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Abstract: 4D flight trajectory optimization is an essential component to improve flight efficiency
and to enhance air traffic capacity. this technique not only helps to reduce the operational costs,
but also helps to reduce the environmental impact caused by the airliners. This study considers
Dynamic Programming (DP), a well-established numerical method ideally suited to solve 4D flight
Trajectory Optimization Problems (TOPs). However, it bears some shortcomings that prevent the
use of DP in many practical real-time implementations. This paper proposes a Modified Dynamic
Programming (MDP) approach that reduces the computational effort and overcomes the drawbacks
of the traditional DP. In this paper, two numerical examples with fixed arrival times are presented,
where the proposed MDP approach is successfully implemented to generate optimal trajectories
that minimize aircraft fuel consumption and emissions. Then the obtained optimal trajectories are
compared with the corresponding reference commercial flight trajectory for the same route in order
to quantify the potential benefit of reduction of aircraft fuel consumption and emissions.

Keywords: 4D flight trajectory; trajectory optimization; dynamic programming; fuel-efficient; air-
craft emissions

1. Introduction

Improving aircraft operational efficiency has become a dominant topic in today’s air
transportation system, as airlines around the world have seen the price of fuel rise sharply
during the past decade. Moreover, the Air Transport Action Group (ATAG) estimated
that the aviation sector accounts for about 2% of total man-made global CO2 emissions,
including both international and domestic aviation, and about 12% of the CO2 emissions
from all transportation sources [1]. With air traffic growth forecast to increase by an average
of 4.3% per year for the next 20 years, the aviation sector will play a major role in increasing
global warming.

The increased fuel prices and environmental concerns have pushed airlines to reduce
fuel consumption and emissions and to find margins for performance improvements.
Efforts to modernize aircraft are limited by an extremely slow and expensive process
of new aircraft adoption, which can take decades. Consequently, it is important to find
different alternatives to reduce the fuel consumption and emissions in current aircraft,
which will likely share the sky with most modern aircraft in near future. One of these
alternatives is by optimizing flight trajectories and Air Traffic Control (ATC) procedures.
Jensen et al. reported that the existing flight-planning techniques are mostly suboptimal,
and most commercial flights do not fly at the optimal speed or altitude [2]. Hence, aircraft
trajectory optimization is a crucial ingredient to reduce fuel consumption and emissions in
current aircraft.

Currently, the reduction of fuel consumption and emissions of flights mostly have
been dealt with in the context of 2D and 3D trajectory optimization, which is inefficient
and far from being optimal, since actual flight plan fulfillment requires 4D navigation. 4D
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navigation appears as a solution for self-delivering to a time tolerance at a sequence of
waypoints; thus, this is necessary for reducing flight delays and for increasing predictability
for both air traffic service users and providers. The present study deals with optimal fuel-
saving and emissions reduction in the framework of 4D trajectory optimization.

The Trajectory Optimization Problem (TOP) can be formulated as an Optimal Control
Problem (OCP), which can be solved by various kinds of numerical methods. These
methods can be separated into two basic approaches: indirect and direct [3–5].

The TOP is solved by the Pontryagin Maximum Principle (PMP) in an indirect ap-
proach [6,7], where the original TOP is converted into a Boundary Value Problem (BVP)
by analytically formulating the first-order necessary condition for optimality that derived
from PMP. The main advantages of indirect methods are that they lead to high-accuracy
solutions and guarantee that the solution satisfies the optimality condition. However, they
require a good initial approximation of the co-state, which is difficult to guess [8]. Besides,
the BVPs that arise for many practical TOPs in indirect methods are quite difficult to solve,
because of the complex dynamics and constraints structure of the problem. In the early
1980s, several studies were done to solve aircraft TOPs by applying the PMP to minimize
fuel consumption [9–11].

