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Abstract: This paper intends to show some special types of orbits around Jupiter based on the mean
element theory, including stationary orbits, sun-synchronous orbits, orbits at the critical inclination,
and repeating ground track orbits. A gravity model concerning only the perturbations of J2 and
J4 terms is used here. Compared with special orbits around the Earth, the orbit dynamics differ
greatly: (1) There do not exist longitude drifts on stationary orbits due to non-spherical gravity
since only J2 and J4 terms are taken into account in the gravity model. All points on stationary
orbits are degenerate equilibrium points. Moreover, the satellite will oscillate in the radial and
North-South directions after a sufficiently small perturbation of stationary orbits. (2) The inclinations
of sun-synchronous orbits are always bigger than 90 degrees, but smaller than those for satellites
around the Earth. (3) The critical inclinations are no-longer independent of the semi-major axis and
eccentricity of the orbits. The results show that if the eccentricity is small, the critical inclinations will
decrease as the altitudes of orbits increase; if the eccentricity is larger, the critical inclinations will
increase as the altitudes of orbits increase. (4) The inclinations of repeating ground track orbits are
monotonically increasing rapidly with respect to the altitudes of orbits.

Keywords: mean element theory; orbit dynamics; longitude drift; critical inclinations

1. Introduction

Jupiter is the most massive planet in the solar system. It is also a gas giant planet. Its
mass is 2.5 times the mass of other planets in the solar system. The large size of Jupiter also
makes it relatively easy to be observed. As a result, it was discovered very early. Jupiter
has been one of the major targets for planetary exploration. However, Jupiter’s powerful
magnetosphere and radiation belts are threats to all human spacecraft trying to visit Jupiter.
Since the 1970s, several space missions have been launched by NASA, such as Pioneer X,
Voyager 1, Galileo, and Juno. However, there is still a long way to go to explore Jupiter.
There exist many interesting phenomena that have attracted people to explore for many
years, for example, the Great Red Spot, Jupiter’s rings, and atmospheric jet streams. As
a gaseous planet, Jupiter cannot be explored by landing like a lithospheric planet. We
can only use probes to orbit and enter Jupiter’s atmosphere. Therefore, it is necessary to
investigate the orbit dynamics around Jupiter. Weibel et al. [1] researched stable orbits
between Jupiter and the Sun. Jacobson [2] investigated the gravity field of Jupiter and the
orbits of its Galilean satellites. Colwell et al. [3] studied the exogenic dust ring. Recently,
Liu et al. [4,5] discussed the dust in the Jupiter system outside the rings and distribution of
Jovian dust ejected from the Galilean satellites. Research about this will surely contribute
to the orbit design of space missions.

Investigating the dynamical environments around planets has been the focus for
space missions in the past few decades. For this purpose, much research concerning
various special artificial satellite orbits around planets have been conducted. Usually, these
special types of orbits include stationary orbits, frozen orbits, sun-synchronous orbits,
repeating ground-track orbits, and orbits at the critical inclination. The original idea about
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geostationary orbits was first put up by Clarke [6]. He pointed out that satellites with
an altitude of 36,000 km above the equator of the Earth would have the same rotation
rates as the Earth and stay stationary relative to an observer on the equator. Therefore,
geostationary satellites are often used for the sake of communications and navigations.
Four equilibrium solutions for geostationary orbits were shown to exist by Musen &
Bailie [7]. Moreover, two of them were stable while the other two were unstable. Lara &
Elipe [8] calculated periodic orbits around equilibrium points in the Earth second degree
and order gravity field. For Mars, the stationary orbits, also known as areostationary orbits,
and the equilibrium points were studied by Liu et al. [9]. The periodic orbits around the
equilibrium points were also calculated by Liu et al. [10].

