨௡ௗ௧௥௜௣ 
can be presented as a function of 𝑡௘௠௜௧ௌ  as long as the satellite orbit dynamics, orbital pa-
rameters, the signal processing time 𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ , as well as an estimate of the user position, 𝑿ோ  are provided. 

Two pseudorange observations between two users (user1, user2) and a satellite can 
be written as 𝜌ଵௌ(𝑡௜) = 𝑟ଵௌ(𝑡௜) + 𝜔௥ଵௌ(𝑡௜) (37)𝜌ଶௌ(𝑡௜) = 𝑟ଶௌ(𝑡௜) + 𝜔௥ଶௌ(𝑡௜) (38)

where 𝑡௜  corresponds to 𝑡௘௠௜௧ௌ  of Equation (35) and 𝜔௥ோௌ(𝑡௜)  corresponds to 𝜔௥ோ (𝑡௥௘௖௘௜௩௘ோ ) + 𝜔௥ௌ ൫𝑡௘௠௜௧ௌ + 𝑡௥௢௨௡ௗ௧௥௜௣ + 𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ ൯ of Equation (35) assuming 𝜔௥ோ  and 𝜔௥ௌ  follow a white Gaussian distribution and are independent of time. The standard de-
viation of 𝜔௥ோௌ(𝑡௜) is defined as 𝜎ఠ௥. 

A method called single difference is used to effectively remove the satellite orbit de-
termination error, i.e., 𝑑𝑿௦௔௧ ை஽ௌ  as we discuss in Section 3.6, by subtracting two pseudor-
ange observations between two users (user1, user2) and a satellite: ∆𝜌ௌ(𝑡௜) = 𝜌ଵௌ(𝑡௜) − 𝜌ଶௌ(𝑡௜) = 𝑟ଵௌ(𝑡௜) − 𝑟ଶௌ(𝑡௜) + 𝜔௥ଵௌ(𝑡௜) −𝜔௥ଶௌ(𝑡௜)= ∆𝑟ௌ(𝑡௜) + ∆𝜔௥ௌ(𝑡௜) (39)

where ∆(∙) is the single difference operator. 
To effectively remove the satellite orbit determination error at the moment of signal 

emission, i.e., 𝑡௘௠௜௧ௌ , the clock 𝑡௜ of two pseudoranges, i.e., 𝜌ଵଵ(𝑡௜) and 𝜌ଶଵ(𝑡௜), must be syn-
chronized. This can be easily achieved, for instance, when pseudorange signals are initi-
ated from satellite side at the request of the user. In that case, pseudorange observations 
are to be obtained at the satellite side, and then transferred to the user by telemetry: the 
so-called telemetry ranging [26]. 

Furthermore, the timing of returned-signal reception at the satellite side, i.e., 𝑡௘௠௜௧ௌ +𝑡௥௢௨௡ௗ௧௥௜௣ௌିோ + 𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ , slightly differs among four pseudorange observations due to the 
difference in user1 and user2 position, as well as their different signal processing delay 
times. In order for single difference to effectively remove the satellite orbit determination 
error at the moment of returned-signal reception, the difference among 𝑑𝑿௦௔௧ ை஽ௌ ൫𝑡௘௠௜௧ଵ +𝑡௥௢௨௡ௗ௧௥௜௣ଵିଵ + 𝑡௣௥௢௖௘௦௦௜௡௚ଵିଵ ൯ , 𝑑𝑿௦௔௧ ை஽ௌ ൫𝑡௘௠௜௧ଵ + 𝑡௥௢௨௡ௗ௧௥௜௣ଵିଶ + 𝑡௣௥௢௖௘௦௦௜௡௚ଵିଶ ൯ , 𝑑𝑿௦௔௧ ை஽ௌ ൫𝑡௘௠௜௧ଶ +𝑡௥௢௨௡ௗ௧௥௜௣ଶିଵ + 𝑡௣௥௢௖௘௦௦௜௡௚ଶିଵ ൯, and 𝑑𝑿௦௔௧ ை஽ௌ ൫𝑡௘௠௜௧ଶ + 𝑡௥௢௨௡ௗ௧௥௜௣ଶିଶ + 𝑡௣௥௢௖௘௦௦௜௡௚ଶିଶ ൯  must be negligible. 
This assumption practically holds, unless the distance between user1 and user2 becomes 
largely apart, or their signal processing delay times are largely different, which holds at 
least under the simulated conditions of this research. 
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Single-differenced two-way ranging can determine the user position using single-
differenced pseudorange observations from two satellites, i.e., 𝑆 = 1, 2, at a single epoch 
as shown in Figure 4. Similar to the other two methods, we can use the Newton–Raphson 
method to solve the equation. First, we define a new parameter 𝑅ௌ at 𝑡௜ = 𝑡௞: 𝑅ௌ(𝑡௞) = ∆𝜌ௌ(𝑡௞) − ∆𝑟ௌ ଴(𝑡௞) 𝑆 = 1, 2 

(40)

where 𝑅ௌ is the difference between the measured single-differenced pseudorange value, 
i.e., ∆𝜌ௌ, and the calculated single-differenced range of s-th satellite on an initial estimated 
value of the rover position 𝑿ோ଴(𝑡௞), i.e., ∆𝑟ௌ ଴. Then, 𝑹 and 𝒘 are derived as follows:  𝑹 = ሾ𝑅ଵ(𝑡௞) 𝑅ଶ(𝑡௞)ሿ்  (41) 𝒘 = ሾ∆𝜔௥ଵ(𝑡௞) ∆𝜔௥ଶ(𝑡௞)ሿ்  (42)

 
Figure 4. Overview of the single-differenced two-way ranging method. 

