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Abstract: The problem of flight delay prediction is approached most often by predicting a delay class
or value. However, the aviation industry can benefit greatly from probabilistic delay predictions on
an individual flight basis, as these give insight into the uncertainty of the delay predictions. Therefore,
in this study, two probabilistic forecasting algorithms, Mixture Density Networks and Random Forest
regression, are applied to predict flight delays at a European airport. The algorithms estimate well
the distribution of arrival and departure flight delays with a Mean Absolute Error of less than
15 min. To illustrate the utility of the estimated delay distributions, we integrate these probabilistic
predictions into a probabilistic flight-to-gate assignment problem. The objective of this problem is to
increase the robustness of flight-to-gate assignments. Considering probabilistic delay predictions,
our proposed flight-to-gate assignment model reduces the number of conflicted aircraft by up to 74%
when compared to a deterministic flight-to-gate assignment model. In general, the results illustrate
the utility of considering probabilistic forecasting for robust airport operations’ optimization.

Keywords: probabilistic prediction; machine learning; flight delay; flight-to-gate assignment problem

1. Introduction

On-time flight performance is an important measure of the service quality of airports
and airlines. During the period 2013–2019, while the number of flights in Europe increased
by 16% [1], the average departure delay of European flights increased by 41% [2]. Such an
increase has a negative impact on the airports’ and airlines’ quality of service. As Eurocon-
trol forecasts the number of flights to be restored to 2019 levels by 2024 [3], large increases
in delay can be expected again in the future. Accurate flight delay predictions will therefore
remain central to support airports and airlines in offering a high-quality service.

In the past years, several machine learning algorithms have been proposed to predict
flight delays. Most studies predict flight delays using (i) binary classifiers (delayed/not de-
layed flight), (ii) multi-class classifiers (multiple delay classes), or (iii) regression (estimating
the delay value).

Binary classifiers are proposed in Kim et al. [4] where recurrent neural networks are
used to predict flight delays at airports in the US. The prediction horizon is several hours
before the operation. Using this approach, delays are predicted with an accuracy of 0.87
(i.e., the rate of correctly predicted samples). In Lambelho et al. [5], binary classification of
flight delays and cancellations is performed for Heathrow airport using three different clas-
sification algorithms: LightGBM, Multilayer Perceptron, and Random Forests. The authors
predict flight delays and cancellations with an average F1-score of 0.56 using the LightGBM
classifier. In Choi et al. [6], the authors propose binary classifiers for flight delays assuming
a prediction horizon of five days and one day. The obtained flight delay predictions have
an accuracy of 0.80 using the Random Forest classifier.

Multi-class departure delay predictions are obtained in Alonso and Loureiro [7] for Porto
airport for a prediction horizon of several hours before the operation. In Chen and Li [8],
flight delay is predicted using multi-label Random Forests classification. Flight delay
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values from routes flown by an aircraft earlier in a day are used to predict flight delay for
the routes flown later in a day.

In Kalliguddi and Leboulluec [9], flight delays are estimated hours ahead of the
operation using machine learning algorithms that perform regression. The authors consider
delay states of the aviation network as features, in addition to flight schedule-related
features. The results obtained using Random Forests have a root mean square error (RMSE)
of 12.5 min. It is also shown that the delay states have the largest effect on on-time
performance. In Manna et al. [10], the obtained flight delay predictions have an RMSE of
8.2 min and 10.7 min when considering departure delays and arrival delays, respectively.
In Yu et al. [11], a deep-belief network is used to predict flight delays several hours before
the operation. A reduction of 21% in the RMSE is obtained compared to the best benchmark
algorithm, the k-Nearest Neighbours. Thiagarajan et al. [12] propose both classification
and regression algorithms to predict flight delay. Here, the regression approach using
Random Forests produced an RMSE of 8.7 min. Ayhan et al. [13] and Shao et al. [14]
introduce features based on flight trajectory data. Ayhan et al. [13] predict flight delays for
domestic flights in Spain within an RMSE of 4 min. A range of prediction algorithms is
employed, of which AdaBoost performs best. Shao et al. [14] find that the features based
on trajectory data contribute the greatest to the predictive accuracy, and the best result is
found using LightGBM.

The classification and regression results obtained in these studies generate an estimate
for individual flight delay in the form of a class or a point estimate, respectively. The esti-
mates are often evaluated using metrics based on the confusion matrix and metrics such as
RMSE/MAE (Mean Absolute Error), respectively. In order to plan flight operations such as
gate allocation or runway allocation in a robust manner, however, it is necessary to also
consider the uncertainty of the predicted delays of individual flights. Such measures are
not included when obtaining delay classes or point estimates, nor can they be derived
directly from the commonly used evaluation metrics. Therefore, in this paper, we propose
to estimate the probability distribution of flight delays on an individual flight basis, us-
ing machine learning algorithms. Such probability distributions can support planners to
robustly plan flight operations.

Very few studies estimate the probability distribution of flight delays. The common
approach is to fit historical delays to one probability distribution which is assumed to be rep-
resentative for all considered flights [15–19]. In Mueller and Chatterji [15] and Novianingsih
and Hadianti [16], airport and airline delay distributions are obtained by fitting historical
delays to classes of probability distributions. Tu et al. [19] introduce a more complex model,
where the national airspace delay distribution is assumed to be the sum of seasonal trends,
a daily propagation pattern and random residuals. To the best of our knowledge, however,
no studies have been performed that estimate a probability distribution for flight delays on
an individual flight basis, i.e., probabilistic flight delay prediction.