For orbits at the critical inclination, the eccentricity and argument of perigee are
invariant on average. The concept of the Earth critical inclination was first introduced by
Orlov [11]. Brouwer [12] used canonical transformations to eliminate short-period terms.
Coffey et al. gave a geometrical interpretation of the critical inclination for satellites by
investigating the averaged Hamilton system [8]. Representatives of orbits at the critical
inclination are the Russian Molniya satellites. The combined effects of the critical inclination
and the 2:1 mean motion resonance of a Molniya orbit have been intensively studied since
then, for example, in [13–17]. Similarly, frozen orbits are characterized by the invariance
of average eccentricity and argument of perigee. Frozen orbits are not limited to specific
inclinations. They may exist at any inclination. Usually, the argument of perigee is equal
to 90 or 270 deg, depending on the sign of the ratio of the harmonic coefficients J3 and J2.
Frozen orbits were first proposed by Cutting et al. [18] for orbit analysis of the Earth satellite
SEASAT-A. Coffey et al. [19] showed that there exist three families of frozen orbits in the
averaged zonal problem up to J9 in the gravity field of an Earth-like planet. The frozen
orbits around the moon in the full gravity model were considered by Folta & Quinn [20],
and Nie & Gurfil [21]. Some researchers also view orbits at the critical inclination as frozen
orbits, for example [19,22].

Sun-synchronous orbits are defined with a precession rate of the orbital plane equal
to the revolution angular velocity around the sun. Generally, remote sensing satellites
are placed into these orbits. Macdonald et al. [23] used an undefined, non-orientation-
constrained, low-thrust propulsion system to consider an extension of the sun-synchronous
orbits.

For repeating ground track orbits, the trajectory ground track repeats after a whole
number of revolutions within some days. Orbits of this type are widely used to achieve
better coverage properties. Lara showed that orbits repeating their ground track on the
surface of the Earth were members of periodic-orbit families of the tesseral problem of the
Earth artificial satellite [24].

Lei [25] considered the leading terms of the Earth’s oblateness and the luni-solar
gravitational perturbations to describe the secular dynamics of navigation satellites moving
in the medium Earth orbit and geosynchronous orbit regions. Liu et al. [9] calculated
these five types of special orbits around Mars with analytical formulations and numerical
simulations. In fact, the gravity field of Mars shares many similarities with that of the Earth.
The J2 terms of them are dominant among the harmonic coefficients. However, the J2 term
is not as dominant as Earth’s J2. The other first few harmonic coefficients are also strong
for Mars: about 1–2 orders of magnitude smaller than J2; for the Earth, the other first few
harmonic coefficients are about 3–4 orders of magnitude smaller than J2.

The situation is rather different for Jupiter compared with the Earth and Mars. Due
to the difficulty of determining the gravity field of Jupiter, there exist few studies about
special types of orbits around Jupiter, as far as we know. However, the situation has greatly
improved since Juno’s gravitational measurements were conducted. Iess et al. [26] provided
measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler
tracking of the Juno spacecraft. Moreover, they pointed out a North-South asymmetry,
which is a signature of atmospheric and interior flows. Here, we mainly use the results



Aerospace 2021, 8, 183 3 of 15

in [26] to build a simplified gravity model of Jupiter. Some harmonic coefficients of the
gravity model of the Earth, Mars, and Jupiter can be seen in Table 1.

Table 1. Some harmonic coefficients and their ratios of the Earth, Mars, and Jupiter.

Planet J2(×10−3) J3(×10−6) J4(×10−5) J22(×10−6) J3/J2(×10−3) J4/J2(×10−2)

Earth ([27]) 1.08263 −2.53266 −1.61962 1.81534 −2.3394 −1.4960
Mars ([28]) 1.95545 31.4498 −1.53774 63.0692 16.083 −0.7864

Jupiter ([26]) 14.6965 0.042 −58.661 0 0.0021378 −3.9923

In this paper, we investigate some special orbits around Jupiter, considering mainly
the effect of the non-spherical perturbation of the gravity field.

From Table 1, one can see that the J2 term is still dominating, J2 is about 25 times the
value of J4, but is 105 times bigger than J3. The terms, such as J3, J21, J22, J5, J6 (the values
and their uncertainty can be seen in [26]), can be neglected compared with the terms of J2
and J4. Therefore, a good approximation of the gravity model of Jupiter is given by

U =
µ

r

[
1− J2

2

(
R
r

)2(
3 sin2 φ− 1

)
− J4

8

(
R
r

)4(
35 sin4 φ− 30 sin2 φ + 3

)]
, (1)

where µ = GMJ is the gravitational constant of Jupiter, G = 6.67428× 10−11 m3 · kg−1 · s−2,
MJ is the mass of Jupiter, R is the radius of Jupiter, r is the distance of the satellite relative
to the center of mass of Jupiter, φ is the latitude of the satellite. Equation (1) indicates that
the gravity model of Jupiter that we use here is symmetrical with respect to the z-axis. This
leads to different characteristics of satellites orbiting around Jupiter and the Earth or Mars.
In the next sections, we adopt the gravity model represented by Equation (1) and use it to
study some mean features of orbits around Jupiter.

