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Abstract: The gas-kinetic scheme (GKS) and the unified gas-kinetic scheme (UGKS) are numerical
methods based on the gas-kinetic theory, which have been widely used in the numerical simulations of
high-speed and non-equilibrium flows. Both methods employ a multiscale flux function constructed
from the integral solutions of kinetic equations to describe the local evolution process of particles’ free
transport and collision. The accumulating effect of particles’ collision during transport process within
a time step is used in the construction of the schemes, and the intrinsic simulating flow physics in the
schemes depends on the ratio of the particle collision time and the time step, i.e., the so-called cell’s
Knudsen number. With the initial distribution function reconstructed from the Chapman–Enskog
expansion, the GKS can recover the Navier–Stokes solutions in the continuum regime at a small
Knudsen number, and gain multi-dimensional properties by taking into account both normal and
tangential flow variations in the flux function. By employing a discrete velocity distribution function,
the UGKS can capture highly non-equilibrium physics, and is capable of simulating continuum and
rarefied flow in all Knudsen number regimes. For high-speed non-equilibrium flow simulation,
the real gas effects should be considered, and the computational efficiency and robustness of the
schemes are the great challenges. Therefore, many efforts have been made to improve the validity
and reliability of the GKS and UGKS in both the physical modeling and numerical techniques. In
this paper, we give a review of the development of the GKS and UGKS in the past decades, such
as physical modeling of a diatomic gas with molecular rotation and vibration at high temperature,
plasma physics, computational techniques including implicit and multigrid acceleration, memory
reduction methods, and wave–particle adaptation.

Keywords: hypersonic flow; non-equilibrium; multiscale method; unified gas-kinetic scheme

1. Introduction

High-speed flows are usually involved in aeronautical and aerospace engineering,
such as in the re-entry of spacecraft, launch of rockets, and near-space vehicle cruising. As
computational fluid dynamics (CFD) calculations start to play important roles in many
fields, numerical algorithms for high-speed flow simulations become crucial as well, espe-
cially for the cases where it is difficult for experiments to be conducted. However, there
are still great challenges for the CFD method in the aspects of reliability, accuracy, and
robustness in the simulation of high-speed flows. When the speed of flight gets very high,
the flow physics becomes very complicated with the emergence of highly non-equilibrium
phenomena. Multiple-scale transport processes in space and time may occur in high-speed
flight, where both continuum and rarefied flows would appear around a vehicle. Moreover,
due to high temperature, real gas effects such as molecular rotation, vibration, chemical
reactions, ionization, and plasma physics have to be taken into account. The gas-kinetic
scheme (GKS) [1–3] and the unified gas-kinetic scheme (UGKS) [4–6] are constructed from
the gas-kinetic theory and attempt to recover the flow dynamics with a solid physical
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foundation. With the incorporation of direct physical modeling in the algorithms, realistic
flow physics can be recovered in the schemes, such as the excellent performance in the
capturing of multiscale transport in the continuum and rarefied flows.

The GKS proposed by Xu [1,2] aims to obtain the Navier–Stokes (NS) solutions in the
continuum regime. Based on the finite volume framework for the macroscopic conservation
laws, the GKS adopts the time evolution solution of the kinetic model equation to construct
the flux function across the cell interface. For the continuum flow the initial gas distribution
function at the beginning of each time step is constructed from the Chapman–Enskog
(CE) expansion [7]; the time accurate solution at a cell interface combines the inviscid
and viscous terms in the flux evaluation and recovers a physical evolution process from
the initial non-equilibrium to the equilibrium one. Moreover, the upwind scheme and a
generalized Lax–Wendroff-type central difference method are dynamically coupled in the
flux function, and the corresponding limiting schemes could be achieved respectively in the
discontinuous and continuous flow regions. This makes the GKS robust and accurate for
capturing both shock discontinuities and smooth flow structures. Another distinguishable
feature of the GKS is the multi-dimensional property of the flux function [3,8], which incor-
porates both normal and tangential variations of the flow field in the flux computation, and
makes the GKS suitable for flow simulations on unstructured mesh. In order to simulate
high-speed flow, the GKS has been further developed in the aspects of physical modeling
and numerical algorithms, such as the kinetic boundary condition [9,10], multiple tem-
perature model [11–20], multi-component and reactive flow [21–25], and implicit scheme
and multigrid acceleration [3,26–33]. By employing a modified relaxation time [10,13,34],
the corresponding constitutive relationship in the GKS have been improved so that the
GKS can be applied in the near continuum regime. Due to the assumption of a small
relaxation time and the use of CE expansion for the distribution function, a continuous
particle velocity space is used in GKS and the moments of a gas distribution function can be
integrated analytically. However, the applicable regime of the GKS is limited to describing
the equilibrium and near-equilibrium flow.

With the adoption of a discrete particle velocity space, the UGKS [4–6] is a much
enhanced GKS for continuum and rarefied flow simulation. Highly non-equilibrium flow
physics can be described and captured in the UGKS by employing a discrete distribution
function [35–38]. In other words, the GKS can be regarded as a limiting case of UGKS
in the NS regimes, where under intensive particle collisions the distribution function
in UGKS will automatically reach the near-equilibrium CE expansion. The UGKS takes
direct modeling on the numerical discretization scales, i.e., the mesh size and time step,
aiming to construct the corresponding flow physics on the observational scale for a better
description of a multiscale transport process with high efficiency. The key ingredients of the
UGKS are to follow the basic conservation laws of the macroscopic flow variables and the
microscopic gas distribution function in a discretized space, and to construct a multiscale
flux function from the integral solution of the kinetic equation, taking into account the
accumulating effects of particles’ collision during the transport process in the scale of a
numerical time-step.

For high-speed flow simulation, the UGKS can include real gas effects, such as
molecular rotation and vibration [39–41], multi-component gas mixture, and plasma
physics [42,43]. In contrast to the GKS, for which there is a continuous velocity space
in which the distribution function can be expressed by the macroscopic flow variables
and their gradients, sufficient discrete velocity points should be provided in order to
capture the local non-equilibrium distribution in the UGKS. Thus, the computational cost
and memory consumption are huge in the UGKS, especially for high-speed rarefied flow
simulation with discrete points to cover a six-dimensional physical and velocity space.
Therefore, many numerical techniques have been developed and implemented in the UGKS
to increase the computational efficiency and reduce memory cost, such as unstructured
mesh computation [44,45], moving grids [46,47], velocity space adaptation [47,48], memory
reduction [49,50], wave–particle adaptation [51,52], implicit algorithms [53–56], and fur-
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ther simplification and modification [57,58]. With these treatments, the UGKS becomes a
powerful tool to solve multiscale problems, and shows great advantages in the simulations
of high-speed and non-equilibrium flow with a large variation of local Knudsen number in
a single computation.

In this paper, we will give a review of the GKS and the UGKS for high-speed flow
simulations. The development of the GKS and the UGKS in the aspects of physical
modeling and numerical algorithms will be introduced in Sections 2 and 3, respectively.
A summary of the GKS and the UGKS for high-speed flow simulation will be presented
in the Section 4.

2. Gas-Kinetic Scheme for High-Speed Flows
2.1. Gas-Kinetic Scheme and Kinetic Boundary Condition

In rarefied gas dynamics, the fundamental governing equation is the Boltzmann
equation [59–62], which employs the seven-dimensional gas distribution function f =
f (u, v, w, x, y, z, t) to describe the time evolution of the probability density of gas particles
around a microscopic velocity ~u = (u, v, w)T , at physical location ~x = (x, y, z)T and time
t. Due to the complexity of the full Boltzmann collision term, the kinetic models, such
as the Bhatnagar–Gross–Krook (BGK) [63], Shakhov [64], and ellipsoidal statistical BGK
(ES-BGK) [65] models, are usually employed. The BGK model equation can be written as

∂ f
∂t

+ u
∂ f
∂x

+ v
∂ f
∂y

+ w
∂ f
∂z

=
g− f

τ
(1)

where the collision term is approximated by a relaxation process of the distribution function
approaching a local equilibrium state. The macroscopic flow variables can be computed
from the microscopic distribution function, such as the conservative flow variables, i.e., the
densities of mass, momentum, and energy

~w = (ρ, ρU, ρV, ρW, ρE)T =
∫

f (u, v, w)~ψdΞ (2)

where dΞ = dudvdw and ~ψ = (1, u, v, w, 1
2 (u

2 + v2 + w2))T . In the BGK model (1), τ is the
relaxation time or particles’ mean collision time, which denotes the average time interval
between two successive collisions. The equilibrium state g is a Maxwellian distribution

gM = ρ

(
λ

π

) 3
2
e−λ[(u−U)2+(v−V)2+(w−W)2] (3)

where λ is related to the temperature T by

λ =
m0

2kBT
(4)

where m0 denotes the molecular mass of gas particle and kB is the Boltzmann constant.
Based on the gas-kinetic theory, the NS equations can be derived from the Boltzmann

equation or the simplified kinetic model equations using CE expansion [7] when τ is small
in the continuum regime. The GKS proposed in [1,2] is a hydrodynamic NS solver based
on the kinetic theory in the framework of the finite volume method.