To illustrate how probabilistic flight delay prediction on an individual basis can be
useful for operation optimisation, we integrate these predictions into a probabilistic flight-
to-gate assignment problem (FGAP). Şeker and Noyan [20] were among the first ones
to incorporate probabilistic effects in their solution method for the FGAP. The authors
evaluate the robustness of FGA’s by modelling the departure and arrival flight delays as
random variables. A set of scenarios is created, each with random disruptions to flight
arrival and departure times. The number of gate conflicts is then minimized for each
scenario. The random disruptions utilized in this study model flight delay; however, they
are not based on delay predictions. The results of this study provide a general overview
of the robustness of the used optimization methods, but it is not possible to directly
evaluate the robustness using the actual delay experienced at the airport. Van Schaijk and
Visser [21] and L’Ortye et al. [22] determine the probability that a given arriving/departing
aircraft is present at a gate, for a range of time values. This is called the aircraft presence
probability, and it is obtained using a regression model based on historic data of aircraft
gate presence, using the features ’airline identity’ and ’origin/destination region of flight.’
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The aircraft presence probability of an arriving aircraft is in fact the cumulative distribution
function (cdf) of the aircraft’s delay. The presence probability of a departing aircraft is the
inverted cdf of the aircraft’s delay. Using these presence probabilities, robust flight-to-gate
assignments are developed. The approach taken by Van Schaijk and Visser [21] makes use
of only two features, leading to a limited variation in the constructed presence probabilities.
It is possible to use many more features of the flights that need to be assigned to gates,
leading to a more accurate prediction of their gate presence.

In this paper, we obtain probabilistic delay predictions for flights arriving and de-
parting at a regional reference airport. To the best of our knowledge, this is the first time
probabilistic predictions for flight delays on an individual flight basis are obtained. We
employ two machine learning algorithms: Mixture Density Networks and Random Forest
regression. We consider features based on flight schedules available at the reference airport,
as well as the weather conditions recorded at the origin/destination airport of the flights.
Suitable metrics are proposed to evaluate the performance of the considered machine learn-
ing algorithms, which estimate delay probability density functions (pdf). Furthermore,
the impact of the choice of hyperparameters for these algorithms is analyzed.

The use of the obtained probabilistic predictions is demonstrated in the context of a
robust flight-to-gate assignment problem. First, probabilistic predictions for arrival flight
delays and departure flight delays are obtained using machine learning algorithms. These
predictions are then used to estimate the probability of an aircraft being present at the
reference airport. Lastly, these presence probabilities are integrated into a probabilistic
FGAP model that aims to robustly assign arriving/departing aircraft to the gates of the
reference airport. Here, robustness refers to the assignment model’s ability to account
for potential flight delays. The results show that, by considering flight delay predictions,
flights are allocated to gates more robustly relative to the case when no information about
flight delays is considered.

The remainder of this paper is structured as follows: in Section 2, the datasets, machine
learning algorithms for probabilistic flight delay predictions, and several performance
metrics for these algorithms are introduced. The prediction results are then presented and
discussed. In Section 3, the obtained probabilistic flight delay predictions are integrated
into a flight-to-gate assignment model. Both a deterministic and a probabilistic model for
the optimization of the FGAP are formulated. The models are both applied on a short
and long term, and the results regarding the robustness of the obtained solutions are
presented and discussed. In Section 4, conclusions and recommendations for future work
are provided.

2. Data-Driven Probabilistic Flight Delay Predictions

In this section, we obtain probabilistic flight delay predictions using two machine
learning algorithms, Mixture Density Networks and Random Forests Regression.

2.1. Data Description
2.1.1. Flight Schedule Dataset

For this analysis, flight schedules available at Rotterdam The Hague Airport (RTM)
between 1 January 2017 and 29 February 2020 are considered. In total, 17,365 departing and
17,336 arriving flights are considered. These flights arrive from and depart to 42 airports
across Europe and North Africa. The shortest route included is to London City Airport
(LCY), and the longest to Tenerife South Airport (TFS), with an average of 1300 km. Figure 1
shows a map indicating all airports to or from which flights depart or arrive. The delay
distribution of these flights is shown in Figure 2. The departing flights have an average
absolute delay of 17.8 min with a standard deviation of 25.1 min, and the arriving flights
have an average absolute delay of 15.4 min with a standard deviation of 26.4 min. Here,
the delay is considered to be the positive or negative time difference from the scheduled
time of arrival/departure.
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Figure 1. Map of origin/destination airports for Rotterdam Airport during the period January
2017–February 2020.

Figure 2. Histogram of the flight departure and arrival delays in the period January 2017–February
2020 at Rotterdam Airport.

2.1.2. Weather Dataset

Using [23], we also consider the weather conditions, such as the temperature, pressure,
and wind speed, measured at the origin/destination airport of all flights arriving/departing
at RTM in the period 2017–2020. Measurements are available every 30 min.

2.2. Feature Selection

In this section, features are extracted and selected from the datasets described in
Section 2.1. Feature selection is performed using the Pearson Correlation Coefficient.
The correlation between any two features and the correlation between the features and the
target (the flight delay) are calculated for a given training set. The features are selected
as follows: for any two features that are correlated by more than the threshold value
of 0.7, the feature that has the smallest correlation with the target variable is removed.
Table 1 shows the features that have been selected for flight delay prediction. In Table 2, a
description is provided for each of the selected features.

The features Airport, Airline, Season, Time of day, Day of week, Day of month, Day of
year, Airport latitude and longitude, Distance, Month, Year and Scheduled flights 2h and
day are obtained or calculated from the flight schedule dataset. The feature Seats is derived
from the aircraft type assigned to perform a flight. The features Temperature, Dewpoint,
Visibility, Pressure, and Wind speed are obtained from the weather dataset.
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Table 1. Feature encoding and selection for flight delay prediction.