2. Stationary Orbits

Satellites on stationary orbits are well-known for their stationary ground track. There-
fore, stationary orbits are preferred for designing communications and navigation satellites.
There exist numerous studies on stationary orbits of the Earth and Mars. However, the
gravity field of Jupiter is significantly different. In this subsection, we will calculate the
stationary orbit of Jupiter and investigate their stability in a spherical coordinate system.

In the spherical coordinates of an inertial frame, O− r, λ, φ, where O is the center of
mass of Jupiter, λ is the jovicentric longitude, r and φ are the same as those in Equation (11),
and the kinetic energy of the spacecraft can be written as

T =
1
2

(
.
r2

+ r2 cos2 φ
.
λ

2
+ r2 .

φ
2
)

, (2)

where
.
r,

.
λ,

.
φ are the derivatives with respect to time. From the expressions of T and U,

one can see that λ is a cyclic variable. Let us introduce q = [r, λ, φ]T , the Lagrangian can be
written as L = T −U. By Lagrange equations, we have

d
dt

(
∂T
∂

.
q

)
− ∂T

∂q
=

∂U
∂q

. (3)

More precisely, the equations of motion can be presented as follows:
..
r− r cos2 φ

.
λ

2
− r

.
φ

2
= − µ

r2 +
3µJ2R2

2r4

(
3 sin2 φ− 1

)
+ 5µJ4R4

8r6

(
35 sin4 φ− 30 sin2 φ + 3

)
,

d
dt

(
r2 cos2 φ

.
λ
)
= 0,

d
dt

(
r2

.
φ
)
+ 1

2 r2 sin(2φ)
.
λ

2
= −

[
3µJ2R2

2r3 + µJ4R4

8r5

(
70 sin2 φ− 30

)]
sin 2φ.

(4)
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From the second equation of (4), we see that the quantity r2 cos2 φ
.
λ is invariant, which

can also be obtained by conservation of the angular momentum along the z-axis. Moreover,
the zonal terms of the gravity field only lead to radial and North-South perturbations. The
presence of these terms increases the radius of the stationary orbit with respect to the case
of a spherical planet with the same mass of Jupiter. When the orbital plane coincides with

the equatorial plane, namely φ = 0,
·
φ = 0, the vertical perturbation vanishes. In order to

find stationary orbits for Jupiter, let
.
r =

..
r = 0,

.
λ = nJ ,

..
λ = 0,

.
φ =

..
φ = 0 in these equations;

we get {
n2

J =
µ

r3 +
3µJ2R2

2r5 − 15µJ4R4

8r7 ,
sin 2φ = 0,

(5)

or −
µ

r2 +
3µJ2R2

2r4

(
3 sin2 φ− 1

)
+ 5µJ4R4

8r6

(
35 sin4 φ− 30 sin2 φ + 3

)
+ r cos2 φnJ

2 = 0,
1
2 r2nJ

2 + 3µJ2R2

2r3 + µJ4R4

8r5

(
70 sin2 φ− 30

)
= 0,

(6)

where nJ is the rotational angular velocity of Jupiter. One can verify that the left-hand side
of the second equation in (6) is always positive when r is larger than R. Therefore, we only
need to analyze solutions of Equation (5). From the second equation of (5), we see that only
one meaningful latitude of the stationary orbit exists, i.e., φ = 0 (φ = π

2 , π are also roots
of sin(2φ) = 0, but φ = π

2 makes no sense for stationary orbits, and φ = π corresponds
to a stationary orbit which coincides with that of φ = 0). Introducing the functions

f0(r) =
µ

r3 +
3µJ2R2

2r5 − 15µJ4R4

8r7 − n2
J and f1(r) =

µ

r3 − n2
J , the variations of f0(r), f1(r), with

respect to r, can be seen in the following Figure 1.
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Figure 1. Variations of 0 1( ), ( )f r f r  as r  increases from 2.2R  to 2.3R . Figure 1. Variations of f0(r), f1(r) as r increases from 2.2R to 2.3R.