The following process is the same as the Equations (11), (13), and (15)–(25), with the 
exception that the single-differenced receiver observation error, i.e., 𝜎∆ன, is used instead 
of the double-differenced receiver observation error, i.e., 𝜎∆ఇఠ. The standard deviation of 
single-differenced receiver observation errors, i.e., 𝜎∆ఠ, is amplified from the standard 
deviation of the original receiver observation errors, i.e., 𝜎ఠ௥ , during the single-
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differencing process and becomes as large as 𝜎∆ன = ට𝜎ఠ௥ଶ + 𝜎ఠ௥ଶ = √2𝜎ఠ௥ assuming that 
the receiver observation errors follow a white Gaussian distribution. It is also important to 
highlight that the above formulation corresponds to a DEM-aided form that calculates an 
estimated two-dimensional (X–Y) position using a rover altitude that is given by Equation 
(25). 

3.6. Systematic Errors 
In an actual situation, with the presence of other systematic errors as shown in this 

section, the discussed achievable 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 in Equation (23) will increase. In this section, 
the theoretical background of systematic errors, as well as their impacts on the 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸, 
is discussed. As the impact of such errors on the 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 cannot be predicted analyti-
cally, we used a numerical simulation, reported in the following section, to quantitatively 
determine the resulting 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸. 

3.6.1. Satellite Orbit Determination Error 
In the derived formulas, the pseudorange 𝜌 is calculated on the basis of pre-esti-

mated satellite positions 𝑿௦ = (𝑥ௌ ,𝑦ௌ , 𝑧ௌ ). In an actual situation, satellite orbit determi-
nation is not perfect, and pre-estimation of the satellite position entails some error relative 
to the true positions (𝑑𝑿௦௔௧ ை஽ௌ ). According to a general satellite orbit determination pro-
cess, the error is decomposed along with the satellite velocity direction (Along), satellite 
zenith direction (Radial), and cross-track direction (Cross). In this simulation, the orbit 
determination error is defined along with the Along, Radial, and Cross directions and 
then converted into a user frame: 𝑑𝑿௦௔௧ ை஽ௌ (𝑡௜) = 𝑻 × ൫𝑑𝐴𝑙𝑜𝑛𝑔(𝑡௜),𝑑𝑅𝑎𝑑𝑖𝑎𝑙(𝑡௜),𝑑𝐶𝑟𝑜𝑠𝑠(𝑡௜)൯ (43)

where 𝑻 is a coordinate transformation matrix from the Along, Radial, and Cross direc-
tions to a topocentric frame. The definition of the topocentric frame is explained in the 
previous chapter. In multilateration theory, only satellite orbit determination error in the 
line-of-sight direction (rover to satellite) matters, and other directions have almost no im-
pact on the rover position error. In the three navigation methods, the line-of-sight direc-
tion error is effectively eliminated by either the double-difference or the single-difference 
equation, along with the satellite, the rover, and the lander clock biases. 

3.6.2. Time Tag Error 
In the estimation process of the satellite position at a given time, the time tag of the 

receiver is used to propagate the estimated satellite positions. As we described earlier, the 
time tag of the receiver clock is initialized by the frame synchronization of the navigation 
message. In this case, the time tag has some error due to the signal propagation delay 
between the satellite and user receiver, as well as the processing delay of the navigation 
message. As a result, an estimated satellite position 𝑿௦ = (𝑥ௌ ,𝑦ௌ , 𝑧ௌ ) is deteriorated by 
the receiver clock bias 𝑑𝜏ோ (𝑡௜) , and has some error relative to the true positions 
(𝑑𝑿௧௜௠௘ ௧௔௚ௌ ), such as 𝑑𝑿௧௜௠௘ ௧௔௚ௌ (𝑡௜) = ൬𝑉௫ோௌ(𝑡௜),𝑉௬ோௌ(𝑡௜),𝑉௭ோௌ(𝑡௜)൰ × 𝑑𝜏ோ (𝑡௜) (44)

where ቀ𝑉௫ோௌ ,𝑉௬ோௌ ,𝑉௭ோௌቁ is a pre-estimated satellite relative velocity in a topocentric frame. 
Essentially, the time tag error is mostly eliminated from the estimation by either the dou-
ble-difference or single-difference equation, except for the ‘difference’ of two user time 
tags. In the numerical simulation, we only modeled the difference of two user time tags 
without losing generality. 
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3.6.3. Signal Processing Delay Time Uncertainty 
For the single-differenced two-way ranging, the time to process the signal and re-

broadcast at the rover, i.e., 𝑡௣௥௢௖௘௦௦௜௡௚ோ , may not be precisely known and have some uncer-
tainty. In this study, uncertainty of the signal processing delay time is modeled as 𝑑𝑡௣௥௢௖௘௦௦௜௡௚ோ . 