For a control volume i during the time step ∆t = tn+1 − tn, the conservation law of
macroscopic flow variables gives

~wn+1
i = ~wn

i −
∆t
Vi

∑
j∈N(i)

~FijSij (5)

where Vi is the volume of cell i, N(i) denotes the set of the face-bordered neighbors of cell
i, and j is one of the neighboring cells. The interface between cells i and j is denoted by ij,
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so Sij and ~Fij are the interface area and time step-averaged fluxes across cell interface ij,
respectively.

The interface flux in GKS is constructed from the integral solution of the BGK model
equation along the characteristic line

fij(t) =
1
τ

∫ t

t0

g(~x′, t′)e−(t−t′)/τdt′ + e−(t−t0)/τ f0(~xij − ~u(t− t0)) (6)

where ~x′ = ~xij − ~u(t− t′) is particle trajectory. f0(~x) is the initial distribution function
around cell interface ~xij at the beginning of each time step t0, and it adopts a linear
distribution in space and the first-order CE expansion

f0(x) = gl,r − τ(~u · gl,r
~x + gl,r

t ) + gl,r
~x ·~x (7)

Here, l, r denotes different values on the left and right sides of the cell interface. The
initial distribution function is fully determined by the macroscopic flow variables and their
gradients. The equilibrium state in space and time is expanded as

g(~x, t) = g0 + g~x ·~x + gtt (8)

which can be computed from the spatial and temporal gradients of the macroscopic flow
variables at the cell interface. The integral solution describes the evolution process of an
initial non-equilibrium distribution approaching a local equilibrium one with the time
increment. Since the transport from the initial distribution function f0 has an upwind
mechanism, such as a kinetic flux vector splitting scheme, and the integral evolution of the
equilibrium state g has a Lax–Wendroff-type central difference formulation, the GKS auto-
matically provides a transition between the upwind and central difference according to the
ratio of numerical time step ∆t over the relaxation time τ. For example, in the discontinu-
ous shock region, the numerical relaxation time τ is large and the GKS becomes an upwind
scheme to capture the discontinuity; in the smooth region at a small τ relative to the time
step ∆t, the GKS recovers the central difference scheme with high-order accuracy. Another
distinguishable feature of the GKS is that both the normal and tangential gradients along
the cell interface participate in the flux evaluation, which results in a multi-dimensional
hydrodynamic NS solver [3]. The multi-dimensional property makes the GKS suitable for
flow simulation on unstructured mesh.

In the GKS, the kinetic boundary condition can easily be applied for a better simulation
of high-speed flow in the near-continuum regime, where the slip boundary condition can
be automatically recovered [9,10]. Without loss of generality, assume that an isothermal
wall is on the right side of the inner flow field. A time-accurate gas distribution function
for incident particles can be evaluated by one-side interpolation

f in = gl − τ(~u · gl
~x + gl

t) + gl
tt (9)

and the incident particles will be reflected from the wall with a Maxwellian distribution

gout = ρw

(
λw

π

) 3
2
e−λw[u2+(v−Vw)2+(w−Ww)2] (10)

where Vw and Ww are the tangential moving velocities of the wall and λw is computed from
the given wall temperature. The only unknown variable, which is the reflected density ρw,
can be calculated from the non-penetration condition of a solid wall∫

u>0
un f indΞdt +

∫
u<0

ungoutdΞdt = 0 (11)

In the study of paper [66], the hypersonic flow around a blunt cone is computed at
the freestream condition of Mach number Ma∞ = 10.6, Reynolds number defined with
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respect to the head radius Re = 1.1× 105, and angle of attack AoA = 20◦. The study
provides a detailed comparison of the heat flux on the wall between the GKS solution and
experimental data, which show excellent agreement. Many numerical cases have been
computed for validating the GKS in high-speed flow simulations, such as supersonic flow
past a cylinder [3,67–69], type-IV shock–shock interaction [3], flow past a double cone [3,29],
shock boundary layer interaction, double Mach reflection [68,69], hypersonic ramp [68,70],
flow around a hollow cylinder flare [9,10], transonic flow around a Falcon Business Jet
configuration [71], and a viscous shock tube [72–74]. The GKS shows excellent performance
in the aspects of robustness and accuracy for simulating high-speed viscous flows.

2.2. Multiple Temperature Model

In order to enhance the capability of GKS to capture non-equilibrium physics, such as
inhomogeneity in translational temperature, molecular rotation, and vibration, the multiple
temperature model was proposed and implemented in the scheme [11–20].

The kinetic model equation with multiple translational temperatures can be written as

∂ f
∂t

+ u
∂ f
∂x

+ v
∂ f
∂y

+ w
∂ f
∂z

=
g− f

τ
+

gM − g
Ztτ

(12)

where gM is a Maxwellian distribution with one temperature as given in Equation (3) and
g is an intermediate state with multiple translational temperature

g = ρ

√
λx

π
e−λx(u−U)2

√
λy

π
e−λy(v−V)2

√
λz

π
e−λz(w−W)2

(13)

where λx, λy, and λz are related to the x-, y-, and z-directional translational temperatures
Tx, Ty, and Tz, respectively. The average temperature in the equilibrium state gM is
evaluated from

3
λ
=

1
λx

+
1

λy
+

1
λz

(14)

Zt is a parameter denoting the ratio of the relaxation time from intermediate state g to
gM over that from non-equilibrium distribution f to the intermediate state g. When Zt
equals one, Equation (12) becomes the standard BGK model equation with one translational
temperature; for Zt → ∞, the distribution function f approaches a Gaussian distribution
with different translational temperatures in the x-, y-, and z-directions [12]. In the original
study of [11], a weight function 1/2 is used with the consideration that the average
temperature should return to the same temperature as that in the single temperature BGK
model, which is equivalent to the case with Zt = 2 in Equation (12). In [18,75], Zt = 1
is employed to re-write the collision process of the BGK model into two physical sub-
processes. Several numerical cases, including shock wave, Couette flow, Poiseuille flow,
and lid-driven cavity flow, have been carried out to show the capability of the multiple
temperature kinetic model in capturing non-equilibrium physics in the near-continuum
regime [11,12,75]. In general, the translational temperature should be constructed as a
second-order symmetric tensor, which deserves further investigation.

Besides the translational temperature, the kinetic model in Equation (12) can be
extended to rotational and vibrational degrees of freedom as well to simulate diatomic
gas flows. Adding two internal degrees of freedom into Equation (12), the kinetic model
equation for diatomic gas can be written as

∂ f
∂t

+ u
∂ f
∂x

+ v
∂ f
∂y

+ w
∂ f
∂z

=
g− f

τ
+

gM − g
Zrτ

(15)

where the equilibrium state becomes

gM = ρ

(
λ

π

) 5
2
e−λ[(u−U)2+(v−V)2+(w−W)2+ξ2] (16)
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Here, ξ2 = ξ2
1 + ξ2

2 denotes two rotational degrees of freedom. The intermediate state
has different translational and rotational temperatures

g = ρ

(
λt

π

) 3
2
e−λt[(u−U)2+(v−V)2+(w−W)2] λr

π
e−λrξ2

(17)

Zr is the so-called rotational collision number.
In the studies of [13–15], slightly different from the above equation with two relaxation

processes, the BGK kinetic model with different translational and rotational temperatures
is used, and the rotational collision number Zr is artificially added into the source term of
the rotational energy moment equation, which takes into account the longer relaxation time
of the rotational energy to reach equilibrium. In [16,76], the two-stage relaxation model is
more consistent with the well-known Rykov model [77] for diatomic gas simulation.