It can be proved that f0(r) vanishes at two real positive values of r, but only one of
them is bigger than R. This solution, which is given by r0 = 2.2414R = 1.6024× 108 m,
is denoted by E0 in Figure 1. If the perturbation due to the non-spherical gravity field is
not considered, one can find that the radius for stationary orbits is about 2.2381R, which
corresponds to the point E1. Therefore, the existence of the J2 and J4 terms increase the
altitude of the stationary orbit.
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To study the stability of the stationary orbits under small perturbations, we mainly
used the epicyclic theory (Murray & Dermott [29]). We can denote by the constant h, the
value taken by r2 cos2 φ

.
λ for some given initial conditions. Assuming that the deviations

from the stationary orbits are small and writing r = r0(1 + ε), Equation (4) can be linearized
as follows (Murray & Dermott [29], Section 11 of Chapter 6):

..
ε + (3α1 + α2)ε = 0,
..
φ + (α1 + β2)φ + β1 = 0,
·
λ− h

r0
2(1+ε)2 cos2 φ

= 0
(7)

where α1 = − 1
r0

∂U
∂r (r0, 0), α2 = − ∂2U

∂r2 (r0, 0), β1 = − 1
r0

2
∂U
∂φ (r0, 0), and β2 = − 1

r0
2

∂2U
∂2φ

(r0, 0).
By solving Equation (7), the analytical approximate expressions of ε, φ, λ can be formulated
as [29] 

ε = e cos k1t,
φ = − β1

α1+β2
+ i cos k2t,

λ =
√

α1t− 2
√

α1
k1

e sin k1t,
(8)

where k2
1 = 3α1 + α2, k2

2 = α1 + β2, i is the inclination, and e is the eccentricity of the orbit.

Note that the average of
.
λ is
√

α1. Let us set k3 =
√

α1. The first two equations in (7) or (8)
show that the radial and North-South motions are uncoupled. Using the expression (1), we
can get a precise form of the three frequencies k1, k2, k3 [29]:

k1
2 = µ

r0
3

[
1− 3

2 J2

(
R
r0

)2
+ 45

8 J4

(
R
r0

)4
]

,

k2
2 = µ

r0
3

[
1 + 9

2 J2

(
R
r0

)2
− 75

8 J4

(
R
r0

)4
]

,

k3
2 = µ

r0
3

[
1 + 3

2 J2

(
R
r0

)2
− 15

8 J4

(
R
r0

)4
]

.

(9)

Therefore, the satellites will oscillate in the radial and North-South directions with
frequencies k1 and k2, respectively. Moreover, the mean motion frequency, k3, in the West-
East direction is larger than in the Keplerian case. Namely, for a given semi-major axis, the
satellite moves faster than the rate expected at that location in the Keplerian case. In the
following, we give some numerical examples to illustrate the above characteristics.

We computed the evolution of r, φ, and λ when we selected initial values of r and φ
close to r0 and 0, respectively. Figure 2 shows a stationary orbit and four orbits obtained
from r = 0.99r0, φ = ±0.1 deg and r = 1.01r0, φ = ±0.1 deg. We can see that these four
disturbed orbits are no longer periodic. This can be explained by using Equation (9). Due to
the presence of the terms that contain J2 and J4, the three frequencies are usually not equal
or even commensurable. Figure 3 illustrates that the satellite oscillates in the radial and
North-South directions. On the other hand, the satellite on stationary orbits does not drift
in these directions. It only moves with a constant

.
λ along the orbit. Therefore, the drift of

longitude would not occur for satellites on stationary orbits since only zonal harmonics are
taken into account in the gravity model. Furthermore, there are no significant differences
between points on the stationary orbit. As a result of the symmetry of the gravity field, it
can be concluded that the points on stationary orbits are degenerate equilibrium points.
Here, an equilibrium point is degenerate if, and only if, the matrix of the linearized equation
for (4) is degenerate. This is the major difference with respect to stationary orbits of other
planets, such as the Earth and Mars. For the Earth and Mars, there exist four equilibrium
points on stationary orbits, among which two are stable and the other two are unstable.
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where m  is the mass of the third body, and ρ  is the distance between Jupiter and the 
third body. Values of the maximum ratio (109) for different bodies are reported in Table 
2. Since the 4J  term of Jupiter is 100 times bigger than the ratio of acceleration for Io 
(which gives the highest value among the Galilean satellites), it is reasonable to ignore 
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Figure 3. (a,b) Variations of orbital radius (r), (c,d) drift of longitude (∆λ), (e,f) evolution of latitude
(φ): green—stationary orbits; red, r = 0.99r0 and φ = −0.1 deg; blue—r = 0.99r0 and φ = 0.1 deg;
cyan—r = 1.01r0 and φ = −0.1 deg; black—r = 1.01r0, φ = 0.1 deg, and T is a Jovian day.
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In the following, we show that the effects of third bodies, the Jovian ring and the
magnetic field of Jupiter, are negligible compared to those of the J2 and J4 terms.