3.6.4. DEM Information Error 
As reported in [27,28], current lunar DEM information is developed from remote-

sensing data and, as a result, is not perfect. Therefore, the DEM error 𝑑𝑧ோ ஽ாெ, which is 
the difference between the true rover vertical position 𝑧ோ ௧௥௨௘ and a pre-given rover ver-
tical position 𝑧ோ ஽ாெ, has a fixed, unknown, non-random bias. The DEM error leads to a 
position estimation error in the X–Y plane (𝑥ோ ,𝑦ோ). The impact of the DEM model error 
on the X–Y position estimation accuracy stochastically changes depending on the satellite 
position and velocity in relation to the rover and lander position. 𝑑𝑧ோ ஽ாெ = 𝑧ோ ௧௥௨௘ − 𝑧ோ ஽ாெ (45)

3.6.5. Other Systematic Errors 
In the general context of navigation satellite systems, other systematic errors must be 

considered, such as ionospheric delay, tropospheric delay, antenna phase characteristics, 
and multipath. However, such errors are negligible, or not detrimental to the rover posi-
tion estimation in lunar surface navigation systems. Ionospheric delay and tropospheric 
delay are deemed negligible. Antenna phase characteristics appear in the same way and 
are almost negligible. We assume that multipath can be suppressed by antenna design as 
there are few high objects in the surroundings of the rover and lander on the lunar surface. 
Therefore, these errors can be ignored, and were not considered in this research. 

3.7. Design Parameters 
3.7.1. DOP and Availability 

The spatial position of two satellites is one of the most important design parameters 
that directly impacts the rover position accuracy. In order to acquire an accurate user po-
sition, a small DOP value is required. 

In this analysis, we assume the satellite formation that has two satellites placed in the 
same orbital planes with a phase difference (i.e., the difference in argument of latitude of 
two satellites): this formation is the most desirable arrangement to keep the relative posi-
tion of two satellites. In that case, to reduce the DOP value, a large phase difference is 
preferable. In comparison, to keep both satellites in the rover’s view for a long time, a 
small phase difference is desirable. As a result, these two requirements conflict with each 
other, and both impacts must be carefully considered to find the best compromise point 
in the satellite trajectory selection. In our comparative analysis, we used two performance 
index parameters, the 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦, where 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the percent-
age of time at which both satellites are in the rover’s view to the total mission time. 

The relationship between the 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 change depending on 
the navigation methods, as well as the satellite orbital parameters. Tables 2 and 3 show 
the 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 comparisons among the three navigation methods un-
der different orbital conditions: in this study, without losing generality, the rover/lander 
position were fixed to the south-pole (−90 deg latitude) and the satellite orbit inclination 
was fixed to 110 deg while the orbital attitudes of two satellites were changed (300 and 
2100 km), and the phase differences between the two satellites were also changed (5, 10, 
15, and 25 deg). 
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Table 2. The Total GDOP and availability comparison among three navigation methods under dif-
ferent orbital conditions: two satellites are placed in 300 km circular low lunar orbit with different 
phase differences (5, 10, 15, and 25 deg). The rover/lander position were fixed to the south pole (−90 
deg latitude), and the satellite orbit inclination was fixed to 110 deg. 

Navigation Methods Phase Difference [deg] Total GDOP Availability [%] 

MDPO 

5 217.8 4.1 
10 63.1 3.2 
15 38.5 2.3 
25 34.3 1.4 

Double-differenced TOA–
FOA 

5 891.9 6.2 
10 253.5 4.7 
15 159.5 3.3 
25 144.6 2.1 

Single-differenced Two-way 
Ranging 

5 8.1 6.2 
10 2.5 4.7 
15 1.6 3.3 
25 1.4 2.1 

Table 3. The Total GDOP and availability comparison among three navigation methods under dif-
ferent orbital conditions: two satellites were placed in 2100 km circular low lunar orbit with different 
phase differences (5, 10, 15, and 25 deg). The rover/lander positions were fixed to the south pole 
(−90 deg latitude), and the satellite orbit inclination was fixed to 110 deg. 

Navigation Methods Phase Difference [deg] Total GDOP Availability [%] 

MDPO 

5 1336.6 10.9 
10 447.8 10.0 
15 274.2 9.0 
25 203.6 8.1 

Double-differenced TOA–
FOA 

5 5669.0 16.3 
10 1899.0 15.0 
15 1162.9 13.4 
25 863.5 12.1 

Single-differenced Two-way 
Ranging 

5 21.6 16.3 
10 6.7 15.0 
15 3.8 13.4 
25 2.7 12.1 

We found that single-differenced two-way ranging provided the smallest DOP. This 
is as single-differenced observation has a better quality by nature than double-differenced 
observation, due to fewer differencing processes. On the other hand, double-differenced 
TOA–FOA tends to result in the largest DOP due to the low quality of double-differenced 
pseudodoppler observations. Double-differenced TOA–FOA and single-difference two-
way ranging have a larger 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 than the MDPO, as they only require single-
epoch observation, while the MDPO requires multiple-epoch observations. The 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 changes depending on the attitudes of the satellites, as 
well as the phase difference between the two satellites. In general, higher orbits provide a 
larger 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃  and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 , and larger phase differences provide a smaller 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 
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3.7.2. Satellite Orbital Parameters and Systematic Errors Related to DEM 
As indicated by Equations (25) and (45), using DEM information in the estimation 

