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Abstract: Fast and accurate threat evaluation (TE) of incoming air targets has a great influence on
air defense. In this paper, two new generalized intuitionistic fuzzy soft set (GIFSS) methods are
proposed for threat evaluation of air targets. Firstly, the threat evaluation index system is reasonably
constructed by analyzing the relative kinematics between the targets and assets, apart from that
between the targets and interceptors, which is more reasonable and practical. Secondly, after the
threat indexes (TI) are properly obtained, two new aggregation operators for GIFSS are put forward
based on the generalized λ-Shapley Choquet integral. The proposed operators not only depict
the correlations among the evaluation index but also consider the importance of them globally.
Finally, the effectiveness and superiority of the proposed methods are verified through a numerical
simulation including four air targets in different index systems.

Keywords: air target threat evaluation; generalized intuitionistic fuzzy soft set; fuzzy measure;
generalized Shapley index; Choquet integral

1. Introduction

TE is the process of evaluating the threat value of targets to defense forces and their
interests, and also the process of ranking these targets according to the threat degree [1,2].
Rapid and accurate TE of incoming air targets is the core part of air defense systems and
can significantly improve the efficiency of weapon assignment to deal with a multi-target
attack [3].

With the advancement of the aerospace industry, highly sophisticated aircraft such
as unmanned aerial vehicles, hypersonic vehicles and tactical ballistic missiles deem the
air combat environment more complex and changeable, posing severe challenges to target
threat evaluation. Therefore, it is of great significance to carry out research on air target
threat evaluation methods.

Threat evaluation is essentially a multicriteria decision making (MCDM) problem. The
traditional scheme is determined by experts or commanders according to the battlefield
situation and their own experience, which is relatively simple and flexible, but the process
is of great subjectivity and is vulnerable to a lack of expert knowledge. Furthermore,
as the modern battlefield situation becomes more complex, a massive number of factors
need to be considered in the evaluation process, which makes the empirical determination
of the threat values impractical and hard to be reproduced. Therefore, there is a lot of
demand for mathematical methods which could be implemented into computer systems
for automatic threat evaluation. Up to now, there have been a lot of research results,
for example, the TOPSIS method [4–6], intuitionistic fuzzy sets (IFSs) [7–9], Bayesian
networks [10–12] and rough sets [6], amongst others. These methods have their own
characteristics and theoretical bases and can apply to different operating environments.
However, threat evaluation cannot be carried out as a whole merely by mathematical
methods, and the intention of decision-makers is usually ignored. This is why more and
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more approaches seek to conduct threat evaluation on the basis of mathematical methods
and expert experience.

The concept of soft sets (SSs) was proposed by Molodtsov to overcome the limitations
of the personal preferences and professional knowledge of decision-makers, in addition to
the incompleteness and uncertainty of the evaluation index information [13]. On the basis
of IFSs and SSs, Maji et al. [14–16] put forward the theory of intuitionistic fuzzy soft sets
(IFSSs), and Agarwal et al. [17,18] proposed the concept of GIFSS. Compared with IFSS,
a framework is provided by GIFSS to evaluate the information credibility to compensate
for the distortion of the index information. By adding the generalized parameters into
the IFSS matrix, the possible errors caused by inaccurate information can be reduced,
and this has a good effect when dealing with inaccurate and uncertain index information.
Therefore, GIFSS is suitable for threat evaluation of air targets with greater measure-
ment uncertainty, and some research results have been obtained. Wu Hua introduced a
multi-expert parameter set to address the knowledge limitation of only one expert in the
original GIFSS and constructed a group GIFSS for threat evaluation of aerial targets [19].
Feng et al. introduced the relative entropy theory to GIFSS to determine the reasonable
weight for TI [20].

All these methods under intuitionistic fuzzy theory need to aggregate the intuition-
istic fuzzy values (IFVs) by the so-called aggregation operators to obtain the evaluation
results and rank the alternatives, which demonstrate the preferences of decision-makers.
Agarwal [18] and Harish Garg [21] introduced the geometric and averaging aggregation
operators for GIFSS, which are denoted by GWG and GWA operators. Although, when
combined with different entropy theories, the existing aggregation operators can depict
different preferences for the indexes, they only consider the situations in which all the
indexes are independent. That is, only the additive relation of the importance of each
index is considered. However, in practical air defense operations, the indexes of the threat
evaluation are usually correlative, for example, we may intend to attach more importance
to the targets who are closer to the defending assets and at a higher velocity. In order to
solve such problems, the Choquet integral [22], as a very useful tool for measuring the
expected utility of an uncertain event, has been successfully applied in decision problems.
Tan and Chen [23] proposed an intuitionistic fuzzy Choquet integral for multi-criteria
decision making. Xu [24] used the Choquet integral to propose some aggregation operators
for IFS and interval-valued intuitionistic fuzzy sets (IVIFSs). These operators can not only
depict the importance of the independent index but also demonstrate the correlations
among the index system.