Based on the data of the Sun and moons around Jupiter (see for example, [30]), one
can calculate the maximal ratio of the disturbed acceleration (ad) and central gravity
acceleration (am) for satellites on stationary orbits, which is achieved when the satellite,
Jupiter, and the third body are in a straight line. Therefore, the maximal ratio can be
calculated as [31] (

ad
am

)
max

= 2
m

MJ

(
r0

ρ

)3
, (10)

where m is the mass of the third body, and ρ is the distance between Jupiter and the third
body. Values of the maximum ratio (109) for different bodies are reported in Table 2. Since
the J4 term of Jupiter is 100 times bigger than the ratio of acceleration for Io (which gives
the highest value among the Galilean satellites), it is reasonable to ignore these effects
when investigating the qualitive character of stationary orbits on short time scales. To
verify the validity of these solutions, we use the numerical integration method to see the
effect of the Galilean moon Io in 800 Jovian days. The orbital elements (a, e, i, Ω, ω, M) of
Io that we adopt here are taken from the 10th China Trajectory Optimization Competi-
tion, i.e.,

(
422, 029.687 km , 0.004308, 0.04 deg, −79.64 deg, 37.991 deg, 4.818 deg

)
. Cal-

culation results show that the drift of longitude (∆λ) for the satellite on stationary orbits is
less than 0.1 deg in 800 Jovian days. The inclination changes no more than 1.0× 10−4 deg.
The oscillation of the semi-major axis is less than 0.13% of the obital radius. However, it
should be noted that the obtained solutions may not be correct on long time scales.

Table 2. The disturbing acceleration due to the third body.

The Third Body m/MJ(×10−5) ρ/r0 (ad/am)max(×10−6)

Sun ([32]) 1.0473× 108 4856.8 0.01823
Io ([30,32]) 4.7047 2.6311 5.20000

Europa ([30,32]) 2.5283 4.1868 0.68904
Ganymede ([30,32]) 7.8056 6.6775 0.52379

Callisto ([30,32]) 5.6673 11.7511 0.06989

The Jovian main ring is about 6440 km wide and probably less than 30 km thick. We
denote this width by w. Moreover, the distance, d, of the ring from the center of mass of
Jupiter is about 122,500 km, and the mass, mr, is about 1.0×1013 kg [32].

For satellites on stationary orbits with position rs, the gravitational acceleration due to
the Jovian main ring can be calculated as

Fr = G
∫ ∫ ∫

ring

(r(P)− rs)ρ(P)dV

|r(P)− rs|3
, (11)

where r(P), ρ(P) denote the position vector and the density, respectively, which depend on
the position of a point, P, belonging to the ring. We can see that

|r(P)− rs|≥ r0 − d− w ≈ 160, 240− 122, 500− 6440 ≈ 0.4378R, |Fr| ≤
Gmr

(0.4378R)2 .

Note that Gmr
(0.4378R)2 /

(
GMJ
r0

2

)
= mr

MJ
·
( r0

0.4378R
)2 ≈ 1.0×1013

1.9×1027 ·
(

2.2414
0.4378

)2
≈ 1.3795× 10−13,

which is far smaller than J2 and J4 terms. Therefore, the effects of the Jovian main ring on
stationary orbits can be neglected.