In addition, the vibrational energy has been included as well in the GKS to compute
high Mach number shocks and type IV shock–shock interaction [17,20]. It should be pointed
out that in order to capture non-equilibrium in a near-continuum regime, a generalized
collision time τ∗ has been proposed [34], and it was used in the previously mentioned
studies [10,11,13,14,16]. The generalized collision time is computed by

τ∗ =
τ

1 + τ〈D2g〉/〈Dg〉 (18)

where D = ∂t + ~u · ∂~x and 〈. . . 〉 =
∫
(. . . )φdΞ. Here, different moments φ can be used to

provide different values of τ∗ for the viscosity term and heat conduction coefficient [14].
τ∗ depends not only on the macroscopic flow variables but also their gradients. It can be
regarded as a generalization of constitutive relationship with the inclusion of higher-order
terms resulting in better capability of capturing rarefied non-equilibrium effects.

2.3. Multi-Component and Reactive Flow

For high-speed and high-temperature flows, a multi-component gas mixture is always
involved. Numerical modeling and algorithms for multi-component and reactive gas flows
have also been developed in the GKS [21–25].

For two-species gas flow, the kinetic equation can be written as

∂ f1

∂t
+ u

∂ f1

∂x
+ v

∂ f1

∂y
+ w

∂ f1

∂z
=

g1 − f1

τ

∂ f2

∂t
+ u

∂ f2

∂x
+ v

∂ f2

∂y
+ w

∂ f2

∂z
=

g2 − f2

τ

(19)

where f1 and f2 are gas distribution functions for the components 1 and 2, and g1 and g2
are the corresponding equilibrium states. In the studies of [21,22], the equilibrium state for
each component is a Maxwellian distribution, i.e.,

g1 = ρ1

(
λ

π

) 3+K1
2

e−λ[(u−U)2+(v−V)2+(w−W)2+ξ2
1]

g2 = ρ2

(
λ

π

) 3+K2
2

e−λ[(u−U)2+(v−V)2+(w−W)2+ξ2
2]

(20)

where ξ2
1 = ξ2

1,1 + · · ·+ ξ2
1,K1

, and ξ2
2 = ξ2

2,1 + · · ·+ ξ2
2,K2

. K1 and K2 denote the internal
degrees of freedom for two components. It is assumed that g1 and g2 share the same tem-
perature and velocity. For a two-component gas mixture, the compatibility condition gives∫

(g1 − f1)~ψ1dΞ1 +
∫

(g2 − f2)~ψ2dΞ2 =~0 (21)



Aerospace 2021, 8, 141 7 of 26

where ~ψ1 = (1, 0, u, v, w, 1
2 (u

2 + v2 + w2 + ξ2
1))

T and ~ψ2 = (0, 1, u, v, w, 1
2 (u

2 + v2 + w2 +
ξ2

2))
T . The common temperature and velocity can be obtained from the conservation law

ρ = ρ1 + ρ2

ρU = ρ1U1 + ρ2U2

ρV = ρ1V1 + ρ2V2

ρW = ρ1W1 + ρ2W2

ρE =
1
2

ρ(U2 + V2 + W2) +
ρ1(K1 + 3) + ρ2(K2 + 3)

4λ

=
1
2

ρ1(U2
1 + V2

1 + W2
1 ) +

ρ1(K1 + 3)
4λ1

+
1
2

ρ2(U2
2 + V2

2 + W2
2 ) +

ρ2(K2 + 3)
4λ2

(22)

In the study of Xu [21], it is assumed that the relaxation time τ is much smaller than
the time step, and the exchange of momentum and energy can be finished instantaneously,
which results in both species following the common temperature and velocity at any time.

Similar to the GKS with single-component gas, the integral solution of the kinetic
model is used as well in the multi-component GKS to construct the interface flux for each
component

f1(~xij, t) =
1
τ

∫ t

t0

g1(~x′, t′)e−(t−t′)/τdt′ + e−(t−t0)/τ f 0
1 (~xij − ~u(t− t0))

f2(~xij, t) =
1
τ

∫ t

t0

g2(~x′, t′)e−(t−t′)/τdt′ + e−(t−t0)/τ f 0
2 (~xij − ~u(t− t0))

(23)

where the initial gas distribution function f 0 is constructed by interpolation from each side
of the cell interface. g1 and g2 are the equilibrium states for both species with the same
temperature and velocity computed from the compatibility condition. After obtaining
the fluxes across the cell interface for both species, the flow variables can be updated for
each species.

In the studies of Lian [22] and Pan et al. [25], the chemical reaction is considered. The
ZND model proposed by Zel’dovich, von Neumann, and Doering has been incorporated
in the multi-component GKS in a splitting way, where an ordinary differential equation
(ODE) is solved to take into account the source term from the chemical reaction, i.e.,

∂ρ1

∂t
= −K(T)ρ1

∂ρ2

∂t
= K(T)ρ1

∂ρE
∂t

= K(T)Q0ρ1

(24)

where K(T) depends on the temperature T and is computed by

K(T) = K0Tαe−E+T (25)

Here, K0 is a positive constant and E+ denotes the activation energy. α = 0 is used in
the studies of [22,25]. Equation (24) can be solved by the one-step forward Euler method
or the multi-step Runge–Kutta method. In the framework of the two-stage fourth-order
method, high-order GKS with multi-component gases has been developed by Pan et al. [25].

In the study of [25], the case of Rayleigh–Taylor instability has been computed to vali-
date the multicomponent GKS with gravitational force. The development of the instability
from the initial condition is well captured by the multi-component GKS. In addition, the nu-
merical test cases, including the Sod shock tube, gas-vacuum expansion, ZND detonation,
2D viscous reactive flow, and shock-bubble interaction, have also been computed [21–25] to
show the capability of the GKS for simulation of multi-component and reactive gas flows.
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2.4. Implicit Scheme and Multigrid Acceleration

Implicit scheme and multigrid methods are the commonly used acceleration tech-
niques for solving partial differential equations (PDEs), which have been widely applied in
the CFD calculations. The implicit scheme can not only increase the convergence efficiency
but also improve the numerical stability, which is also vital for high-speed flow simulations.
The implicit and multigrid acceleration techniques have been developed in the GKS as well
for fast solving of both steady and unsteady state problems [3,26–33].

For unsteady flow evolution in a large time step ∆t = tn+1− tn, the discrete governing
equations can be written as

~wn+1
i − ~wn

i
∆t

+
1
Vi

∑
j∈N(i)

[
ε~Fn+1

ij + (1− ε)~Fn
ij

]
Sij =~0 (26)

where ε = 0.5 gives a second-order accurate Crank–Nicolson (CN) scheme and ε = 1 corre-
sponds to the first-order accurate backward Euler method. We can re-write the governing
equations in the ∆-form with an intermediate approximate solution for inner iteration,

1
∆t′

∆~w(s)
i +

ε

Vi
∑

j∈N(i)
∆~F(s)

ij Sij = ~R(s)
i (27)

where ∆~w(s)
i = ~wn+1

i − ~w(s)
i , and ∆~F(s)

ij = ~Fn+1
ij − ~F(s)

ij . The residual on the right hand side
of the equation gives

~R(s)
i =

~wn
i − ~w(s)

i
∆t

− ε

Vi
∑

j∈N(i)

~F(s)
ij Sij −

1− ε

Vi
∑

j∈N(i)

~Fn
ij Sij (28)

It can be found that when the residual ~R(s) approximates zero after several iterations,
~w(s) converges to ~wn+1 and becomes the solution to Equation (26). Since the residual
determines the convergent solution, the fluxes on the right hand side, i.e., ~Fn

ij and ~F(s), are
computed by the GKS as the same as that in the explicit scheme; for terms on the left hand
side, an arbitrary approximation can be carried out as long as it can result in a convergent
solution. Therefore, ∆t′ can adopt any positive value, and the flux variation on left hand
side can be approximated by the first-order Euler flux [78,79],

∆~F(s)
ij =

1
2

[
∆~T(s)

i + ∆~T(s)
j + Γij

(
∆~w(s)

i − ∆~w(s)
j

)]
(29)

where the Euler-equation-based flux ~T is

~T =

 ρUn
ρUn~U + p~nij
Un(ρE + p)

 (30)

Un = ~U ·~nij is the projected macroscopic velocity along the normal direction of the cell
interface ij. Γij denotes the spectral radius of the flux Jacobian matrix. For viscous flow, an
additional term Γν is required for stability considerations and it is computed by

Γij = (Un + as) + Γν = (Un + as) +
2µ

ρ|~nij · (~xj −~xi)|
(31)

Then, the implicit system formed by Equation (27) can be solved by the numerical al-
gorithms commonly used in CFD computation, such as the lower–upper symmetric Gauss–
Seidel (LU-SGS) method [80–82] and generalized minimal residual (GMRES) method [83].
From the study of Tan and Li [30], it is suggested to use the Jacobian matrix of kinetic flux
vector splitting (KFVS) as the pre-conditioner, which can provide better performance for



Aerospace 2021, 8, 141 9 of 26

steady high-speed flow simulations in the aspects of robustness and convergence. In the
study of Li et al. [31], the temporal discretization involving solutions on three time levels
has been utilized in the development of implicit GKS for unsteady flow simulation, by
adopting the commonly used dual time-stepping strategy in conventional CFD methods.