Since the fuzzy measure is defined on the power set, the problem of determining the
fuzzy measure of each index and index set is exponentially complex. To solve this problem,
some special fuzzy measures have been proposed, such as the λ-fuzzy measure [25] and
the k-additive measure [26]. Tan [27] provided a method of interval-valued intuitionistic
fuzzy multi-criteria group decision making based on the λ-fuzzy measure. On the basis of
the λ-fuzzy measure, Meng [28] introduced the generalized λ-Shapley index to the IVIFS
Choquet integral to reflect the overall interaction among the index system. Qu extended
the generalized λ-Shapley index to the IFS Choquet integrals and developed an algorithm
for ranking alternatives with the TOPSIS method [29].

Air defense scenarios usually involve three bodies, that is, the incoming targets, the
interceptors and the defending assets; therefore, threat evaluation index systems should
not only consider the relative kinematics between the targets and assets but also include
the relative kinematics between the targets and interceptors. However, to the best of
our knowledge, only the former kinematics is considered in all of the existing literature.
Furthermore, none of the aforementioned IFS-based methods applied in threat evaluation
of aerial targets consider the interaction or correlation among the criteria set, and, to the
best of our knowledge, there is no aggregation operator for GIFSS considering how to
obtain the fuzzy measure on each index set, nor reflecting the overall average contribution
of each index and index set to the index system. This paper fills these gaps by constructing
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a threat evaluation index system with both relative kinematics between the three bodies
and by proposing two new aggregation operators for GIFSS with the generalized λ-Shapley
Choquet integral.

The contributions of this study are summarized as the following two aspects:

1. The threat evaluation index system is reasonably constructed by analyzing the relative
kinematics between the targets and assets, apart from that between the targets and
defending interceptors, which is more reasonable and practical;

2. Based on Choquet integral theory, the generalized Shapley index and λ-fuzzy mea-
sure, two new aggregation operators for GIFSS, are proposed, which can depict the
correlations among the evaluation index and reflect the overall average contribution
of each index and index set to the whole index system.

The remainder of this paper is organized as follows. Section 2 introduces the basic
concepts and definitions relevant to IFS and GIFSS. In Section 3, the threat evaluation
index system is constructed and the threat indexes are properly obtained. Thereafter, the
generalized λ-Shapley Choquet integral operators for GIFSS are proposed in Section 4, and
in Section 5, the evaluation example including four targets and result analyses are shown.
Finally, conclusions are drawn in Section 6.

2. Preliminaries

This section briefly introduces some basic definitions and concepts relevant to FS, IFS,
IFSS and GIFSS for the set of elements X on the universal set E.

Definition 1 ([30]). A fuzzy set A defined on X = {x1, x2, . . . , xn} is an ordered pair of the
element xi ∈ X, i = 1, 2, . . . , n and degree of membership tA : X → [0, 1], defined as

A = {(xi, tA(xi)) | xi ∈ X} (1)

Definition 2 ([31]). An intuitionistic fuzzy set on X is defined as

A = {〈xi, tA(xi), fA(xi), 〉 | xi ∈ X} (2)

where the numbers tA(xi) and fA(xi) represent the degree of membership and the degree of non-
membership of the element x to the set A, respectively, satisfying tA(xi) ∈ [0, 1], fA(xi) ∈
[0, 1], tA(xi) + fA(xi) ≤ 1. In particular, if tA(x)i + fA(xi) = 1, then the intuitionistic fuzzy
set reduces to a fuzzy set.

Definition 3 ([32]). We call the ordered pair α(xi) = (tα(xi), fα(xi)) an intuitionistic fuzzy
value (IFV). The score function sα is defined as

s(α) = tα − fα (3)

and the accuracy degree of α is
h(α) = tα + fα (4)

Suppose αi = (tαi , fαi )(i = 1, 2) are two IFVs; the order relation between two IFVs is defined
as follows:

• If s(α1) < s(α2), α1 is smaller than α2, which is denoted by α1 < α2.
• If s(α1) = s(α2):

1. If h(α1) = h(α2), α1 and α2 represent the same information, which is denoted by
α1 = α2.

2. If h(α1) < h(α2), α1 is smaller than α2, which is denoted by α1 < α2.

Definition 4 ([33]). Some basic operations and operators for IFVs. Suppose αi = (tαi , fαi )(i =
1, 2) are two IFVs, k > 0; then, we have

1. α1 ⊕ α2 = (tα1 + tα2 − tα1 tα2 , fα1 fα2)
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2. α1 ⊗ α2 = (tα1 tα2 , fα1 + fα2 − fα1 fα2)

3. kα =
(

1− (1− tα)
k, f k

α

)
4. αk =

(
tk
α, 1− (1− fα)

k
)

As it is proved in [33], the results of the operations and operators are also IFVs.