Another perturbation that may affect stationary orbits is the magnetic field of Jupiter
when the satellite is charged. Here, we briefly analyze the effects under some assumptions.
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The magnetic field of Jupiter near stationary orbits when exterior terms are neglected can
be written as

B(r, φ, λ) = −∇V(r, φ, λ), (12)

where

V = R
∞

∑
l=1

l

∑
m=1

(
R
r

)l+1

[gl,m cos(mλ) + hl,m sin(mλ)]Pm
l (cos φ). (13)

Here, gl,m and hl,m are the geomagnetic Gauss coefficients (their values can be found
in [33,34]), and Pm

l (cos φ) is the normalized Legendre function. The acceleration due to the
Lorentz force is

FL =
q
m
( .
r−ω× r

)
× B(r, φ, λ), (14)

where q = 4πε0Φs,ε0 = 8.854187817× 10−12 F ·m−1 is the vacuum permittivity, Φ is
the surface potential of satellites, s is the radius of the satellite, ω is the angular velocity
vector of Jupiter. For a charged satellite with Φ = 500 V (an in-depth study of the effect
of spacecraft charging at Jupiter can be found in [35]), s = 10 m, and m = 100 kg, we have
q = 5.5633× 10−7C and

∣∣FL
∣∣≤ 1.14× 10−8N. The Lorentz force compared with the lowest

order of gravity provides the ratio

|F L|
|G0|

=

(
n− nJ

)
Bqr3

GMm
≈ 2.3× 10−11

This ratio is also far smaller than J2 and J4. Therefore, it can be concluded that the
effects of Lorentz forces on a satellite can be neglected.

3. Sun-Synchronous Orbits

The oblate nature of the primary body can lead to a secular variation of the ascending
node of the orbit. However, we can use the orbit perturbations to keep the orientation of
the Sun line direction fixed with respect to the orbital plane (for example, perpendicular to
it) during one revolution of Jupiter around the Sun.

Based on the mean element theory, the mean nodal precession rate coming from the
secular perturbations of the first and second order [36,37] can be described as

.
Ω = − 3nJ2R2

2a2(1−e2)
2 cos i− 9nJ2

2 R4

4p4 cos i
{

3
2 + e2

6 +
√

1− e2 − sin2 i
(

5
3 −

5e2

24 + 3
2

√
1− e2

)
− 35J4

18J2
2

[
6
7 + 9e2

7 − sin2 i
(

3
2 + 9e2

4

)]}
.

(15)

For sun-synchronous orbits, the mean nodal precession rate is equal to the mean
motion of Jupiter orbiting around the Sun (ns). Thus, we get the following equation:

g(cos i) = Γ1 cos3 i + Γ2 cos i + Γ3 = 0, (16)

where

Γ1 =
9nJ2

2 R4

4p4

[
5
3
− 5

24
e2 +

3
2

√
1− e2 − 35J4

6J2
2

(
1
2
+

3
4

e2
)]

, (17)

Γ2 =
3nJ2R2

2p2

{
1 +

3J2R2

2p2

[
−1

6
+

3e2

8
− 1

2

√
1− e2 +

5J4

2J2
2

(
1
2
+

3e2

4

)]}
, (18)

Γ3 = ns. (19)

Here, we remark that in Equations (17) and (18), p is equal to a(1−e2).
First, setting x = cos i, we note that the equation g(x) = 0 has three real roots if the

discriminant satisfies the following inequality:

∆ = −
(

Γ2
3

4Γ2
1
+

Γ3
2

27Γ3
1

)
≥ 0. (20)
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Then, it is also necessary to avoid impact with Jupiter. However, the surface of Jupiter
cannot be unambiguously defined since it is a gas giant. The critical perijovian distance,
dc, is usually much larger than the radius of Jupiter, R, due to radiation safety issues.
However, let us take for convenience dc = R, so that the semi-major axis and eccentricity
have to satisfy

dc = R < a(1− e). (21)

The variation of the discriminant with respect to a and e is shown in Figure 4a.
We see that the discriminants are always negative for a ∈ [R, 2R] and e ∈ [0, 1 − R

a ],
therefore, it can be concluded that there usually exists one meaningful inclination for sun-
synchronous orbits when the semi-major axis and eccentricity are given. The inclinations
for different semi-major axis and eccentricities are shown in Figure 4b. It was shown
that the inclination monotonically increases with respect to the semi-major axis. For the
same semi-major axis, the inclination decreases as the eccentricity increases. Moreover,
the inclinations with the same altitude ratio, a/R, are relatively smaller than those of
near-Earth sun-synchronous orbits.
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For satellites on sun-synchronous orbits with medium altitude, perturbations from
the gravity of the third body are usually smaller compared to satellites on stationary
orbits. However, the risk coming from the Jupiter rings and the magnetic field may
increase greatly.