process induces errors in the X–Y position estimates. There is some correlation between 
the error and satellite positions: a larger elevation angle from the rover plane to the satel-
lite position tends to lead to a larger X–Y position error: This can be explained by looking 
at Equation (2). Equation (2) can be reformatted as 𝑟ோௌ(𝑡௜) = ห𝑿௦(𝑡௜௦) −𝑿ோ (𝑡௜) + 𝑑𝑿ோ௦௔ห =ට(𝑥ௌ (𝑡௜௦) − 𝑥ோ(𝑡௜) + 𝑑𝑥ோ ௦௔)ଶ + (𝑦ௌ (𝑡௜௦) − 𝑦ோ(𝑡௜) + 𝑑𝑦ோ ௦௔)ଶ + (𝑧ௌ (𝑡௜௦) − 𝑧ோ(𝑡௜) + 𝑑𝑧ோ ௦௔)ଶ 

and when the elevation angle is large, 𝑧ௌ (𝑡௜௦) − 𝑧ோ(𝑡௜)  becomes larger in relation to 𝑥ௌ (𝑡௜௦) − 𝑥ோ(𝑡௜) and 𝑦ௌ (𝑡௜௦) − 𝑦ோ(𝑡௜) and, consequently, the projection of the Z direction 
error on the X–Y plane is greater. 

The mathematical process 𝑹 = 𝑮𝑑𝑿 + 𝒘 , and its converted form 𝑑𝑿 =(𝑮்𝑮)ି𝟏𝑮𝑻(𝑹−𝒘), indicates that the error in the estimates does not appear linearly with 
respect to the elevation angle, as the process takes the double-differenced or single-differ-
enced form of pseudo-observations but multiplies them by the pseudo-inversed observa-
tion matrix, which is also a function of the satellite and user positions. However, we can 
exploit some useful findings with respect to the satellite orbital parameters: for instance, 
the higher the satellite altitude at the same orbit inclination, the larger the error. Again, 
the error cannot be analytically calculated, and we need to use a numerical simulation on 
a case-by-case basis. 

Table 4 shows the user position error with different satellite altitudes, which was 
calculated using the same numerical simulation as in Section 4.2. The satellite altitude was 
changed among 300, 600, 900, and 2100 km, while the other parameters were set the same 
as in Section 4. In this section, satellite orbital positions were created without considering 
the precise cis-lunar dynamics, and the orbital parameters did not change due to pertur-
bations from the initial set. The result indicates that the user position accuracy deterio-
rated immediately along with the satellite orbit altitude and that low lunar orbits are suit-
able for these DEM-aided radio-triangulation-based relative-positioning systems. 

Table 4. One example of correlation between the satellite altitude and Total UPE: two satellites were 
placed in different circular LLO, 300, 600, 900, and 2100 km. The simulation takes an average of 100 
simulation cases for each. 

Navigation Methods Satellite Altitude (km) Total UPE (2drms) (m) 

MDPO 

300 57.9 
600 121.4 
900 197.3 
2100 1038.3 

Double-differenced TOA–FOA 

300 119.8 
600 245.7 
900 454.3 
2100 2049.6 

Single-differenced Two-way Ranging 

300 27.0 
600 40.1 
900 56.3 
2100 217.8 

4. Comparative Analysis of Three Navigation Methods 
As discussed in Section 3.6, the user position accuracy is subject to systematic errors 

stochastically. Therefore, we require numerical simulation to compare the accuracy of the 
three navigation methods. 
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4.1. Overview of Numerical Simulation 
The simulation code was initially developed in our prior research [18] and was up-

dated to incorporate the double-differenced TOA–FOA and single-differenced two-way 
ranging. The simulation code is open to the public and can be accessed at [29]. 

Figure 5 provides an overview of the simulation system. First, a rover trajectory in 
the X–Y direction, i.e., a time-series dataset of 𝑥ோ and 𝑦ோ, was created, and then a rover 
position in the Z direction, i.e., 𝑧ோ, was also created using the lunar DEM data 𝑧ோ ஽ாெ. 
Then, by adding the DEM error (𝑑𝑧ோ ஽ாெ ) to a created rover trajectory, the true rover po-
sition 𝑿ோ ௧௥௨௘ was developed. For lunar DEM data, we used [30], which is 5 m resolution 
DEM data for latitude from −87.5 deg to −90 deg. The DEM error dataset, i.e., 𝑑𝑧ோ ஽ாெ, 
was prepared at a 1 m grid interval. In other words, the DEM data changed every 5 m 
grid, while the DEM error data changed every 1 m grid. The true rover altitude, i.e., the 
z-component of 𝑿ோ ௧௥௨௘, was estimated using the DEM value and DEM error value of the 
closest grid point from its horizontal location, respectively. For example, if the rover is 
horizontally located at (𝑥ோ, 𝑦ோ) = (11.3 m, 3.5 m), it refers to the DEM data of the point (𝑥ோ, 𝑦ோ) = (10.0 m, 5.0 m) and the DEM error data of the point (𝑥ோ, 𝑦ோ) = (11.0 m, 3.0 m) to 
calculate the true rover altitude. 

 
Figure 5. Simulation overview. 