For a steady-state solution, the implicit scheme can be further simplified, and the
algorithm would be equivalent to the case that ε = 1, ∆t → ∞ in Equation (28). One
evolution step from tn = 0 to tn+1 → ∞ would provide the convergent solution satisfying
∑j∈N(i) ∆~FijSij =~0.

The multigrid method accelerates the solution for a fine grid by computing corrections
on a coarse grid to eliminate low-frequency errors efficiently [84–86]. It achieves a fast de-
velopment [87–91] and has been widely used in CFD calculations to solve the Euler and NS
equations [80,92,93]. In the studies of [26,28,94], the multigrid method has been used in the
computation of GKS. With the implicit scheme and multigrid method, the computational
efficiency of the GKS can usually be improved by one or two orders of magnitude.

3. Unified Gas-Kinetic Scheme for High-Speed Flows

With the discrete velocity distribution function, the unified gas-kinetic scheme (UGKS)
proposed by Xu et al. [4,5] can be regarded as a highly enhanced version of the GKS, which
is capable of simulating continuum and rarefied flows in all Knudsen regimes. By adopting
the integral solution of the kinetic equation along a characteristic line, the UGKS considers
the coupling effect of particles’ free streaming and collision in the transport process, and
can well describe multiscale flow transport with no need to restrict the numerical resolution
on the scales of mean free path and particle collision time. Similarly, the discrete unified
gas-kinetic scheme (DUGKS) proposed by Guo et al. [95,96] is capable of multiscale flow
simulations in all Knudsen regimes by adopting the discrete solution of the kinetic equation
along a characteristic line. After a decade of development and improvement, the UGKS
and DUGKS have gained great success in solving multiscale transport problems, such
as radiative transfer [97–100], phonon transport [101,102], plasma physics [42,103,104],
neutron transport [105,106], multicomponent and multiphase flow [107–111], granular
flow [112–114], and turbulent flow [115–117].

For high-speed flow simulation, besides the physical modeling of real gas effects such
as molecular rotation and vibration, chemical reaction, ionization, and plasma, another big
challenge for the UGKS is the huge computational cost resulting from the massive discrete
velocity points. In the following, we will give a brief review of the basic algorithm of the
UGKS, and introduce the development of the UGKS in physical modeling and numerical
treatment for high-speed flow simulations.

3.1. Basic Algorithm

For a control volume i during the time step ∆t = tn+1 − tn, the governing equations
of the gas distribution function and conservative flow variables are

f n+1
i = f n

i −
∆t
Vi

∑
j∈N(i)

un,ij f̄ijSij +
∫ ∆t

0
J ( fi, fi)dt (32)

and
~wn+1

i = ~wn
i −

∆t
Vi

∑
j∈N(i)

~FijSij (33)

which describe the distribution function change due to particle transport and collision,
and the flow variable variation due to flux transport across the surfaces of the control
volume. f̄ij is the time-averaged distribution function at cell interface ij over time step
∆t and un,ij = ~u ·~nij denotes the normal component of microscopic velocity ~u across the
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interface ij. J ( f , f ) represents particle collision and in the UGKS the trapezoidal rule
is used ∫ ∆t

0
J ( fi, fi)dt =

∆t
2

(
gn+1

i − f n+1
i

τn+1
i

+
gn

i − f n
i

τn
i

)
(34)

In Equation (33), we re-write the macroscopic conservation law the same as that
in the GKS. The main difference here is that the time-averaged macroscopic flux ~Fij is
supported by the underlying microscopic physics, and it is computed by taking moments
of microscopic fluxes Fij

~Fij =
∫
Fij~ψdΞ =

∫
un f̄ij~ψdΞ (35)

with the compatibility condition of the collision term∫
J ( fi, fi)~ψdΞ =~0 (36)

With the discrete velocity distribution function, the compatibility condition cannot be
naturally satisfied due to the numerical quadrature error, so several conservative kinetic
methods [54,118–123] have been constructed, which could maintain the compatibility
condition in the discrete form and show that the conservation of collision term can slightly
release the strict requirement of velocity space discretization, and gain better convergence
for implicit calculations.

Equations (32) and (33) directly describe the conservation of gas distribution function
and macroscopic flow variables, which are supposed to be valid at arbitrary discretization
scales regardless of variations in mesh size and time step. Following the basic conservation
laws is the fundamental step in the construction of a multiscale UGKS on the discretization
scales. With this consideration, a new conserved DUGKS has been proposed [124] as well,
where the conservative flow variables are updated from the macroscopic conservation
law instead of by taking moments of the auxiliary distribution function as in the original
DUGKS. Regardless of the quadrature rule in velocity space, the conservation law is always
satisfied on the macroscopic level in the conserved DUGKS, which could benefit in the
numerical calculations where conservation is of much importance, such as for highly non-
equilibrium flow and plasma physics [48,104,125]. Following these conservation laws, we
can see from Equation (33) that the evolution mainly depends on the microscopic flux Fij
across cell interfaces.

In the UGKS, a multiscale flux is constructed from the integral solution of the BGK
model equation, i.e., Equation (6). Different from that in the GKS, f0(~x) in the UGKS is
the initial distribution function obtained from the previous step evolution, which could
be a highly non-equilibrium distribution instead of the near-equilibrium state from the
CE expansion. With the distribution function described at discrete velocity points, the
UGKS can make full use of the advantage of the multiscale properties of the integral
solution. Besides providing a transition between the upwind scheme and central difference
discretization, the integral solution describes the evolution of the distribution function
from the initial state to the local equilibrium with the accumulation of particle collision.
When the discrete time-scale is much larger than particle mean collision time ∆t � τ,
the local equilibrium state dominates in the flux function and the flow behavior performs
as macroscopic wave propagation and interaction; when the time scale is small ∆t < τ,
the initial distribution function is dominant and the flow physics is the free transport of
microscopic particles. Moreover, the integral solution provides a transition from kinetic
scale to hydrodynamic scale, where the observed local physics is determined by the cell’s
Knudsen number, i.e., τ/∆t. For a well-resolved solution, the flux function is able to
describe the flow physics on the corresponding modeling scale of the numerical time step.
The scale adaptation through the ratio of physical scale and numerical resolution (τ and ∆t)
is the key to construct a truly multiscale numerical method. The traditional PDE approach
usually requires the mesh size and the time step to be small enough to match the physical
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modeling scale in the construction of the governing equations, while the UGKS has no
specific requirement for the numerical discretization, except for the stability condition and
necessary spatial resolution for well-resolving local flow structure. Owing to the adaptive
multiscale flux function and direct modeling concept, the UGKS has better efficiency in the
numerical simulation of multiscale problems with large variations in Knudsen numbers.

3.2. Physical Modeling for High-Speed Flow
3.2.1. Diatomic Gas with Molecular Rotation and Vibration

For diatomic molecules, e.g., N2 and O2, the characteristic temperature of rotation
is around 3 K [59], so the rotational degrees of freedom have already been excited at
room temperature. However, for the vibrational degrees of freedom, the characteristic
temperatures of N2 and O2 are 3371 K and 2256 K [59], respectively. Therefore, for high-
temperature flows at high Mach numbers, both the rotational and vibrational degrees of
freedom should be taken into account.