For sun-synchronous orbits, when a = 1.4373R = 102, 755.451 km and e = 0.4, we
have i = 90.183 deg; when a = 1.5308R = 109, 439.953 km and e = 0.1, the corresponding
inclination is 90.321 deg. The evolution of Ω and of the difference between ∆Ω and nst
over 25T for these two cases are presented in Figure 5. In the first case, this difference is
about 0.018 deg; and in the second case, it is about 0.008 deg.
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4. Orbits with Critical Inclination

The variations of the eccentricity and the argument of perijove are mainly caused
by the equatorial bulge of Jupiter. These usually produce negative effects on space
missions to Jupiter. However, we can choose orbits with critical inclinations to avoid
these disadvantages.

According to the mean element theory, the mean variation rate of ω caused by pertur-
bations of the first and second order [36,37] can be formulated as follows:

.
ω = − 3nJ2R2

2a2(1−e2)

( 5
2 sin2 i− 2

)
+

9nJ2
2 R4

p4

{
4 + 7e2

12 + 2
√

1− e2 − sin2 i
(

103
12 + 3e2

8 + 11
2

√
1− e2

)
+ sin4 i

(
215
48 −

15
32 e2 + 15

4

√
1− e2

)
− 35J4

18J2
2

[
12
7 + 27e2

14 − sin2 i
(

93
14 + 27e2

4

)
+ sin4 i

(
21
4 + 81e2

16

)]}
.

(22)

To keep the invariance of the mean argument of perijove, we set
.

ω = 0. Therefore, we
obtain the following equation

Γ4 sin4 i + Γ5 sin2 i + Γ6 = 0, (23)

where

Γ4 =
9nJ2

2 R4

4p4

[
215
48
− 15e2

32
+

15
4

√
1− e2 − 35J4

18J2
2

(
21
4

+
81e2

16

)]
, (24)
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Γ5 =
3nJ2R2

4p2

[
−5− 3J2R2

p2

(
103
12

+
3e2

8
+

11
2

√
1− e2

)
+

35J4

6J2
2

(
31
14

+
9e2

4

)]
, (25)

Γ6 =
3nJ2R2

4p2

{
4 +

3J2R2

p2

[
4 +

7e2

12
+ 2
√

1− e2 − 5J4

6J2
2

(
4 +

9e2

2

)]}
. (26)

Note that the left hand side of Equation (23) is a second-degree polynomial with
respect to sin2 i. This polynomial in sin2 i may have two real roots in [0,1], and so we
may have up to four values of the inclination in [0, π] that solve Equation (23). Let us set
x = sin2 i and write Equation (23) as

h(x) = Γ4x2 + Γ5x + Γ6 = 0. (27)

Noting that Γ4 > 0, Γ5 < 0, Γ6 > 0, we find that h(x) can have up to two real roots.
Moreover, if h(1) > 0, they will fall in the interval [0,1]. If there exist four roots in [0, π]
of the critical inclination, then Equation (27) must have two different real roots lying in
[0,1]. Observing that Γ4 > 0, Γ5 < 0, Γ6 > 0, we can easily see a necessary condition for
Equation (27) to have two different roots lying in [0, 1] is

h(0) = Γ6 > 0, h(1) = Γ4 + Γ5 + Γ6 > 0 (28)

Moreover, the condition (21) should also be satisfied to avoid the impact with Jupiter.
The variation of h(1) for a ∈ [1.1R, 9R] and e ∈ [0, 1− R/a] are presented in Figure 6a. We
note that h(1) < 0 in this domain of (a, e), therefore, there exist two critical inclinations,
and one of them corresponds to a retrograde orbit. The variation of critical inclinations of
direct orbits as a increases from R to 2R are presented in Figure 6b for different values of
the eccentricity. We can see that when e is small, for example e < 0.2, the critical inclination
monotonically decreases with respect to the altitude of the orbit. On the other hand, when
e > 0.4, the critical inclination monotonically increases. It can also be concluded that
there exist some critical values for e, such that the critical inclination is independent of the
altitude of the orbits.
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of the eccentricity.

Figure 6b shows that in the case of Jupiter, critical inclinations depend on the semi-
major axis and eccentricity, while for the Earth considering only the J2, they are fixed
(63.435 deg and 116.565 deg). The evolution of ω and e for two different values of the
semi-major axis and eccentricity are shown in Figures 7 and 8.