Next, the true satellite trajectory 𝑿௧௥௨௘ௌ  was prepared separately. A precise cis-lunar 
dynamics model takes into account the gravity model of the Moon of degree 40, as well 
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as the gravity from the Earth and the Sun, which was used to generate satellite trajectory 
data in the topocentric frame, whose origin is at the lander position. 

The true velocity, true range and true doppler were calculated using the true satellite, 
rover, and lander positions while taking into account the Moon rotation during the signal 
traveling time between the satellites and rover/lander, i.e., 𝑑𝑿ோ௦௔ and 𝑑𝑽ோ ௦௔ௌ . Signal pro-
cessing delay time, i.e., 𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ , was set to zero without losing generality. Then, by add-
ing the receiver observation errors, and the signal processing delay time uncertainty 𝑑𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ  for the single-differenced two-way ranging method, to a true range and true 
doppler, the pseudorange observation 𝜌ோௌ(𝑡௜)  and pseudodoppler observation 𝜌ௗோௌ(𝑡௜) 
were prepared. 

By adding satellite orbit determination error 𝑑𝑿௦௔௧ ை஽ௌ  and time tag error 𝑑𝑿௧௜௠௘ ௧௔௚ௌ  
to the satellite’s true position 𝑿௧௥௨௘ௌ , the observed satellite position 𝑿௢௕ௌ  was prepared. 
Then, the three methods respectively calculate an estimated rover position 𝑿ோ ௘௦௧ using 
the pseudorange observation 𝜌ோௌ(𝑡௜), pseudodoppler observation 𝜌ௗோௌ(𝑡௜), observed satel-
lite position 𝑿௢௕ௌ , and lunar DEM data 𝑧ோ ஽ாெ over the course of the simulation period. 
Finally, the true rover position 𝑿ோ ௧௥௨௘ and the estimated rover position 𝑿ோ ௘௦௧ were com-
pared to evaluate the estimation accuracy. 

4.2. Other User-Set Conditions 
Table 5 summarizes the general parameters used in the simulation. The total simula-

tion period was set to 15,000 min, assuming a two-week-long mission. The range meas-
urement resolution at the user pseudorange receiver was set to 0.4 m, and the Doppler 
measurement resolution at the user pseudodoppler receiver was set to 0.2 Hz, assuming 
a typical space GNSS receiver specification with a conservative safety margin. The initial 
rover position and lander position were set to (−90 deg latitude), assuming a south-pole 
mission. The rover trajectory was created dynamically by changing the rover position af-
ter each observation epoch according to the defined traveling distance and the random 
heading direction specified in Table 5. 

Table 5. The simulation parameters. 

Items Value Unit Remarks 
Simulation Period 15,000 min Approximately two weeks in Earth time. 

Range measurement resolution of the user pseu-
dorange receivers 

0.4 m 
Minimum observable resolution by the rover 

and lander receivers. 
Doppler measurement resolution of the user 

pseudodoppler receivers 
0.2 Hz 

Minimum observable resolution by the rover 
and lander receivers. 

Latitude of initial rover/lander position  −90 deg  
Interval of pseudorange/doppler observations 0.5 min  

Rover traveling distance between observations 3.75 m 
The rover travels at 7.5 m/min for 0.5 min be-

tween position estimations. 

Rover traveling direction Random deg 
The heading direction is selected from three 

values (+గଷ ,−గଷ , 0) randomly. 

MDPO requires pseudorange observations from two epochs, while other navigation 
methods require pseudorange and/or pseudodoppler observation from a single epoch, 
and the interval of observations was set to 0.5 min. Hence, it took 1.0 min for the MDPO 
method to estimate the rover position, and 0.5 min for the other navigation methods to 
estimate the rover position. The rover position was fixed during the observation epoch(s), 
then the rover position was changed in the following 0.5 min and then stopped for another 
observation epoch(s), which continued over the course of the simulation period. In addi-
tion, the rover moved only when both orbiters were in view. 
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Tables 6–10 show the systematic and random error statistics used in the simulation. 
The realism of these values is discussed as follows: Table 6 summarizes the values of the 
satellite orbit determination error, i.e., ∆𝐴𝑙𝑜𝑛𝑔,∆𝑅𝑎𝑑𝑖𝑎𝑙, and ∆𝐶𝑟𝑜𝑠𝑠, which are defined 
in Equation (43). The satellite orbit determination error consists of white noise and sys-
tematic error modeled as a sinusoidal function with the period of the satellite orbit. The 
values were chosen by adding a sufficient margin to the reference data from the Lunar 
Reconnaissance Orbiter (LRO) project [31]. Table 7 summarizes the value of the time tag 
error, which is defined as the difference of two user time tags. Time tag error consists of 
offset and random walk error: the offset component represents a residual time tag error 
after the frame synchronization. The random walk component was reset to zero and in-
creased until the next frame synchronization. We assumed the frame synchronization 
takes place in every orbital period. Table 8 summarizes the value of DEM model error, 
i.e., 𝑑𝑧ோ ஽ாெ. The value was determined based on the actual lunar DEM data by adding a 
sufficient margin: the accuracy of the best existing DEM data in a vertical direction is 
about 3 m within a ±60–deg latitude and about 10 m near polar regions [27,28]. The DEM 
error is derived from calibration errors between multiple sensors and practically consists 
of white noise and offset according to Figure 4 of [27]. Table 9 summarizes the magnitude 
of receiver observation errors used in the simulation, i.e., 𝜔௥ and 𝜔ௗ. Table 10 summa-
rizes the value of signal processing delay time uncertainty, i.e., 𝑑𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ . The signal 
processing delay time uncertainty consists of white noise and systematic error modeled 
as a sinusoidal function with the period of the lunar rotation, assuming that the systematic 
noise is derived from thermal variation of the user radio, which coincides with the lunar 
thermal environment variation due to the Sun elevation transition of the landing point. 
Table 11 shows the satellite orbital parameters used in the simulation: two satellites were 
placed in the 110 deg–300 km (inclination–altitude) circular orbits with 15 deg phase dif-
ference. It is important to note that argument of latitude was defined instead of the argu-
ment of periapsis and the true anomaly as they were circular orbits. The same parameters 
were used in the following simulations unless otherwise mentioned. 