Prediction Features

Departure delay Airport a, Airline a, Season a, Time of day b, Day of week b, Day of month b, Day of year b, Airport
latitude c, Airport longitude c, Day of month c, Seats c, Year c, Scheduled flights 2 h c, Scheduled flights
day c, Dewpoint c, Visibility c, Pressure c, Wind speed c

Arrival delay Airport a, Airline a, Aircraft type a, Season a, Time of day b, Day of week b, Day of month b, Month b,
Airport longitude c, Day of month c, Distance c, Seats c, Year c, Scheduled flights 2h c, Scheduled
flights day c, Temperature c, Visibility c, Pressure c, Wind speed c

a This feature is target encoded; b This feature is trigonometrically encoded; c This feature is numerically encoded.

Table 2. Description of features selected for flight delay prediction.

Feature Description

Airport the airport of destination (departures) or origin (arrivals)
Airline the airline operating the flight
Aircraft type the aircraft type used for the flight
Season the flight season (summer or winter schedule)
Time of day scheduled time of day of the flight
Day of week scheduled day of the week of the flight
Day of month scheduled day of the month of the flight
Day of year scheduled day of the year of the flight
Month scheduled month number of the flight
Airport latitude and longitude the latitude and longitude of the destination/origin airport
Distance the distance between the origin and destination
Seats the seat capacity of the used aircraft
Year the year in which the flight was operated
Temperature the air temperature at the destination/origin airport
Dewpoint the dewpoint temperature at the destination/origin airport
Visibility the prevailing visibility at the destination/origin airport
Pressure pressure altimeter at the destination/origin airport
Wind speed wind speed at the destination/origin airport
Scheduled flights day the number of flights scheduled to depart/arrive during the day of the flight
Scheduled flights 2h the number of flights scheduled to depart/arrive during the period between one hour

before and one hour after the scheduled time of the flight

The features are either categorical, time-related, or numerical. The categorical features
are target encoded based on a binary delay threshold of 15 min. The encoded value of the
sample feature is the delay rate of the category to which the sample belongs. For example:
if 8 out of 20 samples flying on Tuesdays are more than 15 min delayed, all Tuesday flights
are encoded with value 0.4 for the feature Day of the week. The time features are encoded
using trigonometric functions to preserve the periodicity. Two features (sine and cosine)
are extracted from every time feature. For example, the features Month sine and cosine are
calculated using sin( 2πm

12 ) and cos( 2πm
12 ) for a given month m.

The remaining features are numerically encoded, i.e., the encoded value is the same
as the original feature value. Note that the time features are both trigonometrically and
numerically encoded. For example, the data field Day of the week yields the features Day
of the week sine, Day of the week cosine, and Day of the week. The encoding method of
every selected feature is denoted in Table 1. After encoding, all feature values are scaled to
the interval [0, 1] to eliminate undesired feature domination in neural network classifiers.

Table 1 shows that most features are selected for at least one of the departure/arrival
pair, and that the trigonometrically encoded time features are selected more often than the
non-encoded time features.
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2.3. Machine-Learning Algorithms to Estimate the Probability Distribution of Flight Delays

Following feature selection, two algorithms are proposed to estimate the distribu-
tion of flight delays: Mixture Density Networks (MDN) and Random Forests regression
(RFR). These algorithms belong to different classes of machine learning algorithms, neural
networks, and decision trees, respectively.

2.3.1. Mixture Density Networks (MDNs)

A Mixture Density Network [24] is a combination of a neural network and a Gaussian
mixture model. Given feature values xi of flight i, an MDN outputs the parameters for
each Gaussian in the mixture: the weight α, the mean µ, and the standard deviation σ.
With these parameters, the probability density function p(yi|xi) of the target variable yi,
the flight delay, is determined. In general, the MDN is particularly suitable to estimate
multimodal probability distributions [25–31]. It is therefore able to predict a distribution
with peaks at, for example, two separate likely delay values.

The flight delay probability distribution is constructed as the weighted sum of Gaus-
sian distributions as follows:

p(yi|xi) =
m

∑
j=1

αj(xi)φj(yi|xi), (1)

φj(yi|xi) =
1√

2πσj(xi)2
exp

(
−
(yi − µj(xi))

2

2σj(xi)2

)
(2)

where p(yi|xi) is the probability distribution of delay value yi given feature values xi
from flight sample i, while αj(xi), µj(xi) and σj(xi) are the weight, mean, and standard
deviation of the jth Gaussian component, 1 ≤ j ≤ m with m the total number of Gaussian
components considered for the mixture.

For any given flight, the features obtained in Section 2.2 are the input to the MDN,
while the parameters αj, µj, and σj are the output of the MDN. Thus, there are 3m outputs
of the MDN. The weights use a softmax activation function, and the standard deviations
use an exponential activation function, while the means are unrestricted.

The neural network is trained using backpropagation, i.e, the network parameters,
the weights and biases of each node are updated using an error function E, which is the
negative logarithm of the likelihood that the model derived from the output of the current
network gives rise to the training data [24]. This likelihood is the product of the likelihood
of every data point, given the current network parameters. Formally [24],

E =

N f

∑
i=1

(
− ln

m

∑
j=1

αj(xi)φj(yi|xi)

)
=

N f

∑
i=1
− ln p(yi|xi), (3)

where N f is the total number of samples in the training set.
For every data point fed to the neural network, the derivatives of the error with respect

to all network parameters are used to update the weights and biases of the network. Fol-
lowing training, the MDN is applied to a test set and multimodal probability distributions
for the delay of each flight in the test set are estimated. The MDN method is illustrated
schematically in Figure 3.
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Figure 3. Schematic representation of a Mixture Density Network: parameters for a multimodal
Gaussian distribution are obtained using a Neural Network.