For the first case in Figure 7, the amplitude of ω is about 5 deg over a time of 25T. The
amplitude of e is about 0.013. For the second case, the amplitude of ω is about 1.8 deg over
the same time. One can also see from Figure 8 that the amplitude of ω in the first case is
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much larger. This is reasonable, since the semi-major axis of the second case is larger than
that of the first case.
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5. Repeating Ground Track Orbits

Repeating ground track orbits are usually used for remote sensing satellites to obtain
a good appearance for orbital covering. For satellites on these orbits, the ground tracks
can repeat periodically. In this way, the area of Jupiter covered by the satellite can be
dynamically monitored to detect the change of the target during this period of time. For



Aerospace 2021, 8, 183 13 of 15

example, we can make use of these orbits to detect the change of the Great Red Spot. The
interval of adjacent ground track in the equator is

∆λ = TN

(
nJ −

.
Ω
)

(29)

where TN = 2π.
M+

.
ω

is the nodal period of the motion of the spacecraft. Using the mean
element theory, we have [36,37]

.
M = n + 3nJ2R2

2p2

(
1− 3

2 sin2 i
)√

1− e2 +
9nJ2

2 R4

4p4

√
1− e2

{
1
2
(
1− 3

2 sin2 i
)2√

1− e2

+ 5
2 + 10e2

3 − sin2 i
(

19
3 + 26e2

3

)
+ sin4 i

(
233
48 + 103e2

12

)
+ e4

1−e2

(
35
12 −

35
4 sin2 i + 315

32 sin4 i
)
− 35J4

18J2
2

e2
(

9
14 −

45
14 sin2 i + 45

16 sin4 i
)}

,

(30)

where n is the mean angular velocity. The conditions for repeating ground track orbits can
be formulated as

DTN

(
nJ −

.
Ω
)
= D∆λ = 2πN (31)

where D and N are positive integers. Equation (31) implies satellites will have a repeating
ground track after completing D revolutions in N Jovian days. The ground track repetition
parameter, Q = D

N , which represents the number of orbital resolutions in a Jovian day, is
widely used in engineering practice. Using this parameter combined with the definition of
TN , Equation (31) is equivalent to

Q =

.
M +

.
ω

nJ −
.

Ω
. (32)

We can see that once Q is fixed, a, e and i will be related by Equation (32). The
repeating ground track orbits, which are also sun-synchronous, may play an important
role in planetary exploration. For these orbits, Equation (16) was also satisfied. The change
of inclinations of sun-synchronous repeating ground track orbits, with respect to the semi-
major axis for different values of Q, are presented in Figure 9. One can see that for a
given Q, small variations of the semi-major axis produce huge changes in the inclination.
Moreover, for orbits with the same semi-major axis, the inclination,i will be larger if Q is
larger. For the Earth and Mars, the inclination is not so sensitive to the semi-major axis [9].
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6. Conclusions

In this paper, we analyzed some special orbits around Jupiter considering only the
J2 and J4 terms of the non-spherical gravitational potential. First, stationary orbits were
investigated in spherical coordinates. The radius of stationary orbits was found to be 2.2414
Jupiter radii. The longitude drift due to the non-spherical component of the gravity field
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did not occur for the lack of J22 terms. Moreover, a small perturbation of r and φ would lead
to the oscillation phenomenon in the radial and North-South directions. We also showed
that the perturbations of the Sun and the Galilean satellites, the main ring and the magnetic
field are negligible on short time scales compared to those represented by the terms J2
and J4. However, the obtained solutions may be incorrect on long time scales. Then, sun-
synchronous orbits, orbits at critical inclinations, and repeating ground track orbits were
discussed based on the mean-element theory. The results showed that only one meaningful
inclination exists for sun-synchronous orbits when a and e are fixed in a suitable range.
Additionally, only two critical inclinations exist for the critical orbits. Repeating ground
track orbits, which are also sun-synchronous, were also calculated here. The traditional
frozen orbits were not discussed because the J3 term was not taken into account in our
gravity model. However, we remark that there may exist some non-traditional frozen
orbits around Jupiter, which will be left for our future investigations.

The dynamics around Jupiter are very complicated and even if some perturbations can
be neglected for preliminary orbit design, other effects should be considered. For example,
orbits at low-to-moderate inclinations within a few Jovian radii may loiter inside Jupiter’s
radiation belts. This can lead to considerable risk for the integrity of a satellite. However,
we believe that our work can help to reduce or eliminate the need for station keeping in
future space mission around Jupiter.
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