Definition 5 ([31]). The pair (F, X) is called a soft set over E, where F : X → PE; PE is all
subsets of E.

Definition 6 ([31]). A pair (F, X) is called IFSS over E if and only if F : X → IFE, where IFE

represents the set of all intuitionistic fuzzy subsets of E, and for any ai ∈ X, i = 1, 2, . . . , n and
ej ∈ E, j = 1, 2, . . . , m, the IFSS is defined as

F(ai) =
{(

ej, ti
(
ej
)
, fi
(
ej
))
| ej ∈ E

}
(5)

where ti
(
ej
)

and fi
(
ej
)

are exact numbers which denote the membership degree and non-membership
degree of the element ej to the set E, respectively.

Definition 7 ([18,34]). Let E = {e1, e2, . . . , em} denote the universal set of parameters and
X = {x1, x2, . . . , xn} be a set of elements; assume α is an intuitionistic fuzzy subset of X. A
pair (E, X) is called a soft universe, Fα is defined as a mapping Fα : X → IFE × IF and the
generalization parameter is defined as a mapping α : X → IF, where a GIFSS Fα over the soft
universe (E, X) is defined as follows

Fα(xi) = (F(xi), α(xi)), i = 1, 2, . . . , n (6)

where F(xi) ∈ IFE and α(xi) ∈ IF, α(xi) indicate an expert’s evaluation on the parameters of E in
F(xi), and IF denotes an IFS.

3. Construction of the Threat Evaluation Index System

As an important part of the air target threat evaluation process, the index system
depicts the complete characterization of the incoming aerial targets. The construction of
the threat index system can be divided into three sequence procedures: determination of
the threat indexes, perception of the threat indexes and standardization of the indexes. The
procedures are specified as follows.

3.1. Determination of the Threat Indexes

The actual air defense operation is dynamic, interactive and sophisticated, and air
targets have various types and diverse characteristics. Therefore, when determining an
evaluation index, it is necessary to choose representative factors that can depict the threat
level of the targets from different perspectives, and these factors need to be considered as
a whole.

According to the domestic and foreign literature, most of the indexes considered
in establishing the threat evaluation model of air defense are based on two bodies, that
is, the defending assets and the targets, though these indexes are classified from differ-
ent perspectives, for example, the target capability and target intent [5,11,12,35] or the
overall target characteristics, the target position characteristics and the target motion char-
acteristics [20,36]. However, in fact, the interceptors usually play an important role in
the air defense scenario, and the relative kinematics between the targets and defending
interceptors should certainly be included in the evaluation index system.

The objective of this paper is to evaluate the threat of aerial targets, the target charac-
teristics and the relative kinematics between the targets and interceptors, where the relative
kinematics between the targets and defending assets are taken as the selection criteria, and
then to determine eight evaluation indexes: target type, target height, distance from asset,
route shortcut from asset, distance from the interceptor, relative velocity between the target
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and the interceptor, target velocity and acceleration, which can all be obtained with the
measurement from the infrared (IR) seekers equipped in the interceptors. The target route
shortcut is the vertical distance from the asset to the projected extension line of the velocity
of the target in the horizontal plane. The evaluation index system of air target threats is
shown in Figure 1, where the indexes in red boxes represent cost indexes, which indicate
that the bigger the index, the greater the threat of the target; meanwhile, the indexes in the
green boxes belong to benefit indexes, which indicate that the smaller the index, the greater
the threat of the target.

However, in addition to the above eight indexes, other factors also have an important
influence on the threat evaluation of air targets in actual air combat, for example, jamming
ability and lethality (marked in dotted boxes), amongst others, which are difficult to be
measured and expressed quantitatively; therefore, it is of great necessity to introduce GIFSS
to provide a generalized parameter set for the various aforementioned factors highlighted
by the experts. In this way, the evaluation result is more reasonable.

Type Height

Distance from asset

Target interceptor
relative  velocity

Distance from 
interceptorRoute shortcut

Target velocity

Target threat evaluation index 

Target characteristics Target-interceptor kinematics Target-asset kinematics 

AccelerationJamming ability

Lethality

Figure 1. The evaluation index system of air target threats.

3.2. Perception of the Threat Indexes

It is assumed that each interceptor is equipped with an inexpensive IR sensor,
which can only provide noisy bearing-only measurements. However, the indexes re-
lated to the kinematics between the interceptors and the targets such as the distance from
the interceptor and the target velocity can still be obtained through cooperative
estimation [37–40]. In addition, we assume the type of target can be determined by the
infrared signature. Figure 2 presents the planar geometry of an interceptor, one target
and the defending asset. The defending asset is located at the origin of the axis. The
distance between the target and the interceptor is denoted as RTI , qTI is the angle between
the interceptor’s LOS to the target and the X axis and θT is the angle between the target
velocity and the X axis. In addition, the coordinates of the interceptor are obtained by the
inertial navigation system and denoted as (xI , yI).