Liu et al. [39] employed the Rykov model to construct the time evolution solution of
the gas distribution function in the UGKS for simulation of diatomic gases. The rotational
degree of freedom is included and modeled by controlling the energy exchange between
translational and rotational energy through the relaxation model. The Rykov kinetic model
equation [77] gives

∂ f
∂t

+ u
∂ f
∂x

+ v
∂ f
∂y

+ w
∂ f
∂z

=
gtr − f

τ
+

gro − gtr

Zrτ
(37)

The equilibrium states are expressed as

gtr = g̃tr

[
1− 2m0~qtr ·~c

15kBTtr ptr

(
5
2
− m0c2

2kBTtr

)
+ (σ− 1)

m0~qro ·~c
kBTtr

kBTro − ε

θ

]
gro = g̃ro

[
1−ω0

2m0~qtr ·~c
15kBTp

(
5
2
− m0c2

2kBT

)
+ (1− σ)ω1

m0~qro ·~c
kBTp

(
1− ε

kBT

)] (38)

where

g̃tr = ρ

(
m0

2πkBTtr

) 3
2
exp

[
− m0c2

2kBTtr

](
1

kBTro

)
exp

[
− ε

kBTro

]
g̃ro = ρ

(
m0

2πkBT

) 3
2
exp

[
−m0c2

2kBT

](
1

kBT

)
exp

[
− ε

kBT

] (39)

and θ is defined by

θ =
∫

(kBTro − ε)2 f dudvdwdε (40)

The macroscopic flow variables, such as pressure, temperature, and heat flux for
translational and rotational degrees are defined by

ptr = ρ
kB
m0

Ttr =
1
3

∫
c2 f dudvdwdε

pro = ρ
kB
m0

Tro =
∫

ε f dudvdwdε

~qtr =
∫
~c

c2

2
f dudvdwdε

~qro =
∫
~cε f dudvdwdε

(41)

The parameters used in the above model are ω0 = 0.2354, ω1 = 0.3049, and 1/σ = 1.55
for nitrogen gas, and ω0 = 0.5, ω1 = 0.286, and 1/σ = 1.55 for oxygen gas.
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In order to construct the diatomic UGKS, the Rykov model can be re-written in the
same form as the BGK model

∂ f
∂t

+ u
∂ f
∂x

+ v
∂ f
∂y

+ w
∂ f
∂z

=
geq − f

τ
(42)

where the equivalent equilibrium state geq is

geq = (1− 1
Zr

)gtr +
1
Zr

gro (43)

Then the UGKS with the Rykov model can be constructed analogous to that for the
BGK model. The updating of the macroscopic flow variables can be carried out by



ρ
ρU
ρV
ρW
ρE

ρEro



n+1

i

=



ρ
ρU
ρV
ρW
ρE

ρEro



n

i

− ∆t
Vi

∑
j∈N(i)

~FijSij

+ ∆t



0
0
0
0
0

(ρEro,eq)n
i −(ρEro)n

2τn
i

+
(ρEro,eq)

n+1
i −(ρEro)

n+1
i

2τn+1
i



(44)

In the calculation, the energy relaxation term in the Rykov equation is modeled using
a Landau–Teller–Jeans relaxation. The particle collision time multiplied by rotational
collision number defines the relaxation rate for the rotational energy equilibrating with the
translational energy. The rotational collision number Zr is computed by

Zr =
Z∗r

1 + (π3/2/2)
√

T̃/Ttr + (π + π2/4)(T̃/Ttr)
(45)

where T̃ is the characteristic temperature of intermolecular potential. For N2 within a
temperature range from 30 K to 3000 K, the values of Z∗r = 23.0 and T̃ = 91.5 K are used.

In the study of [39], the normal shock has been computed for nitrogen gas at different
Mach numbers. The collision number is set at a constant value Zr = 2.4. The comparisons
of the density and temperature between the UGKS and DSMC at Ma = 1.53, 4.0, 5.0, and
7.0 are provided. With the differences of kinetic models, the UGKS still obtains acceptable
solutions of translational and rotational temperatures in comparison with the data obtained
by the DSMC method.

Taking the molecular vibration into account, a kinetic model [40,41] has been proposed
to simulate the diatomic gases with activated vibrational degrees of freedom. The kinetic
model equation can be written as

∂ f
∂t

+ u
∂ f
∂x

+ v
∂ f
∂y

+ w
∂ f
∂z

=
gt,r,v − f

τ
+

gtr,v − gt,r,v

Zrτ
+

gtrv − gtr,v

Zvτ
(46)
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where Zr and Zv denote the rotational and vibrational collision numbers. The equilibrium
states are

gtrv = ρ

(
λ

π

) 3
2
e−λc2 λ

π
e−λ(ξ2

1+ξ2
2)

4λ

Kv
e−

4λ
Kv εv

gtr,v = ρ

(
λt,r

π

) 3
2
e−λt,rc2 λt,r

π
e−λt,r(ξ

2
1+ξ2

2)
4λv

Kv
e−

4λv
Kv εv

gt,r,v = ρ

(
λt

π

) 3
2
e−λtc2 λr

π
e−λr(ξ2

1+ξ2
2)

4λv

Kv
e−

4λv
Kv εv

(47)

Here, λ, λt, λr, λv, and λt,r are related to the fully relaxed, translational, rotational,
vibrational, and partially relaxed temperatures, respectively. Specifically, we have

λ =
(5 + Kv)ρ

4

/ ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

[
1
2
(c2 + ξ2) + εv

]
f dεvdξdΞ

λt =
3ρ

4

/ ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

1
2

c2 f dεvdξdΞ

λr =
ρ

2

/ ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

1
2

ξ2 f dεvdξdΞ

λv =
Kvρ

4

/ ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
εv f dεvdξdΞ

λt,r =
5ρ

4

/ ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

1
2
(c2 + ξ2) f dεvdξdΞ

(48)

where Kv is the number of vibrational degrees of freedom. This collision model consists
of three terms, including the relaxation processes of elastic collision, inelastic collision
between molecular translation and rotation, and the energy exchange from vibrational
degrees of freedom to the translational and rotational ones. Equation (46) is more like
a BGK equation with a fixed Prandtl number, which can be extended to a Shakhov-like
model by using orthogonal polynomials in order to obtain the correct relaxation rate of
high-order moments [40,41]. With the provided kinetic model, the UGKS for diatomic
gases with rotational and vibrational degrees of freedom can be constructed.

Different from the translational and rotational degrees of freedom, the vibration
degree of freedom Kv is a temperature-dependent variable. According to the harmonic
oscillator model, the specific vibrational energy associated with a characteristic vibrational
temperature Θv is

ev =
kB
m0

Θv

e2λkBΘv/m0 − 1
(49)

then according to the equal partition to each degree of freedom, the vibrational degree of
freedom Kv can be determined by

Kv =
4kB
m0

λΘv

e2kBλΘv/m0 − 1
(50)

In the study of [40], flow around the Apollo re-entry capsule has been computed at
Ma = 10.2, Kn = 0.067 with a freestream temperature 142.2 K and a fixed wall temperature
300 K. Nitrogen gas is considered and the collision numbers adopt Zr = 5 and Zv = 10.
The comparison of flow fields between the diatomic UGKS with the Rykov model and the
current model with a vibrational degree of freedom is presented. It is shown that due to the
vibrational degree of freedom, the translational and rotational temperature distributions
obtained by the current model are lower than those computed by the Rykov model. A
more realistic solution has been obtained.
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3.2.2. Multi-Component Gas Mixture and Plasma

The direct modeling methodology of the UGKS has also been applied in the plasma
simulation [42,43]. The dynamics of a fully ionized plasma are modeled by the Fokker–
Planck–Landau (FPL) equations on the kinetic level

∂ fα

∂t
+ ~u · ∇~x fα +

~Fα

mα
· ∇~u fα = ∑

β

Qα,β( fα, fβ) (51)

where fα(~x,~u, t) is the velocity distribution function of species α (α = i for ion and α = e
for electron). ~Fα = e(~E + ~uα × ~B) is the averaged electromagnetic force. The collision
term Qα,β( fα, fβ) describes the binary collisions between charged particles with long-range
Coulomb interactions

Qα,β( fα, fβ) = ∇~u ·
(∫

R3
Φ(~u− ~u′)(∇~u fα f ′β −∇′~u f ′β fα)d~u′

)
(52)

where Φ(~u) is a 3× 3 matrix

Φ(~u) =
1
|~u|3 (|~u|

2 I3 − ~u⊗ ~u) (53)

In order to overcome the complexity and high computational cost of the nonlinear
Landau collision term, a single BGK-type collision operator proposed by Andries, Aoki,
and Perthame (AAP model) is employed to model the collision process [126].