On the other hand, the direct methods discretize the infinite-dimensional original TOP
into a finite-dimensional Nonlinear Programming (NLP) problem [12,13], which is then
solved numerically by the well-established optimization techniques. At present, the direct
methods are widely used for solving TOPs, since not only do these methods not require
an analytic expression for the necessary conditions of optimality, which can be a daunting
task for complicated nonlinear dynamics, but they also tend to have better convergence
properties over indirect methods. Another great advantage of direct methods is that they
do not need an initial guess of the co-state like the indirect methods. The direct methods
have been used extensively to solve aircraft TOPs [14–19].

Aside from direct and indirect methods, Dynamic Programming (DP) is another well-
established method to solve TOPs [20]. The numerical framework of DP is very suitable
to handle discrete-time dynamic systems with nonlinear characteristics [21]. Moreover,
the 4D waypoint representation of the flight trajectory is similar to the discretization
of the states grid system; consequently, DP is a natural numerical method to deal with
the 4D flight-trajectory optimization. Other great advantages of using DP are that it
not only guarantees an absolute (global) optimum, but it also can easily handle equality
and inequality constraints of the system. Traditional DP has many appealing features as
mentioned, and some authors have applied the method to solve aircraft TOPs [22–24]. It
is still not widely used in many practical applications due to the computational burden,
known as the curse of dimensionality, and the interpolation problem (when the trajectory
from a grid point does not reach exactly the next grid point), known as the menace of the
expanding grid.

Several studies have been done to overcome the limitations of traditional DP. Hage-
lauer and Mora-Camino presented a Soft Dynamic Programming (SDP) approach by using
a neural network to reduce the computational time of traditional DP [25]. Luus proposed
a class of DP called Iterative Dynamic Programming (IDP) that solves the menace of the
expanding grid problem and shows better performance than the traditional DP; however,
the curse of dimensionality remained [26]. Later on, IDP was extended to Single Grid-Point
Dynamic Programming (SGDP), which can be used to solve online TOPs with accuracy [27].
Miyazawa et al. proposed a Moving Search Space Dynamic Programming (MS-DP) to
reduce the computation time of traditional DP and applied it to the generation of a conflict-
free and minimum-fuel 4D optimal trajectory [28]. Harada et al. proposed a method by
using the piecewise linear approximation to overcome the limitation of the menace of the
expanding grid problem of DP [29].

The continuous analog of DP, the Hamilton–Jacobi–Bellman (HJB) approach, is also
used by some authors to solve aircraft TOPs. Khardi used the HJB approach to minimize
aircraft noise, fuel consumption, and air pollution around airports [30]. Parzani and
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Puechmorel applied the HJB approach to generate a conflict-free minimum-time aircraft
trajectory [31].

This paper proposes a Modified Dynamic Programming (MDP) approach to solve the
aircraft 4D TOP. This MDP approach reduces the computational effort and overcomes the
drawbacks of the traditional DP, which allows it to be applied in high-dimension problems
such as 4D TOP. The proposed method has been successfully applied to generate optimal
trajectories that minimize aircraft fuel consumption and emissions in the global trajectory
(i.e., climb, cruise, and descent phases). Afterward, the obtained fuel and emissions optimal
trajectories are compared with the corresponding commercial airliner flight trajectory.

The paper is organized as follows: Section 2 describes the trajectory optimization
problem, aircraft fuel consumption model, emissions models, performance index, and the
constraints. Then, Section 3 presents the traditional dynamic programming approach and
also describes the modified dynamic programming approach. Section 4 demonstrates the
simulation and results of the proposed method on fuel- and emissions-optimal trajectory
generation for commercial flight. Finally, conclusions and future work directions are
presented in Section 5.

2. Problem Statement

The main goal of this paper is to develop a Modified Dynamic Programming (MDP)
approach to solve the 4D Trajectory Optimization Problem (TOP), and to validate the
proposed method by generating fuel-optimal and emissions-optimal trajectories between
4D waypoints with fixed arrival times. A representation of a 4D trajectory is given in
Figure 1, which is defined by a set of 4D waypoints.

Figure 1. Representation of 4D trajectory.