The height of the target can be calculated as

HT = RTI ∗ sin(qTI) + yI (7)
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The range between the target and the asset can be calculated as

RTA = [(RTI ∗ cos(qTI) + xI)
2 + (RTI ∗ sin(qTI) + yI)

2]1/2 (8)

Finally, the target route shortcut can be calculated as

RS =RTA sin
(

arcsin
HT
RTA

− θT

)
(9)

At this point, all the selected indexes for target threat evaluation are obtained.

( )O A

Y

X

I

T

TI
TI

T

TA TH
RS

( , )i ix y

Figure 2. The planar geometry of the interceptor, target and defending asset.

3.3. Quantification of the Threat Indexes

As it was mentioned before, the air target threat assessment index of air defense
operation includes various types of data. Each index value in the index system has an
impact on the comprehensive evaluation value of the system; therefore, it is necessary to
standardize different types of data to intuitionistic fuzzy numbers to evaluate the threat of
the targets.

3.3.1. Quantification Method of Indexes in Fuzzy Evaluation Language

In this paper, the fuzzy language of the target type is divided into five levels. It is
necessary to transform the fuzzy language into an intuitionistic fuzzy set. Table 1 shows
the relationship between the fuzzy language and intuitionistic fuzzy set pair.

Table 1. Corresponding relationship between the target type and IFVs.

Target Type Rank Membership Degree Non-Membership Degree

Missile 1 0.9 0.05
Battleplane 2 0.7 0.15

Bomber 3 0.5 0.3
Amed helicopter 4 0.3 0.6

Early warning aircraft 5 0.1 0.85

3.3.2. Quantification Method of Indexes in Real Numbers

For the benefit indexes, such as the target velocity and acceleration, assume there
are m targets and n indexes; the membership degree and non-membership degree can be
determined as follows:
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tij = p
min

1≤k≤m

(
xkj

)
xij

(10)

fij = q
min

1≤k≤m

(
xkj

)
xij

where p, q are adjusting parameters which are determined according to the air defense
situation satisfying 0 6 p 6 1, 0 6 q 6 1, 0 6 p + q 6 1.

For the cost indexes, such as the target route shortcut and height, the membership
degree and non-membership degree can be determined as

tij = α

min
1≤k≤m

(
xkj

)
xij

(11)

fij = β

min
1≤k≤m

(
xkj

)
xij

where α, β are also adjusting parameters and defined the same as p, q.

4. The Generalized λ-Shapley Choquet Integral Operators
Proposed G-GIFSS Aggregation Operators Based on Generalized λ-Shapley Choquet Integral

In actual MCDM application situations, the determination of the weights for the
indexes is a problem. Many studies determine the weights by entropy-based methods [9,20],
which can only reflect the additivity property of the importance of the indexes. In order to
address the problem, Sugeno introduced the following concept of a fuzzy measure with a
monotonicity rather than an additivity property [25].

Definition 8 ([25]). Given a fixed set X = {x1, x2, . . . , xn}, a fuzzy measure on X is the set
function µ : P(X)→ [0, 1], satisfying

(1) µ(ϕ) = 0, µ(X) = 1;
(2) If A, B ∈ P(X) and A ⊆ B, then µ(A) ≤ µ(B).

As the fuzzy measure is defined on the power set P(X), 2n − 2 values need to be
determined (except 0 and 1), which makes it difficult to determine each value corresponding
to each combination of the indexes and extremely restricts its application. To avoid the
problem, Sugeno developed the so-called λ-fuzzy measure in [25] as the following form:

gλ(C ∪ D) = gλ(C) + gλ(D) + λgλ(C)gλ(D) (12)

for ∀C, D ⊆ X and C ∩ D = ∅, where λ ∈ (−1, ∞).
According to Equation (12), if λ > 0, then gλ(C ∪ D) > gλ(C)+ gλ(D), gλ is a super-

additive measure, which means coalitions C and D exhibit a positive synergetic interaction.
If λ < 0, then gλ(C ∪ D) < gλ(C)+ gλ(D), gλ is a sub-additive measure, which means
coalitions C and D exhibit a negative synergetic interaction.

In particular, if λ = 0, then Equation (12) reduces to an additivity property weight,
and all the indexes are considered to be independent:

gλ(C ∪ D) = gλ(C) + gλ(D) (13)
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For finite set A, gλ can be obtained by reiteration of Equation (12):

gλ(A) =

{ 1
λ (∏i∈A[1 + λgλ(i)]− 1) if λ 6= 0,
∑i∈A gλ(i) if λ = 0,

(14)

According to µ(X) = 1, we have

∏
i∈X

[1 + λgλ(i)] = 1 + λ (15)

It is clear that if each gλ(i) is fixed, the value of λ is obtained, and then the fuzzy
measure corresponding to every subset of the indexes can be calculated with Equation (14).