In the AAP model, one global collision operator is used for each component to take
into account both self-collision and cross-collision, and the kinetic equations read

∂ fα

∂t
+ ~u · ∇~x fα +

~Fα

mα
· ∇~u fα =

f+α − fα

τα
(54)

where post-collision distribution f+ is a Maxwellian distribution

f+α = ρα

(
mα

2πkBTα

)3/2
exp

(
− mα

2πkBTα
(~u− ~Uα)

2
)

(55)

The parameters Tα and ~Uα are connected to the macroscopic properties of individual
components by

~Uα = ~Uα + τα ∑
r

2mr

mα + mr
ναr(~Ur − ~Uα)

3
2

kBTα =
3
2

kBTα −
mα

2
(~Uα − ~Uα)

2

+ τα ∑
r

4mαmrναr

(mα + mr)2

[
3
2

kB(Tr − Tα) +
mr

2
(~Ur − ~Uα)

2
] (56)

where ναr denotes the interaction coefficients that measure the strength of intermolecular
collision. The relaxation time is determined by τα = 1/ ∑r ναr. The parameter ναr is
determined by molecular models and the hard sphere model is used [127].

The average electric field ~E and magnetic field ~B follow the Maxwell equations,{
∂~B
∂t = −∇~x × ~E
∂~E
∂t = c2∇~x × ~B− 1

ε0
~j

(57)
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where c is the speed of light and ε0 is the vacuum permittivity, which is related to
the vacuum permeability ν0 by c = (ν0ε0)

−1/2. The electromagnetic field satisfies the
divergence constraints

∇~x · ~E =
e
ε0
(ni − ne), ∇~x · ~B = 0 (58)

where e is the charge of a proton. Theoretically, the divergence constraints will always
hold if they are initially satisfied. However numerical techniques are needed to make
sure that the divergence constraints are satisfied by numerical solutions. The perfectly
hyperbolic Maxwell equations (PHM) [128] are used to evolve the electromagnetic field,
which preserve the divergence constraints,

∂~E
∂t
− c2∇~x × ~B + χc2∇~xφ = − 1

ε0
~j

∂~B
∂t

+∇~x × ~E + γ∇~xψ =~0

1
χ

∂φ

∂t
+∇~x · ~E =

e
ε0
(ni − ne)

ε0µ0

γ

∂ψ

∂t
+∇~x · ~B = 0

(59)

where~j is the total electric current density~j = e(ni~Ui − ne~Ue), and φ and ψ are artificial
correction potentials. Munz proved that the propagation speed of magnetic field divergence
error and electric field divergence error are γc and χc [128]. This scheme is built on the
BGK-Maxwell system Equations (54), (57), and (58), which are able to cover the flow
regimes of plasma from the collisionless Vlasov regime to the continuum MHD regime.

In the study of Liu et al. [42], the asymptotic limits of the BGK-Maxwell system have
been analyzed. In the continuum regime, when the interspecies collision is strong, the gas
mixture behaves like dielectric material, and the BGK-Maxwell equations become the Euler
equations. For a conductive plasma, the BGK-Maxwell equations can span the complete
range from the neutral two-fluid system to resistive-MHD, Hall-MHD, and ideal MHD
equations. An implicit–explicit method is employed to renew the velocity distribution
function so that the constraint of a small time step due to the large electromagnetic ac-
celeration can be removed. Moreover, the flow physics covered by the UGKS are more
general than those from either the collisionless Vlasov equation or MHD equations in the
corresponding kinetic or hydrodynamic regimes alone. The UGKS can provide a reliable
physical solution in the transitional regime as well, which has not been fully explored
before from the particle-based and MHD-based numerical methods.

Based on the conserved DUGKS, a finite-volume direct kinetic method for electrostatic
plasma has been presented [103], where the BGK-Vlasov–Poisson system is solved with
un-splitting treatment of particle transport and collision. In addition to the non-quasi-
neutral plasma simulation, based on the reformulated BGK-Vlasov–Poisson system, a
novel DUGKS has been presented [104] for multiscale plasma simulation with a wide
range of Knudsen numbers and normalized Debye length covering hydrodynamic, kinetic,
quasi-neutral, and non-quasi-neutral regimes. Numerical test cases, including plasma
sheath, linear and nonlinear Landau damping, two-stream instability, Brio–Wu shock
tube, Orszag–Tang vortex, magnetic reconnection, and bump-on-tail instability, have been
calculated in different flow regimes, which show the multiscale properties of the UGKS
and DUGKS in plasma physics simulation [42,43,103,104,129].

3.3. Computational Techniques

In this section, the computational techniques for improving the efficiency of the UGKS
in numerical simulations of high-speed gas flow will be introduced, including the implicit
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scheme, multigrid method, parallel computation, adaptive physical mesh and velocity
space, memory reduction techniques, and the novel wave–particle adaptation.

3.3.1. Implicit UGKS and Multigrid Acceleration

The implicit UGKS (IUGKS) has been developed [53,55,130] by transforming the
UGKS on a discretization scale into a semi-discrete form as is usually carried out for the
traditional CFD methods. The semi-discrete governing equations of the macroscopic flow
variables and the distribution function are

∂~wi
∂t

+
1
Vi

∑
j∈N(i)

~FijSij =~0 (60)

and
∂ fi
∂t

+
1
Vi

∑
j∈N(i)

FijSij =
gi − fi

τi
(61)

The governing equations in the semi-discrete form usually describe the instant varia-
tion of the flow field, which implies a time scale of t→ 0. Specifically, ~Fij and Fij denote the
instant macroscopic and microscopic fluxes across the cell interface ij. However, the UGKS
is constructed based on the integral solution of the kinetic model, describing the multiscale
transport process in a finite time-step, and the fluxes ~Fij and Fij are not only related to the
local physical state τ, but also depend on the mesh-size-determined time step ∆t. Therefore,
the fluxes Fij and ~Fij in Equations (60) and (61) should employ the time-averaged fluxes
over a finite time-step ∆ts instead of the instant ones for constructing the implicit UGKS,
where the time step ∆ts is used to average the time-dependent fluxes in the explicit scheme.
Considering the flow physics in a local region, ∆ts is determined by the resolution of
computational mesh and the maximum particle speed, e.g., for one-dimensional case

∆ts = CFL
∆x

max |u| (62)

In order to distinguish the time step ∆ts to average fluxes from the following numerical
time-marching step ∆t, it should be pointed out that ∆ts is only used to determine the
coefficients of the initial distribution function and equilibrium state in the flux function.