2.3.2. Random Forests Regression and Kernel Density Estimation

Random Forests regression (RFR) is a class of decision tree-based machine learning
algorithms [32]. The regular RFR algorithm is an ensemble method that combines the
results of a number of decision trees. When building each tree, a random subset of the
feature values of each training data point is used to make branches. The algorithm outputs
a point estimate for the target variable (flight delay) of every test sample by averaging the
output values of all considered decision trees. However, for our analysis, we are interested
in estimating the probability distribution for the delay of the given flight, rather than a
point estimate.

In order to obtain the flight delay distribution of a flight in the test phase, the output
values of the decision trees are not averaged, but collected, and a kernel density estimation
(KDE) is performed [33]. A KDE results in a normalized probability density function. Two
settings of the KDE are the kernel type and the bandwidth. In our analysis, a bandwidth
of 1.5 is used to render the estimated distribution smooth. Gaussian kernels have been
selected for their generality.

Random Forests regression is a well-established technique that has been applied in
many research areas. However, there are very few examples of studies utilizing the algo-
rithm to obtain probability distributions. Förster et al. [34] use quantile values, obtained
from Quantile Random Forests, to construct a right-continuous cumulative distribution
function of aircraft’s time-to-fly from the turn onto the final approach course to the runway
threshold. Schlosser et al. [35] and Rahman et al. [36] use Random Forests algorithms
to obtain probability distributions for precipitation forecasts and drug sensitivity, respec-
tively. Both studies make use of feature probability distributions estimated via maximum
likelihood to make splitting decisions when constructing the decision trees. Stochastic
variables are introduced during or before the growing of the decision trees. In contrast,
in this study, the feature values and splitting decisions are kept deterministic throughout
the Random Forests algorithm. In this way, the probability density function is estimated
from deterministic feature values without the need for stochastic variables. Furthermore,
the working of the original Random Forests regression algorithm need not be changed.

In Figure 4, an example of obtained probability distributions is shown for both meth-
ods. For both distributions, the actual delay value of the flight example is indicated.
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(a) Probabilistic prediction on an example flight
using MDN.

(b) Probabilistic prediction on an example flight
using RFR.

Figure 4. An example of probabilistic prediction curves obtained from MDN and RFR for departure flight samples. Blue
vertical lines indicate actual sample delay, orange curves depict the probability distribution obtained using MDN, green
bars the histogram of RFR estimators, and green curves the probability distribution obtained from this histogram by KDE.

2.4. Hyperparameter Tuning

The hyperparameters of the MDN and the RFR prediction algorithms have been
optimized using a grid search. The hyperparameters leading to the lowest mean CRPS
scores have been selected. Table 3 shows the selected hyperparameters and their search
range. For MDN, a network with three hidden layers of 50 nodes is selected. The output
layer of the network consists of 24 nodes, with which an 8-modal Gaussian distribution
function is constructed. For RFR, 200 decision trees with a maximum depth of 10 layers
are constructed. For every branch split, three out of four features are considered of at least
seven training samples.

Table 3. Hyperparameters for MDN and RFR.

Mixture Density Network

Hyperparameter Value Range

Number of modes m 8 [3, 5, 8, 10, 15]
Number of hidden layers 3 [1, 2, 3]

Number of nodes per hidden layer 50 [25, 50, 75, 100]
Number of epochs 1000 [500, 750, 1000, 1250, 1500]

Random Forest Regression

Hyperparameter Value Range

Number of estimators 200 [100, 150, 200, 300]
Split criterion Mean-squared error [MSE, MAE]

Maximum tree depth 20 [4, 6, 8, 10, 12, 15, 20, 30]
Minimum samples per leaf node 7 [0, 3, 5, 7, 9]

Fraction of features considered for split 0.75 [0.25, 0.50, 0.75, 1.00]
KDE Bandwidth h 1.5 [0.5, 1, 1.5, 2]

2.5. Performance Metrics for Probabilistic Forecasting

As discussed before, many studies perform point estimate prediction on flight delays,
such as [9–12]. The most pervasive metrics for point estimate prediction are the root mean
square error (RMSE) and mean absolute error (MAE), measured between the actual point
and the predicted point. In this study, probabilistic forecasting is performed. Thus, metrics
such as the RMSE and MAE cannot be applied, since they cannot be used to compare an
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entire delay distribution with a point value for actual delay. In this paper, the following six
metrics are proposed to evaluate the performance of the MDN and RFR algorithms.

2.5.1. Continuous Ranked Probability Score

Since our aim is to estimate probability distributions for flight delays, a metric is
needed that evaluates these distributions. The algorithms aim to obtain a distribution
centered on the actual flight delay value, with a small standard deviation. To measure the
extent to which the probabilistic prediction algorithms are able to achieve this, the Con-
tinuous Ranked Probability Score (CRPS) [37] is proposed. For an estimated flight delay
probability distribution p(yi) and actual delay value ȳi, we define:

CRPS(F(yi), ȳi) =
∫ ∞

−∞

(
F(z)− 1z≥ȳi

)2dz, (4)

where F(yi) is the cumulative distribution function of p(yi) and 1 is the Heaviside step function.
The CRPS is a generalization of the MAE for probabilistic predictions. It measures the

deviation of the estimated delay cumulative distribution function from a step function at
the actual delay value. This means that the CRPS attains the value 0 in the limit of a correct
point prediction with absolute certainty. Since the CRPS is minimized if the model outputs
the ideal distribution, the CRPS is a proper scoring rule. Therefore, it is an indication of both
the sharpness and the calibration of the probabilistic forecast [38]. Figure 5 shows a case
where the actual delay is 10 min, and includes examples of cumulative distributions with
varying sharpness and calibration. Both a reduced sharpness and a reduced calibration
in the distribution will increase the CRPS value. Since the CRPS is calculated for every
flight in the test set, we introduce the metrics ‘CRPS mean’ and ‘CRPS std’, the mean and
standard deviation of all CRPS values, respectively.