As one of the most important payoff indexes, the Shapley function has been extensively
studied in game theory, which is the only solution satisfying the four axioms: efficiency,
symmetry, dummy player and additivity [41]. In this paper, we introduce the generalized
Shapley index put forward by Marichal [42], which can measure the overall average
influence of each coalition rather than each player, in order to obtain a more rational fuzzy
measure for each index subset. The generalized Shapley index can be expressed as

ϕSh
S (µ, N) = ∑

T⊆MS

(n− s− t)!t!
(n− s + 1)!

(µ(S ∪ T)− µ(T)) ∀S ⊆ N (16)

where µ is a fuzzy measure on N.
Then, the generalized Shapley index for the λ-fuzzy measure gλ on N can be expressed

as follows:

ϕSh
S (gi, N) = ∑

T⊆N\S

(n− s− t)!t!
(n− s + 1)!

(gλ(S ∪ T)− gλ(T)), ∀S ⊆ N (17)

By Equation (4), if S = {i}, then

ϕSh
i (gλ, N) = ∑

T⊆N\i

(n− 1− t)!t!
n!

gλ(i)∏
j∈S

[1 + λgλ(j)], ∀i ∈ N (18)

It can be seen that Equation (17) is an expected average value of the overal interaction
between the coalition S and every coalition in N\S. As a special case, Equation (18) provides
the expected value of the overall interaction between the element i and every coalition in
N\i. Furthermore, as it is proved in [28], the calculated ϕSh given as Equation (17) is still a
fuzzy measure.

According to Definition 8, we define the arithmetical generalized λ-Shapley Choquet
operator for GIFSS as follows:

Definition 9. Let gλ be a fuzzy measure on E and let Fα(ai) = (F(ai), α(ai)), i = 1, 2, . . . , m be a
collection of GIFSS over (E, N), where F(ai) = F(ai(e1), ai(e2), . . . , ai(en)) = {ai1, ai2, . . . , ain} ∈
IFE and α(ai) is an expert’s evaluation on N for the ith element F(ai). If aij =

(
taij , faij

)
, j =

1, 2, . . . , n and α(ai) = (tαi , fαi ). The GIFSS arithmetical generalized λ-Shapley Choquet (G-
AGSCgλ

) operator is defined as follows:
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α(ai)⊗
∫

aidϕSh(gλ, N) = G-AGSCgλ
(ai1, ai2, . . . , ain)

= α(ai)⊗
(
⊕n

j=1aiκ(j)

(
ϕSh

A(j)
(gλ, N)− ϕSh

A(j+1)
(gλ, N)

))
=

(
tαi ·

(
1−

n

∏
j=1

(
1− taiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1))(gλ ,N)
)

,

fαi +
n

∏
j=1

(
faiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1)(gλ ,N)
− fαi ·

n

∏
j=1

(
faiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1)
(gλ ,N)

)
(19)

and the GIFSS geometric generalized λ-Shapley Choquet (G-GGSCgλ
) operator is written as

α(ai)⊗
∫

aidϕSh(gλ, N) = G-GGSCgλ
(ai1, ai2, . . . , ain)

= α(ai)⊗
(
⊕n

j=1(aiκ(j))
ϕSh

A(j)
(gλ ,N)−ϕSh

A(j+1)
(gλ ,N)

)
=

(
tαi ·

n

∏
j=1

(
taiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1)(gλ ,N)
,

fαi +

(
1−

n

∏
j=1

(
1− faiκ(j)

)ϕSh
A(j+1)(gλ ,N)−ϕSh

A(j+1)(gλ ,N)
)
− fαi ·

(
1−

n

∏
j=1

(
1− faiκ(j)

)ϕSh
A(j+1)(gλ ,N)−ϕSh

A(j+1)(gλ ,N)
))

(20)

where ϕSh is the generalized Shapley index given as Equation (5), and (κ(1), κ(2), . . . , κ(n)) is a
permutation of (j = 1, 2, . . . , n) such that aiκ(1) ≤ aiκ(2) ≤ · · · ≤ aiκ(n) and A(j) = {j, . . . , n}
with A(n+1) = ∅.

Theorem 1. The aggregated values of the proposed G-AGSCgλ
and G-GGSCgλ

operators are
also IFVs.

Proof. The theorem is proved by using the basic operational rules of FS and mathemati-
cal induction.