Table 6. Overview of the satellite orbit determination error used in the simulation. 

Items Type Value Unit Remarks 

Satellite Orbit Determination 
Error in the Along Direction 

𝑑𝐴𝑙𝑜𝑛𝑔(𝑡௜) = 𝜔ை஽ି஺௟௢௡௚ (𝑡௜) + 𝑐ை஽ି஺௟௢௡௚ 

White Gaussian ran-
dom error 𝜔ை஽ି஺௟௢௡௚  100.0 m 

𝜔ை஽ ௧  =  𝑉𝑎𝑙𝑢𝑒 × a random scalar drawn 
from the standard normal distribution each 

time. 

Systematic error 𝑐ை஽ି஺௟௢௡௚  200.0 m 

Systematic error 𝑐ை஽ is an output of the si-
nusoidal function 𝐴 × 𝑠𝑖𝑛(2𝜋𝑥/𝑇): the argu-
ment 𝑥 is epoch time, the period 𝑇 was set 
equal to the satellite orbital period, and the 
amplitude 𝐴 is randomly selected between −𝑉𝑎𝑙𝑢𝑒 and 𝑉𝑎𝑙𝑢𝑒 at the beginning of each 

simulation. 

Satellite Orbit Determination 
Error in the Radial Direction 

𝑑𝑅𝑎𝑑𝑖𝑎𝑙(𝑡௜) = 𝜔ை஽ିோ௔ௗ௜௔௟(𝑡௜) + 𝑐ை஽ିோ௔ௗ௜௔௟ 
White Gaussian ran-

dom error 𝜔ை஽ିோ௔ௗ௜௔௟  10.0 m 
Same as above. 

Systematic error 𝑐ை஽ିோ௔ௗ௜௔௟  20.0 m 

Satellite Orbit Determination 
Error in the Cross Direction 

𝑑𝐶𝑟𝑜𝑠𝑠(𝑡௜) = 𝜔ை஽ି஼௥௢௦௦(𝑡௜) + 𝑐ை஽ି஼௥௢௦௦ 
White Gaussian ran-
dom error 𝜔ை஽ି஼௥௢௦௦  100.0 m 

Same as above. 
Systematic error 𝑐ை஽ି஼௥௢௦௦  200.0 m 
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Table 7. Overview of the time tag error used in the simulation. 

Item Type Value Unit Remarks 

Time 
Tag Er-

ror 

 𝑑𝜏ோ (𝑡௜) = 𝑐௧௜௠௘ ௧௔௚ + 𝑥௧௜௠௘ ௧௔௚  
Offset error 𝑐௧௜௠௘ ௧௔௚  1.0 ms 

Offset error 𝑐௧௜௠௘ ௧௔௚ is randomly selected between −𝑉𝑎𝑙𝑢𝑒 and 𝑉𝑎𝑙𝑢𝑒 after the time synchronization and fixed until the next time syn-
chronization. The time synchronization takes place in every orbital pe-

riod. 

Random walk 𝑥 ௧௜௠௘ ௧௔௚  1.0 × 10ି଼ ms/min 

A random walk is a time series model 𝑥௧௜௠௘ ௧௔௚ (௧) such that 𝑥௧௜௠௘ ௧௔௚ (௧) =𝑥௧௜௠௘ ௧௔௚ (௧ିଵ) + 𝜔௧ where 𝜔௧ is a discrete white noise series. Random 
walk noise is reset to zero after the time synchronization and increases 

until the next time synchronization. The time synchronization takes 
place in every orbital period. 

Table 8. Overview of the DEM error used in the simulation. 

Item Type Value Unit Remarks 

DEM Er-
ror 

𝑑𝑧ோ ஽ாெ = 𝜔஽ாெ + 𝑐஽ாெ 
White Gaussian ran-

dom error 𝜔஽ாெ  10.0 m 𝜔஽ாெ ௧ = 𝑉𝑎𝑙𝑢𝑒 × a random scalar drawn from the standard normal 
distribution each time.  

Offset error 𝑐஽ாெ  5.0 m 
Offset error 𝑐஽ாெ is randomly selected between −𝑉𝑎𝑙𝑢𝑒 and 𝑉𝑎𝑙𝑢𝑒 at the beginning of each simulation and fixed during the sim-

ulation. 

Table 9. Overview of the receiver observation error used in the simulation. 