Figure 5. Illustration of the relation between the shape of the delay cumulative distribution function
and the Continuous Ranked Probability Score (CRPS). The step function at the actual delay value
(green dotted) corresponds with a CRPS value of 0. An example of a cdf with nonzero CRPS is plotted
in blue. The black dash-dotted and yellow dashed lines show the same cdf with reduced sharpness
and calibration, respectively.
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2.5.2. RMSEM and MAEM

Since the RMSE and MAE are not suitable to assess an estimated flight delay distri-
bution, we propose the variants RMSEM and MAEM, which are calculated by comparing
the mean value of the estimated distribution against the actual delay value. Before in-
troducing the formal notation of these metrics, it is necessary to define the mean value
of the estimated distribution. For MDN, the mean is defined as the weighted average
of the component means, i.e., µMDN(xi) = ∑m

j=1 αj(xi)µj(xi) is the distribution mean of
flight sample i, with αj(xi) and µj(xi) the weight and mean of component j. When using
RFR, the mean µRFR(xi) is defined as the mean of the point estimates obtained from each
decision tree. The distribution means are referred to as µM(xi) with M ∈ {MDN, RFR}.

The RMSEM and MAEM are then defined as:

RMSEM =

√√√√ 1
N f

N f

∑
i=1

(ȳi − µM(xi))2, (5)

MAEM =
1

N f

N f

∑
i=1
|ȳi − µM(xi)| (6)

The RMSEM and MAEM are used to characterize the average deviation of the mean
of the estimated distribution from the actual delay ȳi and thus measure only the calibration
of the distribution and not the sharpness.

2.5.3. Metrics Based on the Standard Deviation

For MDN, the standard deviation of a multimodal probability density function for a
flight sample xi is calculated as follows [24]:

σMDN(xi) =

√√√√ m

∑
j=1

αj(xi)
(

σj(xi)2 +
(
µj(xi)− µMDN(xi)

)2
)

, (7)

with αj(xi) the weight, µj(xi) the mean and σj(xi) the standard deviation of component j.
For the RFR algorithm, the standard deviation of the delay distribution is calculated

in a similar fashion: a Kernel Density Estimation can be considered a multimodal Gaussian
as well. This Gaussian has equal weights 1

N f
, the RF regression point estimates as means

and
√

h as the standard deviation. This leads to the following expression for σRF(xi):

σRF(xi) =

√√√√ 1
ne

ne

∑
j=1

(
h +

(
ŷi,j − µRF(xi)

)2
)

, (8)

with ne the number of estimators used in the algorithm, and ŷi,j the jth point estimate
for the delay of flight sample i. The distribution standard deviations are referred to as
σM(xi) with M ∈ {MDN,RFR}. Having obtained the distribution standard deviations in
Equations (7) and (8), we can introduce the two metrics based on these. The first metric is
the sample average of the standard deviation:

σ̄ =
1

N f

N f

∑
i=1

σM(xi), (9)

where N f is the number of flights in the test set. In order to define the second metric, we
first introduce f1σ(xi): the fraction of samples for which the actual delay ȳi lies within
one standard deviation σM from the distributional mean µM of that sample. The second
metric f̄1σ is then defined as the average of this quantity over all N f samples. It measures
the ability of the probabilistic algorithm to predict a narrow delay distribution on or
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near the correct delay value. Together with the σM(xi), it characterizes the spread of the
estimated distribution and thus measures only the sharpness of the distribution and not
the calibration. Formally,

f̄1σ =
1

N f

N f

∑
i=1

f1σ(xi) (10)

with

f1σ(xi) =

{
1 if |µM(xi)− ȳi| < σM(xi)

0 if |µM(xi)− ȳi| ≥ σM(xi)
. (11)

The six metrics defined in Equations (4)–(11) are used to assess the estimated flight
delay distributions obtained using MDN and RFR. The metrics CRPS mean, CRPS std,
RMSEM, MAEM and σ̄ have the same unit as the target variable, i.e., minutes of delay,
whereas f̄1σ is expressed as a percentage.

2.6. Results—Probabilistic Flight Delay Predictions

We analyze both departing and arriving flights. For both, train and test sets are
constructed using a 5-fold Cross Validation. The MDN and RFR algorithms have been
used to estimate the distribution of the arrival and departure flight delays. The use of
weather measurements implies that the prediction horizon associated with these flight
delay predictions is at most several days long. Table 4 shows the performance obtained
using these algorithms.

Table 4. Performance metrics for probabilistic flight delay prediction.

Flights Algorithm CRPS Mean CRPS Std MAEM RMSEM σ̄ f̄1σ

Departures MDN 9.12 19.15 13.23 24.23 23.85 0.92
RFR 8.86 18.15 12.51 23.32 12.08 0.69

Arrivals MDN 10.95 17.59 15.62 24.98 24.60 0.87
RFR 10.85 17.49 14.99 24.39 14.02 0.61

Table 4 shows that both MDN and RFR are able to predict departure and arrival delays
within an average CRPS of 11 min. The RFR algorithm results in a smaller prediction error
than the MDN algorithm. In addition, the delays of the arriving flights are predicted with
larger error than those of the departing flights. This is explained by the fact that the bulk of
the arriving flights has a considerably smaller delay than the bulk of the departing flights,
as seen in Figure 2. Because the algorithms are trained mostly using arrival samples having
a small delay, they have a decreased prediction performance for test samples with large
delays. This decreased performance contributes greatly to the larger CRPS values.