Most of the approaches consider the waypoints defined by tridimensional coordinate
positions WPk = (xk, yk, hk)

T , where k = 0, 1, . . . , N, and do not consider the arrival time at
the waypoint WPk. By adding the arrival time restriction to the tridimensional waypoint, it
is possible to define the 4D waypoints as WPk = (xk, yk, hk, tk)

T , where xk, yk, hk, and tk are
respectively the position of the aircraft and arrival time at the waypoint WPk.

The next subsection presents the Trajectory Optimization Problem. This study is
based on minimizing fuel consumption and emissions. The aircraft fuel consumption and
emissions model are described in the next subsections, along with the performance index
that needs to be minimized.

2.1. Trajectory Optimization Problem

Trajectory optimization is a class of Optimal Control Problem (OCP) where the main
objective is to optimize a measure of performance (e.g., minimum fuel consumption,
minimum emissions, etc.) over a trajectory of a vehicle (e.g., aircraft, spacecraft, etc.) while
satisfying a set of constraints.
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Considering a nonlinear system whose dynamics is modeled by a set of ordinary
differential equations:

.
X(t) = f[t, X(t), U(t)] (1)

where t ∈ R is the time (time t ∈ [t0, t f ] is the independent variable), X(t) ∈ Rn is the state
vector, U(t) ∈ Ω ⊂ Rm is the control vector, Ω is a compact domain of feasible controls,
f : R×Rn ×Ω is a vector-valued function, and both the state and control are dependent
on t.

The general TOP is to find an admissible control U∗, and the corresponding admissible
state trajectory X∗ that optimizes the Performance Index (PI):

J = Φ
[
t f , X(t f )

]
+
∫ t f

t0

L[t, X(t), U(t)]dt (2)

This TOP may be subject to the equality ceq and the inequality cinq constraints on the
state and the control along the trajectory:

ceq[X(t), U(t)] = 0 (3)

cinq[X(t), U(t)] ≤ 0 (4)

It may also be subject to the nonlinear boundary condition Ψ, which enforces restric-
tions on the initial and final states of the system:

Ψmin ≤ Ψ
[
t0, x(t0), t f , x(t f )

]
≤ Ψmax (5)

2.2. Aircraft Dynamics Model

Generally, the aircraft system dynamics are modeled by a set of nonlinear Equations of
Motion (EOMs). In this paper, a simplified version of the Three Degrees of Freedom (3DOF)
EOMs are considered, where the state vector is represented by the position, velocity, flight
path angle, and heading of the flight vehicle.

The following differential equations are the dynamic model used to model the problem:

.
x = V cos γ cos ψ (6)

.
y = V cos γ sin ψ (7)

.
h = V sin γ (8)

.
V = u1 (9)
.
γ = u2 (10)
.
ψ = u3 (11)

where (x, y, h) is the three dimensional position of the aircraft; V, γ, and ψ are respectively
the velocity, flight path angle, and heading; and the variables u1, u2, and u3 are respectively
the acceleration, the flight path angle rate, and the heading rate. The state vector is
composed by X = [x, y, h, V, γ, ψ] and the control vector is composed by U = [u1, u2, u3].

2.3. Aircraft Fuel-Consumption Model

The Base of Aircraft Data (BADA) provides aircraft fuel consumption models. BADA
is maintained by EUROCONTROL through active cooperation with aircraft manufactur-
ers [32]. In this paper, two turbofan/turbojet engine subsonic aircraft are considered.

The fuel consumption of commercial flights depends on ambient temperature, true
airspeed, and aircraft altitude. The BADA model provides the thrust-specific fuel consump-
tion η that allows the calculation of the fuel consumption for turbofan/turbojet engines.
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The thrust-specific fuel consumption η describes the fuel efficiency of an engine design
with respect to thrust output, and is specified as a function of true airspeed VTAS as follows:

η = Cf 1

(
1 +

VTAS
Cf 2

)
(12)

where Cf 1 and Cf 2 are the thrust-specific fuel consumption coefficients specified for several
specific aircraft in the BADA Operations Performance File (OPF).