Item Type Value Unit Remarks 

Receiver Observa-
tion Error 

Range white Gaussian 
random error 𝜔௥ 

0.2 m 𝜔௥ = 𝑉𝑎𝑙𝑢𝑒 × a random scalar drawn from the standard 
normal distribution each time, i.e., 𝜎ன୰  = 0.2 m. 

Doppler white Gaussian 
random error 𝜔ௗ 

0.1 Hz 𝜔ௗ = 𝑉𝑎𝑙𝑢𝑒 × a random scalar drawn from the standard 
normal distribution each time, i.e., 𝜎னୢ  = 0.1 Hz.  

Table 10. Overview of the signal processing delay time uncertainty used in the simulation. 

Item Type Value Unit Remarks 

Signal Processing 
Delay Time Uncer-

tainty 

𝑑𝑡௣௥௢௖௘௦௦௜௡௚ௌିோ = 𝜔௣௥௢௖௘௦௦ + 𝑐௣௥௢௖௘௦௦ 
White Gaussian random 

error 𝜔௣௥௢௖௘௦௦  20.0 ns 𝜔஽ாெ ௧ = 𝑉𝑎𝑙𝑢𝑒 × a random scalar drawn from the stand-
ard normal distribution each time.  

Systematic error 𝑐௣௥௢௖௘௦௦  20.0 ns 

Systematic error 𝑐௣௥௢௖௘௦௦ is an output of the sinusoidal 
function 𝐴 × 𝑠𝑖𝑛(2𝜋𝑥/𝑇): the argument 𝑥 is epoch time, 
the period 𝑇 was set equal to the lunar rotation period, 

and the amplitude 𝐴 is randomly selected between −𝑉𝑎𝑙𝑢𝑒 and 𝑉𝑎𝑙𝑢𝑒 at the beginning of each simulation. 

Table 11. The satellite orbital parameters used in the simulation. 

Items Value Unit 
Satellite 1 perilune altitude 300 km 
Satellite 1 apolune altitude 300 km 

Satellite 1 inclination 110 deg 
Satellite 1 right ascension of the ascending node 0 deg 

Satellite 1 argument of latitude 0 deg 
Satellite 2 perilune altitude 300 km 
Satellite 2 apolune altitude 300 km 
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Satellite 2 inclination 110 deg 
Satellite 2 right ascension of the ascending node 0 deg 

Satellite 2 argument of latitude −15 deg 

To secure the statistical accuracy, a Monte Carlo simulation was conducted 100 times, 
and averaged data are presented for each specific scenario. The rover trajectory and model 
errors were renewed and created with every simulation. 

4.3. Numerical Simulation Result 
The simulation results for the three navigation methods are shown in Table 12. Due 

to the systematic errors discussed in Section 3.6, the 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸(2𝑑𝑟𝑚𝑠) became larger 
than the product of the 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 and twice the standard deviation of differenced re-
ceiver observation error, i.e., 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 × 2𝜎∆ఇఠ for the MDPO and double-differenced 
TOA–FOA with 𝜎∆ఇఠ= 0.4 m and 𝜎∆ఇఠ= 0.2 m, respectively, and 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃 × 2𝜎∆ఠ for 
the single-differenced two-way ranging with 𝜎∆ఠ = 0.28 m. The deterioration by systematic 
errors in 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 in relative proportion is greater in the single-differenced two-way 
ranging than in other two navigation methods under the selected condition. 

Table 12. The numerical simulation results taking an average of 100 simulation cases. 

Navigation Methods 
Total 

GDOP  
Total UPE 

(2drms) (m) 
Availability 

(%) 
Total Traveling Dis-

tance (m) 
MDPO 46.7 55.3 3.3 3753.75 

Double-differenced 
TOA–FOA 193.8 109.9 5.0 5625 

Single-differenced Two-
way Ranging 1.2 26.3 5.0 5625 

The three navigation methods provided different 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃  and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
and, as a result, the 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 and total traveling distance were also different. In general, 
single-differenced two-way ranging outperformed the other two methods with respect to 
the user position accuracy due to a smaller 𝑇𝑜𝑡𝑎𝑙 𝐺𝐷𝑂𝑃. The total traveling distance of 
the MDPO was shorter than that of the other two methods due to a longer observation 
period. 

Figure 6 shows examples of the estimated rover trajectory overlaying the true rover 
trajectory of the three different navigation methods, as well as the distribution of the user 
position error between the true rover positions and the estimated rover positions. Accord-
ing to Figure 6, under the condition of the selected orbital parameters shown in Table 10, 
the error distribution does not have a large anisotropy, but may become more anisotropic 
for other cases, depending on the satellite orbital parameters, initial rover/lander position, 
and DEM error. 
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Figure 6. The simulated rover trajectories and user position errors. (a,b) correspond to the MDPO, (c,d) correspond to the 
double-differenced TOA–FOA, (e,f) correspond to the single-differenced two-way ranging. 
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4.4. Numerical Simulation Result with Increased Reveiver Observation Noise 
It is important to highlight once again that the user position accuracy is dependent 

on the magnitude of the receiver observation error. The receiver observation error is 
caused by several factors including thermal noise, symbol timing offsets in signal pro-
cessing, and environmental factors. Additionally, the signal processing delay time uncer-
tainty is subject to thermal noise and environmental factors as well. The simulation results 
with increased receiver observation errors and signal processing delay time uncertainty 
by a factor of 10, i.e., 𝜎ఠ௥ = 2.0 m, 𝜎ఠௗ = 1.0 Hz, the magnitude of 𝜔௣௥௢௖௘௦௦ is 200.0 ns, 
and the magnitude of 𝑐௣௥௢௖௘௦௦ is 200.0 ns, as shown in Table 13. 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 of the three methods were increased by a factor smaller than 10, and the 
factors were slightly different among the three methods. This is essentially, as mentioned 
in Section 4.3, due to the systematic errors that affect 𝑇𝑜𝑡𝑎𝑙 𝑈𝑃𝐸 differently depending 
on navigation methods. 