Furthermore, Table 4 shows that the MDN algorithm predicts flight delays with a
larger standard deviation than the RFR algorithm, and in turn the actual delay falls within
this standard deviation more often. This is explained by the fact that the RFR algorithm
produces a more narrow prediction curve than the MDN algorithm, on average.

2.7. Impact of the Choice of the Hyperparameters

In this section, the influence of the values of important hyperparameters on the
probabilistic flight delay prediction performance is assessed. The focus lies on the ability of
the algorithms to construct a representative delay distribution; therefore, the mean CRPS is
used to quantify the performance.

An important hyperparameter of the MDN algorithm is the number of modes. A dis-
tribution with more modes allows for more complex shapes, while a distribution with only
one mode corresponds to a regular Gaussian distribution. In Figure 6a, the performance of
the MDN algorithm for a varying number of modes is shown. Using multiple modes leads
to a better performance than using a regular Gaussian function. When adding more than
three modes, this improvement stagnates.
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An important hyperparameter of the RFR algorithm is the maximum tree depth.
A greater tree depth leads to a better distinction between different flights in the training
set, but a tree depth that is too large can lead to overfitting. In that case, the error on the
test set is not further reduced, while the computational time still increases. In Figure 6b,
the performance of the RFR algorithm for varying values of the tree depth is shown.
By analyzing a range of values between 10 and 30, it is found that a consistent performance
is obtained from a max depth value of roughly 20.

(a) CRPS values for delay prediction using varying
number of modes for MDN.

(b) CRPS values for delay prediction using varying
values of the tree depth for RFR.

Figure 6. CRPS values obtained when varying hyperparameters in the MDN and RFR algorithms.

3. Integrating Probabilistic Delay Predictions into the Flight-to-Gate
Assignment Problem

At an airport, a daily recurring operation is to assign arriving/departing flights to a
gate. This is known as the flight-to-gate assignment problem. The FGAP has been addressed
extensively in literature [39]. An important quality of a given flight-to-gate assignment
is its robustness. A greater robustness implies that, when faced with a disturbance (for
example a flight is delayed), the model is able to handle this situation without introducing
more disturbances. The aim of this section is to use the flight delay predictions obtained
in Section 2 to obtain a robust flight-to-gate assignment. First, the FGAP is introduced,
after which the flight delay predictions are integrated in this problem.

3.1. Mathematical Formulation of the Deterministic FGAP Model

In the past few decades, the FGAP has been modelled as a linear programming prob-
lem, having objectives such as the minimization of the number of towing procedures [40],
the minimization of passenger walking distance [41], or obtaining robust flight-to-gate
assignments by minimizing the number of gate conflicts [20–22,42,43].

These optimization models use a set of scheduled flights with deterministic flight
arrival and departure times as input. Let us first introduce the following deterministic
FGAP model [21].

Let N denote the set of n scheduled aircraft at the airport during a planning horizon,
let M denote the set of m gates available at the airport, and let K denote the set of k time
slots in the planning horizon. Let cij denote the cost of assigning aircraft i ∈ N to gate
j ∈ M. Let sit denote the following binary presence indicator:

sit =

{
1, if aircraft i is scheduled to be at the airport at time slot t ∈ K
0, otherwise
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The decision variables in this model are denoted as:

xijt =

{
1, if aircraft i is assigned to gate j at time slot t
0, otherwise

Then, the deterministic FGAP model is:

min
n

∑
i=1

m

∑
j=1

k

∑
t=1

cijxijt (12)

s.t.
m

∑
j=1

sitxijt = sit ∀i ∈ N and ∀t ∈ K. (13)

n

∑
i=1

sitxijt ≤ 1 ∀j ∈ M and ∀t ∈ K. (14)

sit · xijt+1 − sit+1 · xijt = 0

∀i ∈ N and ∀j ∈ M and ∀t ∈ K \ {k}
(15)

In this problem, the assignment costs over the total assignment are minimized (see
Equation (12)) under the following conditions: Constraint (13) enforces that any aircraft i
scheduled to be at the airport at time slot t, is assigned to exactly one gate j. Constraint (14)
ensures that at most one aircraft i is assigned to a gate j at any time slot t. Lastly,
Constraint (15) makes sure that an aircraft i cannot switch gates during its presence at
the airport.

In this paper, we consider a planning horizon of 24 h, separated in time slots. Every
time slot consists of 5 min, therefore k = 288. The cost cij is assumed to be equal to 1 for
any combination of gate and aircraft.

3.2. Mathematical Formulation of the Probabilistic FGAP

In Section 3.1, the deterministic FGAP model was introduced. In this model, the aircraft
presence is modelled by the binary, deterministic variable sit. In this section, we introduce a
probabilistic FGAP model, where the variable sit is replaced by a presence probability function
pit of an aircraft, i.e., pit is the probability that aircraft i is present at the airport at time
slot t. In Van Schaijk and Visser [21], this aircraft presence probability is estimated based
on a statistical analysis of a set of historical flights. In contrast, in this study, the presence
probability is obtained using the machine learning prediction algorithms in Section 2,
which provide an estimate of the delay for each individual flight.