For n = 1,

G-AGSCgλ
(ai1)

=

(
tαi ·

(
1−

(
1− taiκ(1)

)ϕSh
A(1)(gλ ,N)−ϕSh

A(2))(gλ ,N)
)

,

fαi +
(

faiκ(1)

)ϕSh
A(1)(gλ ,N)−ϕSh

A(2)(gλ ,N)
− fαi ·

(
faiκ(1)

)ϕSh
A(1)(gλ ,N)−ϕSh

A(2)
(gλ ,N)

)
= α(ai)⊗ (k1ai1)

(21)

where k1 = (ϕSh
A(1)(gλ, N)− ϕSh

A(2)
(gλ, N), and the result is an IFV according to

Definition 4.
For n = 2,
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G-AGSCgλ
(ai1, ai2)

=

(
tαi ·

(
1−

(
1− taiκ(1)

)ϕSh
A(1)(gλ ,N)−ϕSh

A(2))(gλ ,N)(
1− taiκ(2)

)ϕSh
A(2)(gλ ,N)−ϕSh

A(3))(gλ ,N)
)

,

fαi +
(

faiκ(1)

)ϕSh
A(1)(gλ ,N)−ϕSh

A(2)(gλ ,N)(
faiκ(2)

)ϕSh
A(2)(gλ ,N)−ϕSh

A(3)(gλ ,N)

− fαi ·
(

faiκ(1)

)ϕSh
A(1)(gλ ,N)−ϕSh

A(2)
(gλ ,N)(

faiκ(2)

)ϕSh
A(2)(gλ ,N)−ϕSh

A(3)
(gλ ,N)

)
= α(ai)⊗ ((k1ai1)⊕ (k2ai2))

(22)

and the result is also definitely an IFV.
Assume when n = p, the theorem holds, that is,

G-AGSCgλ

(
ai1, ai2, . . . , aip

)
=

(
tαi ·

(
1−

p

∏
j=1

(
1− taiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1))(gλ ,N)
)

,

fαi +
p

∏
j=1

(
faiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1)(gλ ,N)
− fαi ·

p

∏
j=1

(
faiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1)
(gλ ,N)

) (23)

is an IFV.
Then, for n = p + 1, we have

G-AGSCgλ

(
ai1, ai2, . . . , aip+1

)
=

(
tαi ·

(
1−

p

∏
j=1

(
1− taiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1))(gλ ,N)
·
((

1− taiκ(p+1)

)ϕSh
A(p+1)(gλ ,N)−ϕSh

A(p+2))(gλ ,N)
))

,

fαi +
p

∏
j=1

(
faiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1)(gλ ,N)
·
((

faiκ(p+1)

)ϕSh
A(p+1)(gλ ,N)−ϕSh

A(p+2)(gλ ,N)
)

− fαi ·
p

∏
j=1

(
faiκ(j)

)ϕSh
A(j)(gλ ,N)−ϕSh

A(j+1)
(gλ ,N)

·
((

faiκ(p+1)

)ϕSh
A(p+1)(gλ ,N)−ϕSh

A(p+2)(gλ ,N)
))

= α(ai)⊗
(
(G-AGSCgλ

(
ai1, ai2, . . . , aip

)
)⊕ (kp+1aip+1)

)

(24)

It is clear that the conclusions remain valid; therefore, the theorem is proved.

Remark 1. It is easy to see that Equations (18) and (19) are, respectively, the extensions of some
arithmetical aggregation operators and geometric aggregation operators based on additive measures.

5. Threat Evaluation Example and Analysis

Assume the air defense system launches a carrier cabin carrying six small interceptors
to intercept a target group consisting of four targets in an air defense interception operation.
In the terminal interception phase, the carrier cabin releases small interceptors to intercept
each target. Suppose that the initial target assignment scheme is (1, 1, 2, 3, 3, 4), that is,
two interceptors are allocated to target 1 and target 3. The initial positions and following
trajectories of the interceptors and targets are shown in Figure 3, where the defending asset
is set at the origin throughout the simulation.
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Figure 3. Initial positions and trajectories of the interceptor and the target.

5.1. Evaluation Process

The two methods based on GIFSS generalized λ-Shapley Choquet operators, G-
AGSCgλ

and G-GGSCgλ
, are applied to the threat evaluation of four air targets, and the

specific steps of the evaluation process are as follows:

Method 1: The method with the G-AGSCgλ
operator.

Step 1 At the initial time (the process of any other time is consistent with this ), the target
threat index values are summarized, as shown in Table 2.

Table 2. The index values with respect to the targets.

Index Type Height (m) T–A Distance (m) Velocity (m/s) Acceleration (m/s2) Route Shortcut (m) T–M Distance (m) T–M Velocity (m/s)

T1 Missile 23,999.92 29,999.89 107.96 1.00 98,098.79 18,669.47 293.50
Missile 23,999.92 29,999.89 107.96 1.00 98,098.79 18,530.70 355.39

T2 Bomber 22,999.94 29,832.78 85.43 1.00 97,738.04 18,834.77 307.52

T3 Missile 21,879.93 29,575.96 116.15 2.00 99,214.27 18,651.19 361.96
Missile 21,879.93 29,575.96 116.15 2.00 99,214.27 18,775.00 317.80

T4 Bomber 209,99.94 29,698.38 107.30 2.00 100,015.36 19,303.57 311.97

Step 2 Denote the set of targets as A = {T1, T2, T3, T4} and the set of indexes as
C = {C1, C2, · · · , C8}. Based on the index quantification method in Section 3.3, the IFS
matrix of the targets is calculated as shown in Table 3, where the multi-source information
of targets 1 and 3 is simply weighted according to the distance between each interceptor
and the target.