Table 13. The numerical simulation results with increased receiver observation errors and signal 
processing delay time uncertainty: 𝜎ఠ௥ = 2.0 m, 𝜎ఠௗ = 1.0 Hz, the magnitude of 𝜔௣௥௢௖௘௦௦ is 200.0 
ns, and the magnitude of 𝑐௣௥௢௖௘௦௦ is 200.0 ns. 

Navigation Methods Total 
GDOP  

Total UPE 
(2drms) (m) 

Availability 
(%) 

Total Traveling Dis-
tance (m) 

MDPO 46.7 437.9 3.3 3753.75 
Double-differenced 

TOA–FOA 
193.8 922.1 5.0 5625 

Single-differenced Two-
way Ranging 

1.2 249.9 5.0 5625 

5. Discussion 
In general, the three navigation methods have different characteristics in terms of 

navigation accuracy and system complexity. Therefore, the system designer must under-
stand the difference and representative performance of these three navigation methods to 
choose an appropriate method based on the desired specifications. 

Through the numerical simulation, we quantitatively confirmed an achievable posi-
tion accuracy for the three navigation methods under the selected orbital condition. From 
a user position accuracy point of view, single-differenced two-way ranging outperformed 
the other two navigation methods. The drawback of the single-differenced two-way rang-
ing is power efficiency, which requires transmitting power at the rover side to reply each 
receiving radio signal from two satellites. Additionally, the method requires transmitting 
power at the satellite side to send radio signals to multiple users respectively, i.e., radio 
signals to multiple rovers and at least one lander. 

Based on the simulation results in Section 4.3, if the mission requires a navigation 
accuracy as high as 30 m, but only for a single rover, and allows a radio signal emission 
at a rover, then single-differenced two-way ranging is the best choice. On the other hand, 
if the mission requires the provision of navigation information to multiple users, the 
MDPO or double-differenced TOA–FOA could be a more efficient option depending on 
the required accuracy, total traveling distance, and the desired system complexity, i.e., 
either requiring range sensors or range and Doppler sensors. For instance, the MDPO is 
the best choice from power efficiency point of view when the mission requires a multi-
user navigation system, and the required user position accuracy is about 50 m. 

A combination of two navigation methods could be considered to compensate their 
weaknesses. For example, having the MDPO and single-difference two-way ranging on 
the same satellite can change the configuration between providing several tens of meters 
of navigation accuracy to multiple users, or providing higher than thirty meters of navi-
gation accuracy to a single user, depending on the mission needs, without launching an-
other set of satellites. 
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Single-differenced two-way ranging can also be achieved with a single satellite using 
multi-epoch observation at the expense of availability. We will study that in our future 
work. 

6. Conclusions 
In this paper, we studied and compared three dual-satellite lunar navigation systems 

that consist of a constellation of two navigation satellites. Dual-satellite navigation sys-
tems play key roles in establishing a low-cost navigation platform around the Moon. 
While several dual-satellite navigation methods have been studied, we focused on the 
comparison of three navigation methods, MDPO, double-differenced TOA–FOA, and sin-
gle-differenced two-way ranging, as these three methods represent three different types 
in terms of observation data, i.e., passive ranging, passive ranging and doppler, and active 
ranging, into which most dual-satellite navigation methods can be classified. 

First, we derived the mathematical models of these three methods step by step, to 
clarify the differences among the three navigation methods. Next, we confirmed the 
achievable user position accuracy of the three navigation methods by numerical simula-
tion under the selected orbital conditions. Based on the numerical simulation results, we 
discussed the advantages and disadvantages of the three navigation methods and pro-
vided a guideline to select one or a combination of these three navigation methods de-
pending on the mission requirements: From a user position accuracy point of view, single-
differenced two-way ranging outperformed the other two navigation methods, while sin-
gle-differenced two-way ranging requires larger power consumption at the rover side as 
well as at the satellite side. If the mission requires the provision of navigation information 
to multiple users, the MDPO or double-differenced TOA–FOA could be a more efficient 
option, depending on the desired specifications such as required accuracy, total traveling 
distance, and the desired system complexity, i.e., either requiring range sensors or range 
and Doppler sensors. 

Furthermore, a combination of two navigation methods could be considered to com-
pensate their weaknesses. For instance, having the MDPO and single-difference two-way 
ranging on the same satellite enables the users to choose between two configurations, 
providing several tens of meters of navigation accuracy to multiple users, or providing 
higher than thirty meters of navigation accuracy to a single user, without launching an-
other set of satellites. 
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