For unsteady flow evolution in a time step ∆t = tn+1 − tn, in addition to the macro-
scopic governing equation of conservative flow variables (26), the discrete governing
equations can be written as

f n+1
i − f n

i
∆t

+
1
Vi

∑
j∈N(i)

[
εFn+1

ij + (1− ε)Fn
ij

]
Sij = ε

gn+1
i − f n+1

i

τn+1
i

+ (1− ε)
gn

i − f n
i

τn
i

(63)

Since the equilibrium state gn+1
i has one-to-one correspondence to ~wn+1

i and depends
on the distribution function f n+1

i , Equations (26) and (63) result in a coupled implicit
nonlinear system. It is very difficult to directly solve the large implicit system coupling
macroscopic and microscopic governing equations, and the treatment of implicit equi-
librium state gn+1 in the collision term is important for the convergent efficiency in the
continuum regime. Zhu et al. [53,131] solved the Equations (26) and (63) in an alternative
way and used the most recent solved conservative variables to discretize the equilibrium
state in the microscopic implicit equation. Specifically, for an intermediate solution during
the alternative solving process, the governing equation can be written as(

ε

τ
(s+1)
i

+
1

∆t

)
∆ f (s)i +

ε

Vi
∑

j∈N(i)
∆F (s)

ij Sij = r(s)i (64)



Aerospace 2021, 8, 141 17 of 26

where the quantities in the ∆ form are given by ∆Q(s) = Qn+1 − Q(s), denoting the
correction of a specific variable Q. The residual on the right hand side of Equation (64) is

r(s)i =
f n
i − f (s)i

∆t
+ ε

 g̃(s+1)
i − f (s)i

τ
(s)
i

− 1
Vi

∑
j∈N(i)

F (s)
ij Sij


+ (1− ε)

 gn
i − f n

i
τn

i
− 1

Vi
∑

j∈N(i)
Fn

ij Sij

 (65)

It should be noted that the fluxes in the residuals (28) and (65) are computed the same
as that in the explicit UGKS with a time step ∆ts. g̃(s+1)

i in Equation (65) is the equilibrium

state computed from the most recently updated conservative variables ∆~w(s+1)
i in the inner

loops of solving Equation (27).
In the study of Zhu et al. [130], the one-dimensional case of advection of density

perturbation has been employed to test the temporal accuracy of the IUGKS. The time
accuracy test is conducted for the cases at Kn = 0.001, 0.01, 0.1, 1, and 10 on a uniform mesh
with 400 cells. The IUGKS achieves second-order accuracy for all cases from continuum
to free molecular flows. The unsteady Rayleigh flow induced by a moving plate with
higher temperature has been computed to validate the efficiency of the implicit scheme. It
is shown that the IUGKS can be ten times faster than the explicit scheme [130].

For steady-state solutions, temporal accuracy can be ignored, and the time discretiza-
tion of the implicit scheme could use ε = 1 for a backward Euler scheme. In [53,130], in
order to overcome the stiffness problem in the continuum flow, the macroscopic equa-
tions are solved with the implicit Euler flux to drive the convergence of the IUGKS; see
Equations (28) and (29). This makes the IUGKS efficient in the low Knudsen number cases.
In order to further improve the performance of the IUGKS for viscous flows, Yuan et
al. [132] took into account the NS terms during the macroscopic iterations. A similar idea
of driving the convergence in the continuum regimes can be found in the development of
the general synthetic iterative scheme (GSIS) [133,134]. From the study of Yuan et al. [132],
it can be found that the efficiency can be further improved by one order of magnitude on
the basis of the original IUGKS for NS solutions in the continuum limit.

In addition, Zhu et al. [135] developed the IUGKS with multigrid acceleration, which
further improves the convergence of the IUGKS for steady-flow simulations. It is commonly
known that an iterative algorithm can reduce the high-frequency errors faster than the
low-frequency ones. The multigrid method can reduce the low-frequency errors on a fine
mesh more efficiently by transitioning them to a coarser mesh, where the errors become
high-frequency ones with respect to the coarse mesh size, and can then be eliminated faster.
In the IUGKS, both the implicit systems of macroscopic and microscopic equations are
solved by the multigrid method, which consists of pre-smoothing, coarse grid correction,
and post-smoothing processes, and involves numerical interpolation between fine and
coarse grids [135]. Since the governing equation of macroscopic flow variables for implicit
iteration is nonlinear, and that of the microscopic distribution function is linear, the full
approximation storage (FAS) scheme and the correction scheme (CS) [88,89] are used to
solve the macroscopic and microscopic implicit systems, respectively.

In the study of [135], simulations of lid-driven cavity flows have been carried out
at different Knudsen numbers to validate the efficiency of the multigrid IUGKS. Cases
at three different Knudsen numbers, i.e., Kn = 10, 1, 0.075, have been tested, from which
obvious accelerating effects of the multigrid method on the IUGKS can be observed. In the
high Knudsen number cases at Kn = 10 and 1, the multigrid method is about 3 times faster
than the original implicit scheme and in the case at Kn = 0.075 the acceleration rate can be
increased by up to 8 times.
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3.3.2. Parallel Strategy

In the CFD algorithms for the Navier–Stokes equations, the domain decomposition
method is commonly used in the parallel computations. Since the kinetic solvers take
numerical discretization on both the physical space and the velocity space, the parallel
strategy is more flexible for large-scale simulations.

For the UGKS on Cartesian grids, Ragta et al. [136] adopt the parallel strategy based
on the domain decomposition, and investigate the parallelization performance up to
thousands of cores. Chen et al. [49] developed an implicit kinetic method with memory
reduction techniques, which significantly reduces the memory consumption, and the
parallel computation based on the discrete velocity distribution function is employed.
Li et al. [137] and Tan et al. [105] implemented a hybrid MPI strategy for parallel algorithms
in both physical space and velocity space, where a two-dimensional Cartesian topology is
used to arrange the physical and velocity blocks. Similarly, Jiang et al. [138] took parallel
computing with MPI for the decomposed physical mesh, and used several threads with
OpenMP in every MPI process for parallel computation of a discrete distribution function.
Parallel algorithms have also been implemented on GPU devices for a two-dimensional
UGKS [139].

In the study of Li et al. [137], the parallel speedup ratio has been tested based on a
supersonic flow over a sphere. It is shown that the parallel efficiency is around 1 up to
5832 processors, which reveals the good scalability of the parallel UGKS.

3.3.3. Adaptive Mesh

Adaptive mesh refinement (AMR) can provide better spatial discretization with fewer
grid points. For the kinetic solvers with discrete phase space, the AMR technique can be
applied in the velocity space as well [140–142]. In the study of Chen et al. [47], an adaptive
UGKS was proposed through the introduction of an adaptive quadtree structure in the
velocity space. Together with a moving mesh in the physical space, the UGKS is able to
simulate moving fluid-body interaction in the high-speed flows with a better efficiency.
Qin et al. [143] presented a simple local discrete velocity adaptation in the UGKS under
a uniform background velocity mesh, which avoids the interpolation between different
levels of velocity grids. Xiao et al. [144] replaced the discrete velocity points in the UGKS
with a continuous velocity space in the region where the NS solutions provided by the GKS
are valid. In the studies of [48,125], the unstructured mesh is adopted in the velocity space
for the DUGKS, where more discrete velocity points are arranged in the velocity regions
that enclose a large number of molecules, and fewer points are needed in the regions with
a small amount of molecules, so that the memory consumption can be reduced and the
computational efficiency can be increased. Recently, the reduced order modeling (ROM)-
based approach was introduced in the DUGKS [145] to reduce the discrete velocity space
by removing the mesh points that have a negligible effect on the calculation of moments.
With these approaches, the UGKS and DUGKS can obtain multiscale solutions with the
same accuracy and less computational cost.

With an adaptive mesh in velocity space, Chen et al. [47] computed a moving nozzle
flow with the co-existence of both continuum and rarefied regimes in a single computation.
This multiscale problem is very challenging for any single-scale-based numerical scheme.
However, this is exactly the place where the UGKS can be faithfully applied to obtain accu-
rate solutions in different regimes. For such a multiscale problem, a hybrid approach with
domain decomposition will usually be adopted [146–148]. However, for the unsteady case,
the hybrid approach cannot generally be applied due to the absence of a valid interface.

3.3.4. Memory Reduction

For rarefied flow study, a direct Boltzmann solver based on the discrete velocity distri-
bution function is a common approach to simulate the non-equilibrium flow. However,
it requires a huge memory to follow the evolution of a discrete distribution function in
a computational space with seven dimensions. This effect would become more severe
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for numerical computation of high-speed rarefied flows, where a very large region in
the velocity space has to be covered. The adaptive methods mentioned in the previous
section [47,48,145] could reduce the memory consumption and computational time through
optimization of the distribution of discrete velocity points in the velocity space. Further-
more, for steady-state simulation, a memory reduction technique was proposed by Chen et
al. [49,149] for solving the Boltzmann kinetic model equations. Yang et al. [50] applied the
memory reduction method in the implicit UGKS. Due to the fact that only the spatial con-
nection and variation take effect in a steady-state solution, the non-equilibrium distribution
function can be obtained from spatial iterations at each velocity point, therefore only the
memory for the distribution function at one discrete velocity point in the physical domain
is required, which reduces the memory cost to the same level as that in the hydrodynamic
solvers for the Euler and Navier–Stokes equations.