Constraint (14), which refers to a deterministic aircraft presence in the deterministic
FGAP model, is replaced by [21]:

n

∑
i=1

f (pit, r)pitxijt ≤ 1 ∀j ∈ M and ∀t ∈ K, (16)

where
f (pit, r) =

pit

r + p2
it

, (17)

with r a maximum overlap probability threshold between any two aircraft assigned to the
same gate j at any time slot t. In other words, instead of Constraint (14), which ensures
in the deterministic FGAP model that at most one aircraft is assigned to a gate in a time
slot, Constraint (16) in the probabilistic FGAP model ensures that the probability that two
aircraft are assigned to the same gate does not exceed a maximum threshold r at any time
slot. Constraint (16) considers the overlap probability between two aircraft. In the case that
the probability that three or more aircraft that are assigned to the same gate at the same
time slot exceeds r, the probabilistic FGAP model is solved iteratively: for any instance
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where the value of r is exceeded, the number of aircraft assigned to the respective gate and
time slot is iteratively decremented [22].

3.3. Aircraft Presence Probability Function

The aircraft presence probability function pit is an input to the probabilistic FGAP
model given in Equations (12), (13), (15) and (16).

Let yarr
i and ydep

i denote the arrival delay and departure delay of aircraft i. We deter-

mine the probability distributions of yarr
i and ydep

i using the machine learning algorithms
introduced in Section 2. These distributions are further used to obtain the aircraft presence
probability pit as follows.

Let STAi and STDi be the scheduled times of arrival and departure of aircraft i. Then,
the predicted arrival and departure times are Xarr

i = STAi + yarr
i and Xdep

i = STDi + ydep
i ,

respectively. Let fXarr
i
(t) and f

Xdep
i

(t) denote the pdf of Xarr
i and Xdep

i , respectively. Let

FXarr
i
(t) and F

Xdep
i

(t) denote the cdf of Xarr
i and Xdep

i , respectively. Figure 7a shows the pdf

of the arrival and departure times of an aircraft with STA = 12:20 and STD = 13:10. The cdf
of these arrival and departure times is given in Figure 7b.

(a) Pdf of the arrival and departure time
of an aircraft with STA = 12:20 and STD=13:10.

(b) Cdf of the arrival and departure time
of an aircraft with with STA = 12:20 and STD=13:10.

Figure 7. Probability density function and cumulative distribution functions of arrival and departure times for an exam-
ple aircraft.

Using the cdf of Xarr
i and Xdep

i , we determine pit as follows:

pit = FXarr
i
(t) · (1− F

Xdep
i

(t)), (18)

i.e., the aircraft presence probability pit is calculated as the product of the probability that
the aircraft has arrived and the probability that the aircraft has not yet departed, at time t.
Figure 8 shows the aircraft presence probability pit of an aircraft having STA = 12:20 and
STD = 13:10, calculated using Equation (18).

If the aircraft has an overnight stay, i.e., does not arrive and depart at and from the
reference airport on the same day, then the aircraft presence probability pit is calculated as
follows:

Case 1: The aircraft has stayed at the airport during the night before the day of interest,
and departs at the beginning of the day. The aircraft presence probability is formed using
only the cdf of departure time:

pit = 1− F
Xdep

i
(t), (19)
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Case 2: The aircraft arrives at the airport in the evening and stays during the night
after the day of interest. The aircraft presence probability is formed using only the cdf of
arrival time:

pit = FXarr
i
(t), (20)

Having obtained the aircraft presence probability pit for an aircraft i and pjt for an
aircraft j, we determine the overlap probability between aircraft i and j at timestep t as
pit · pjt. Figure 9 shows an example of an overlap probability for aircrafts 1 and 2.

Figure 8. Aircraft presence probability (pit) of an aircraft with STA = 12:20 and STD = 13:10.

Figure 9. Two aircraft presence probability functions with STA1 = 11:20, STD1 = 12:00,
STA2 = 12:20, STD2 = 13:10, and their overlap probability.

3.4. Results—Flight-to-Gate-Assignment Integrating Probabilistic Flight Delay Predictions

In this section, the results obtained from the deterministic and probabilistic FGAP
models introduced in Sections 3.1 and 3.2 are outlined. The flight-to-gate assignment is
generated at RTM airport for one day of operations: 14 July 2019. On this day, a total
of 25 departures and 24 arrivals were scheduled. This day is referred to as the date of
interest. The collection of all flights scheduled on the date of interest forms the test set for
the delay predictions obtained using the machine learning algorithms in Section 2. All
flights scheduled in the period from 1 January 2017–13 July 2019 form the training set of
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the machine learning algorithms. For our FGAP model, we assume eight gates, to which
aircraft can be assigned.

Figure 10 shows the assignment of aircraft to gates for the date of interest obtained
using the deterministic and probabilistic FGAP models. For the assignment obtained with
the deterministic model, the presence as indicated by a solid line shows the period of time
an aircraft occupies a gate, based on its scheduled arrival and departure time, i.e., based on
sit. For the assignment obtained with the probabilistic FGAP model, the presence indicated
by a solid line shows the period of time for which the aircraft presence probability pit is
larger than 0.1.

(a) FGA obtained with the deterministic model. (b) FGA obtained with the probabilistic model using
r = 0.15.

Figure 10. Flight-to-gate assignments for 14 July 2019 obtained using the deterministic and probabilistic models.

Figure 10a shows that, in the flight-to-gate assignment obtained using the deterministic
FGAP model, aircrafts 1 and 5 are assigned to the same gate (6). However, Figure 10b
shows that, in the assignment obtained using the probabilistic FGAP model, aircrafts 1 and
5 are assigned to different gates (4 and 7). This is because the overlap probability between
aircrafts 1 and 5 exceeds the maximum overlap probability threshold r. The same situation
occurs for aircrafts 10 and 13.

The deterministic and probabilistic flight-to-gate assignments obtained are evaluated
using the actual aircraft presence of the aircraft that flew on the date of interest. The actual
aircraft presence is the time between the actual arrival and ATAi and actual departure time
and ATDi.