Table 3. IFS matrix of the air target TI.

Index C1 C2 C3 C4 C5 C6 C7 C8

T1 (0.90, 0.05) (0.70, 0.21) (0.79, 0.11) (0.74, 0.09) (0.40, 0.05) (0.80, 0.10) (0.77, 0.10) (0.73, 0.18)
T2 (0.50, 0.30) (0.73, 0.18) (0.79, 0.11) (0.59, 0.07) (0.40, 0.05) (0.80, 0.10) (0.78, 0.10) (0.76, 0.14)
T3 (0.90, 0.05) (0.77, 0.14) (0.80, 0.10) (0.80, 0.10) (0.80, 0.10) (0.79, 0.11) (0.76, 0.10) (0.69, 0.22)
T4 (0.50, 0.30) (0.80, 0.10) (0.80, 0.10) (0.74, 0.09) (0.80, 0.10) (0.78, 0.12) (0.80, 0.10) (0.75, 0.15)
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Step 3 Suppose a single expert gives his/her preference in the form of the generalization
parameters, which are summarized in Table 4.

Table 4. The generalization parameters given by the expert for each target.

T1 T2 T3 T4

Expert (0.857, 0.021) (0.834, 0.081) (0.876, 0.016) (0.733, 0.023)

Step 4 According to Definition 3, rearrange the threat index values of the targets in ascend-
ing order. The rearranged index values of each target are shown in Table 5.

Table 5. The rearranged IFS matrix of the air target TI.

Index Cκ(1) Cκ(2) Cκ(3) Cκ(4) Cκ(5) Cκ(6) Cκ(7) Cκ(8)

T1 (0.40, 0.55) (0.70, 0.21) (0.73, 0.18) (0.74, 0.16) (0.77, 0.13) (0.79, 0.11) (0.80, 0.10) (0.90, 0.05)
T2 (0.40, 0.55) (0.50, 0.20) (0.59, 0.34) (0.73, 0.18) (0.76, 0.14) (0.78, 0.12) (0.79, 0.11) (0.80, 0.10)
T3 (0.69, 0.22) (0.77, 0.14) (0.78, 0.13) (0.79, 0.11) (0.80, 0.10) (0.80, 0.10) (0.80, 0.10) (0.90, 0.05)
T4 (0.50, 0.20) (0.74, 0.17) (0.75, 0.15) (0.78, 0.12) (0.80, 0.10) (0.80, 0.10) (0.80, 0.10) (0.80, 0.10)

Step 5 It is assumed that compared with other indexes, the decision-maker attaches more
importance to route shortcut, missile–target distance and missile–target relative velocity,
and the fuzzy measure value of each indicator is

gλ(C1) = 0.12, gλ(C2) = 0.1, gλ(C3) = 0.23, gλ(C4) = 0.15 (25)

gλ(C5) = 0.05, gλ(C6) = 0.33, gλ(C7) = 0.35, gλ(C8) = 0.27 (26)

Step 6 According to Equation (14), the parameter λ = −0.7212 of the fuzzy measure of the
index is obtained, and then the basic correlation measure between the indexes is obtained.
Considering the emphasis on the correlation between the indexes, the correlation measure
that includes both distance and velocity is increased, and the adjustment factor is taken
as 1.25.

Step 7 By using Formulas (17) and (18), the λ-Shapley fuzzy measure of each index and
combination of indexes is obtained.

Step 8 Combine the IFS matrix with the generalization parameter matrix, and then we
can obtain the GIFSS matrix. The aggregation results for the targets can be obtained after
applying the G-AGSCgλ

operator, and they are

RT1 = (tT1, fT1) = G-AGSCgλ
(a11, a12, . . . , a18) = (0.6558, 0.1223) (27)

RT2 = (tT2, fT2) = G-AGSCgλ
(a21, a22, . . . , a28) = (0.5986, 0.1860) (28)

RT3 = (tT3, fT3) = G-AGSCgλ
(a31, a32, . . . , a38) = (0.6974, 0.1210) (29)

RT4 = (tT4, fT4) = G-AGSCgλ
(a41, a42, . . . , a48) = (0.5599, 0.1405) (30)

Step 9 By using the score function and exact function, we can obtain the score values sT
and the exact values hT of the targets, as shown in Figure 4.