In the study of [49], Chen et al. computed a thermal transpiration flow in a three-
dimensional square cube with closed walls. In their computation, the spatial domain is
discretized by a structured mesh with 60× 60× 120 cells, and the velocity space employs
101× 101× 101 discrete velocity points. If the distribution function at all points in the
discrete velocity space is stored, the memory requirement would be approximately 13 ter-
abytes (TB) with double precision calculation. With the memory reduction technique, the
observed data storage for a parallel code is only 181 megabytes (MB) for each process in
a total of 128 MPI processes. The memory technique makes it possible to calculate the
three-dimensional problems using a discrete-velocities-based kinetic method on a small
cluster. However, with the significant memory reduction, the computational cost will not
be reduced in the above scheme.

3.3.5. Wave–Particle Adaptation

For rarefied gas simulations, the DSMC method is more preferable for engineer-
ing applications than the discrete velocity method, due to the fact that the stochastic
particle method takes much less computational cost than the discrete velocity method,
especially for high-speed calculations [150–152]. Compared to the discrete velocity method,
where the discrete velocities are predetermined, the stochastic particle method can be
regarded as an optimal velocity space adaptation method, because the particles collide
and change their velocity, and appear in the phase space where there should be a non-zero
distribution function.

In order to incorporate the adaptive properties of the stochastic methods, the uni-
fied gas-kinetic particle (UGKP) method has been developed [153–156] according to the
direct modeling methodology, where stochastic particles are employed to record the non-
equilibrium distribution, and the evolution processes are carried out on both the macro-
scopic and microscopic levels. The UGKP method recovers the UGKS solutions by fol-
lowing the local evolution solution of the kinetic models, which is the key to construct
a multiscale method for all Knudsen number flows. Specifically, the particle evolution
described by the gas distribution function follows

f (~x, t) = (1− e−t/τ)g(~x′, t′) + e−t/τ f0(~x− ~ut) (66)

where

~x′ = ~x + ~u

(
te−t/τ

1− e−t/τ
− τ

)
, t′ =

t
1− e−t/τ

− τ (67)

According to Equation (67), only a portion of particles can move freely in a time
step, and the others will encounter collisions with other particles during the transport
process. The free transport process can be fully resolved by tracking all the particles,
and the contribution of the particles’ free motion to the macroscopic fluxes across the cell
interface can also be recorded. Instead of moving freely within a whole time step, the
collided particles will encounter collision during a time step evolution. Since a portion
of particles will suffer many collisions during the collision process, the colliding particles
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will not be followed. Fortunately, the collective behavior of the colliding particles in the
collision process can be well modeled and followed on the macroscopic level based on the
evolution of the equilibrium state, which is only related to the macroscopic flow variables
and their gradients. Similar to the UGKS, the conservative variables can be updated first
with the fluxes contributing from the free transport and collision processes, and then the
colliding particles will be re-sampled from a local equilibrium state according to their
corresponding conservative variables.

Considering the fact that the colliding particles are re-sampled from a known equilibrium
state, there is no need to describe the equilibrium state with discrete particles, but by using
the analytic expression itself with high efficiency and low memory-consumption. Therefore, a
novel adaptive wave–particle formulation is proposed to describe the multiscale flow physics,
resulting in the unified gas-kinetic wave–particle (UGKWP) method [51,52,157–159]. It can be
found that if the colliding particles are expressed by an analytic formulation, their contribution
to the free transport and collision can be analytically computed as well. The only required
treatment for the collided particles is to sample a portion of these particles to take into account the
non-equilibrium generating from the free transport mechanism of the equilibrium distribution.
There is a competitive balance between the analytic waves and stochastic particles according to
local physics. Particles become waves due to collisions and waves transform into particles in
order to capture the partially free transport mechanism.

With the adaptive wave–particle formulation, the cost of the UGKWP method can
be reduced to a particle method in the highly rarefied flow regime, and it becomes a
hydrodynamic NS solver in the continuum regime automatically. It is a novel technique
that combines and optimizes the adaptive velocity space method [47] and GKS/UGKS
hybrid algorithm [144]. Different from the hybrid methods [146,160,161], which are based
on the domain decomposition and solver hybridization, the UGKWP method describes
the physical state by an adaptive wave–particle decomposition in each cell with a unified
treatment in the whole computational domain.

In the study of [162], hypersonic flow past a circular cylinder has been simulated to
show the capability of the UGKWP method for high-speed rarefied flow simulations. The
free stream is initialized with the monatomic gas of argon. The UGKWP method obtains
consistent solutions with the UGKS for the case at a relatively low Mach number Ma = 5,
but is one order of magnitude lower in computational cost and memory consumption.
For the case at a very high Mach number Ma = 30, since the memory requirement of the
discrete velocity points for the UGKS is unaffordable, only the comparison between the
UGKWP method and the particle method is provided. In this computation, the memory
cost of the UGKWP method is only 375 MB. The advantage of the particle method with a
natural adaptivity in the phase space is well inherited by the UGKWP method for high-
speed rarefied flow computations. In the study of Chen et al. [158], the high speed flow at
Ma = 10 over a space vehicle in the transition regime at Kn = 10−3 has been calculated to
show the efficiency and capability of the UGKWP method for simulating three-dimensional
hypersonic flow over a complex geometry configuration. The UGKWP method shows
great power to solve engineering problems involving high-speed non-equilibrium flows,
such as flow around near-space or re-entry vehicles.

4. Conclusions

In this paper, we have reviewed the development of the gas-kinetic scheme (GKS) and
the unified gas-kinetic scheme (UGKS) in the aspects of physical modeling and numerical
algorithms. Non-equilibrium flow physics, including diatomic gas with molecular rotation
and vibration, multi-component and reactive gas, and plasma, have been modeled in order
to take the real gas effects into account. The numerical efficiency and robustness of the
GKS and the UGKS have been much improved by adopting implicit scheme and multigrid
acceleration, using parallel computation and an adaptive mesh.

Specifically, the GKS is a hydrodynamic NS-solver based on the gas-kinetic theory.
With the numerical flux constructed from the integral solution of the kinetic model, it
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achieves adaptive transition between the upwind and central difference discretization in
the flux evaluation according to the local physics. Derived from the gas kinetic theory with
a gas distribution function, the GKS has a solid foundation and is more flexible for dealing
with non-equilibrium flow. With multi-dimensional properties, it can handle complex
gas flow and shows excellent performance in the high speed flow simulation. The multi-
temperature model, multiple distribution function for multi-component and reactive gas
flow, or multi-stage relaxation model for diatomic gases have been developed in the GKS
for better capturing real gas flow physics. In addition, the constitutive relationship could
be improved directly by modifying the relaxation time τ∗, so that the GKS can be enhanced
to compute low-density non-equilibrium in the near-continuum regime. However, the GKS
adopts the distribution function from the CE expansion, which is analytically expressed
by the macroscopic flow variables and their gradients, and a small deviation from the
Maxwellian equilibrium is assumed, so the capability of the GKS to capture highly non-
equilibrium flows is still limited.

By using a discrete velocity space, the UGKS can capture highly non-equilibrium
distributions, and it makes full use of the advantages of the integral solution of the kinetic
model in describing a multiscale transport process. In the UGKS, physical modeling has
been carried out to consider a diatomic gas with molecular rotation and vibration, a multi-
component gas, and plasma physics, which could provide more accurate solutions for
high-speed and high-temperature flows. With the implicit discretization and multigrid
method, the computational efficiency of the UGKS has been much improved. Parallel
strategies based on domain decomposition have been developed in both the physical and
velocity spaces, which enables the UGKS to handle large-scale computations. In order to
reduce the memory cost of discrete particle velocities, an adaptive mesh is adopted in the
velocity space. With the memory reduction technique, the memory requirement of the
UGKS can be much reduced to the level of a macroscopic solver, even without reducing
computational cost. Moreover, a novel wave–particle adaptation has been proposed,
which incorporates the advantages of the stochastic particle method and a deterministic
hydrodynamic solver. Multiscale flows at high Mach numbers with large variations of
Knudsen number in computational domain can easily be dealt with by the UGKWP.

For high-speed flow simulation, the development of the GKS and the UGKS in the
future may focus on these subjects, such as multi-component flow with large numbers of
species; non-equilibrium flow physics, including ionization and chemical reactions; and
large-scale computations using hybrid CPU-GPU systems.
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