Figure 11 shows the aircraft presence probability pit for all the aircraft assigned to
gates 7 and 8 in the solution obtained using the probabilistic FGAP model, as shown in
Figure 10b, versus the actual times the aircraft were present at gates 7 and 8. The overlap
probability between any two aircraft is plotted in red. We consider a maximum permissible
overlap probability r = 0.15.

Figure 11. Flight-to-gate assignment for gates 7 and 8 on 14 July 2019 obtained using the probabilistic model with maximum
overlap probability r = 0.15 combined with actual aircraft presence.
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Following Constraint (16) in the probabilistic FGAP model, Figure 11 shows that the
overlap probability of any two aircraft assigned to either gate 7 or 8 does not exceed the
threshold r. The overlap probabilities between aircrafts 19 and 2 (at gate 8) and aircrafts 7
and 6 (at gate 7) are near the maximum overlap probability threshold r. The actual presence
periods of these pairs of aircraft do not overlap, showing that a threshold of r = 0.15
was sufficient to prevent aircraft conflicts for these aircraft pairs. The actual presence
periods of aircrafts 3 and 7 (at gate 7) do overlap, leading to an aircraft conflict. In this case,
the conflict is caused by the fact that the predicted presence of aircraft 7 is later than the
actual presence.

3.5. Results—Long Run Performance

In order to evaluate the long run performance of the deterministic and probabilistic
FGAP model, they are applied to test data comprising a period of 30 days: from 14 July
2019 up to and including 12 August 2019. Two metrics are used for evaluation:

• An aircraft is defined as a conflicted aircraft if there is at least one time slot at which
this aircraft and any other aircraft are both present at the same gate.

• For the probabilistic FGAP model, a gate time slot is defined as a used gate time slot
if there is an aircraft present at the gate at this time with a probability of more than
0.5—for the deterministic FGAP model, if there is an aircraft present at the gate at this
time. Note that the maximum amount of used gate time slots is equal to m · k.

The number of conflicted aircraft (CA) is a metric that measures the robustness of
the FGA against delay when in operation. The number of used gate time slots (UGT) is
a metric that measures to which extent an increase in robustness induces the need for a
larger utilization of the available gate capacity.

To evaluate the flight-to-gate assignments, the means and standard deviations of
these metrics over all testing days are used. The probabilistic FGAP model has been run
with a range of possible conflict probabilities r, namely r ∈ [0.05, 0.10, 0.15]. Since the
RFR algorithm has proven to yield the most accurate results in Section 2, RFR is used to
obtain the presence probabilities. Table 5 summarizes the metric values obtained when
evaluating the flight-to-gate assignments obtained from the deterministic and probabilistic
FGAP model.

Table 5. Metric results for the FGA’s at RTM airport, averaged over the days from 14 July until
12 August 2019 (30 days). The mean and standard deviation of the number of conflicted aircraft (CA)
and the number of Used Gate Time slots (UGT) are shown for all methods. For reference, the total
number of aircraft per day and the total number of available gate time slots are added. The presence
probabilities were constructed using RFR.

CA Mean CA σ UGT Mean UGT σ

Total 31.6 6.7 2304 N/A

Deterministic FGAP 5.03 2.87 254 57.9
Probabilistic FGAP, r = 0.15 2.57 2.30 319 76.7
Probabilistic FGAP, r = 0.10 1.73 1.84 319 76.5
Probabilistic FGAP, r = 0.05 1.33 1.49 319 76.6

When considering the probabilistic FGAP model, Table 5 shows that the average
number of conflicted aircraft is smaller for all values of the maximum overlap probability
threshold r, when compared to the deterministic FGAP model. The probabilistic FGAP
model results in a more robust assignment than the deterministic FGAP model. The gate
usage increases by 25%, while the number of conflicted aircraft is reduced by up to 74%.
The number of conflicted aircraft does not decrease further when decreasing r further than
0.05. The maximum overlap probability threshold can thus be used by airport operators to
adjust the robustness of the flight-to-gate assignment to the desired level.
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4. Conclusions

In Section 2, two probabilistic forecasting algorithms, Mixture Density Networks and
Random Forest regression, have been applied to the problem of flight delay prediction.
The algorithms were trained using features extracted from a flight schedule dataset and
a weather dataset, which contained data from Rotterdam The Hague Airport. Six perfor-
mance metrics were defined to evaluate the probabilistic predictions, and the influence of
the hyperparameters on the probabilistic prediction performance was investigated.

The results show that it is possible to estimate probability distributions for future
flight delays within a CRPS of 11 min, several days in advance. The probabilistic flight
delay predictions can provide airport coordinators not only with an estimate for the flight
delays of all incoming flights, but also with a measure of the certainty of these estimates.
In this way, better informed decisions regarding strategic flight schedules can be made,
and on-time performance prediction can be improved.

Subsequently, in Section 3, the probabilistic predictions were used as input to a
probabilistic linear programming model optimizing the flight-to-gate assignment problem,
with the goal of increasing the robustness of this assignment. The results for the flight-to-
gate assignment problem show a reduction of up to 74% in the average number of conflicted
aircraft per day by incorporating the probabilistic flight delay predictions. The robustness
can be adjusted by varying the maximum permissible overlap probability threshold in
the probabilistic optimization model. The application of flight delay predictions to the
flight-to-gate assignment problem provides a framework for increasing robustness for
flight-to-gate operations at airports.

Future work includes the application of the introduced approach to increasing the
robustness of flight-to-gate assignments to a larger airport, taking into account e.g., varying
assignment costs and airline gate usage, and, secondly, the integration of probabilistic flight
delay predictions into models for other airport operations. Examples are arrival/departure
sequencing and scheduling, and electric taxiing operational planning.
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