According to the ranking rules, the ranking result of the targets is

T1 > T3 > T2 > T4 (31)

Method 2: The method with the G-GGSCgλ
operator.
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The evaluation process is similar to Method 1 but with the replacement of the aggrega-
tion operator with G-GGSC gλ

when aggregating the threat evaluation GIFSS matrix, and
the aggregation results are as follows:

RT1 = (tT1, fT1) = G-AGSCgλ
(a11, a12, . . . , a18) = (0.7204, 0.1510) (32)

RT2 = (tT2, fT2) = G-AGSCgλ
(a21, a22, . . . , a28) = (0.6898, 0.1984) (33)

RT3 = (tT3, fT3) = G-AGSCgλ
(a31, a32, . . . , a38) = (0.6765, 0.1374) (34)

RT4 = (tT4, fT4) = G-AGSCgλ
(a41, a42, . . . , a48) = (0.5952, 0.1214) (35)

The score values and the exact values of the targets are shown in Figure 5.
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Figure 4. The score values and exact values for the targets under the G-AGSCgλ operator.
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Figure 5. The score values and exact values for the targets under the G-GGSCgλ operator.
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According to the ranking rules, the ranking result of the targets is apparently the same
as the method with the G-AGSCgλ

operator:

T1 > T3 > T2 > T4 (36)

5.2. Comparative Analysis
5.2.1. Comparison with Existing Methods in the Tradtional Index System

Firstly, the threat evaluation results of the proposed methods and the IFS method
in [32] and GIFSS method in [20] are compared under the traditional index system which
only considers the relative kinematics between the defending assets and targets. The score
values of the targets under the proposed methods and comparison methods are shown in
Figure 6.
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Figure 6. The score values of the targets under different methods in the tradtional index system.

The ranking results of the proposed methods and comparison methods are shown in
Table 6.

Table 6. Ranking results of the targets under different methods in the tradtional index system.

Method Ranking Results

Comparison
methods

IFSS T3 > T1 > T4 > T2
GIFSS T3 > T1 > T2 > T4

Proposed
methods

G-AGSC T3 > T1 > T2 > T4
G-GGSC T3 > T1 > T2 > T4

It is clear that the ranking results of the targets under the proposed methods in
the tradtional index system are consistent with the GIFSS method, which verifies the
effectiveness of the proposed methods. Analyzing the generalized parameter matrix given
by the experts for each target and comparing target 2 and target 4, the expert provided
an assessment that the threat of target 2 is greater than that of target 4, whereas as the
IFS method does not include the generalized parameter matrix given by the expert, the
ranking result is that the threat of target 4 is greater than the threat of target 2, which is not
consistent with the results of the other algorithms.
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5.2.2. Comparison with Existing Methods in the Proposed Index System

The score values of the targets under the proposed methods and comparison methods
are shown in Figure 7.
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Figure 7. The score values of the targets under different methods in the proposed index system.

The ranking results of the proposed methods and comparison methods are shown in
Table 7.

Table 7. Ranking results of the targets under different methods in the proposedindex system.

Method Ranking Results

Comparison
methods

IFSS T3 > T1 > T4 > T2
GIFSS T3 > T1 > T2 > T4

Proposed
methods

G-AGSC T1 > T3 > T2 > T4
G-GGSC T1 > T3 > T2 > T4

Referring to the initial target threat index, Table 2, among all targets, the interceptor
has the fastest speed relative to target 3, and the relative distance is close to target 1,
which means that target 3 is most likely to be intercepted first. Therefore, compared
with the evaluation results in the traditional index system, each method reduces the
threat score value of target 3. However, in terms of the ranking results, the comparison
methods are consistent with the previous ranking results, whereas the ranking results
of the two proposed algorithms are different. This is because, on the one hand, the
aggregation operator based on the fuzzy measure and the Choquet integral can not only
reflect the preference of decision-makers for each independent index but can also consider
the correlation between indexes, which is more general and applicable for MCDM problems,
such as this example. On the other hand, by introducing the Shapley index, it can reflect
the overall average contribution of each index and index set to the entire index system,
which is more reasonable and more in line with the overall evaluation and perception of
decision-makers for the targets.

6. Conclusions

In this paper, a new threat evaluation index system was proposed by introducing
the kinematics relative to the interceptors into the traditional threat evaluation index
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system, the idea of which originates from the notion that the more likely the target will
be intercepted, the smaller the threat of the target. Then, two new aggregation operators
for GIFSS named the G-AGSCgλ

operator and the G-GGSCgλ
operator were proposed,

by employing λ-Shapley fuzzy measures instead of independent addable functions to
weigh each index and the index sets, which can not only reflect the correlation between the
indexes but can also indicate the overall average contribution of each index and index set
to the whole index system. The proposed methods can overcome the limitations of existing
IFS and GIFSS methods, and the effectiveness and superiority are verified by the numerical
simulation and comparison.

Our future work may concentrate on how to determine the fuzzy measures of each
index and index set more objectively and scientifically according to the problem character-
istics, target characteristics and decision-maker’s preference.
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