The climb fuel-flow rate FF can be calculated using the maximum climb thrust
Tmaxclimb and thrust-specific fuel consumption η as follows:

FF = η Tmaxclimb (13)

The maximum climb thrust Tmaxclimb is calculated as a function of geo-potential
pressure altitude Hp as follows:

Tmaxclimb = CTc,1

(
1−

Hp

CTc,2
+ CTc,3Hp

2
)
× (1− CTc,5(∆T− CTc,4)) (14)

where CTc,1, CTc,2, CTc,3 are the climb thrust coefficients and CTc,4, CTc,5 are the thrust
temperature coefficient specified in the BADA OPF.

To calculate the fuel-flow rate of the cruise phase of flight, a cruise fuel-flow correction
coefficient is added as follows:

FF = η TcruiseCf cr (15)

where Cf cr is the cruise fuel-flow correction coefficient. For the moment, the cruise fuel-
flow correction factor has been established for a number of aircraft types whenever the
reference data for cruise fuel consumption is available and is specified in the BADA OPF.
This factor has been set to 1 (one) for all the other aircraft models.

The cruise thrust is equal to drag in the cruise phase of flight as follows:

Tcruise = Dcruise (16)

The aerodynamic drag D is directly dependent on the air density and commonly
modeled by using the drag coefficient as follows:

D =
1
2

ρV2
TAS

CDS (17)

where ρ is the air density, VTAS is the true airspeed, CD is the drag coefficient, and S is the
wing surface area.

For different phases of flight, the drag coefficient CD is specified as a function of lift
coefficient CL as follows:

CD = CD0 + CD2(CL)
2 (18)

where CD0 is the parasite drag coefficient and CD2 is the induced drag coefficient. The
values of these coefficients vary depending on the flap configuration in different phases of
flight. The BADA provides the values of these coefficients for a number of specific aircraft
in the OPF.

During idle thrust descent, the fuel flow for turbofan/turbojet engines is specified as
a function of the geopotential pressure altitude Hp as follows:

FF = Cf 3

(
1−

Hp

Cf 4

)
(19)

where Cf 3 and Cf 4 are the descent fuel flow coefficients specified in the BADA OPF.



Aerospace 2021, 8, 135 6 of 19

2.4. Aircraft Emissions Model

Principle greenhouse gas emissions resulting from aircraft in flight that impacts the
environment most are carbon dioxide (CO2), water vapor (H2O), sulfur dioxide (SO2),
oxides of nitrogen (NOx), carbon monoxide (CO), and hydrocarbons (HC). Typically, these
aircraft emissions are modeled by the Emission Index (EI), which has units of grams of
emission per kilogram of fuel burned.

The carbon dioxide, water vapor, and sulfur dioxide emissions ECO2 , EH2O, and ESO2

of commercial aircraft can be defined by the EI of the respective greenhouse gases and fuel
burn FB as follows:

ECO2 = EICO2 FB (20)

EH2O = EIH2O FB (21)

ESO2 = EISO2 FB (22)

where EICO2 = 3155, EIH2O = 1237, and EISO2 = 0.8 are respectively the emission index of
carbon dioxide, water vapor, and sulfur dioxide in grams per kilogram and fuel burn FB in
kilograms [33]. The fuel burn can be defined as:

FB = FF× t (23)

where FF is the fuel flow and t is the time.
The emissions of NOx, CO, and HC can be modeled using the Boeing Fuel Flow

Method 2 (BFFM2). The BFFM2 uses the International Civil Aviation Organization (ICAO)
emission data bank to determine the reference emission indices, which eventually allow
the calculation of the emissions of these gases [34].

The first step to model the emissions of NOx, CO, and HC is to correct the fuel flow
by taking into account the ambient temperature, pressure, and Mach number:

FFc =

(
FF

δamb

)
θ3.8

amb e0.2M2
(24)

where FFc is the corrected fuel flow and M is the Mach number. θamb is the temperature
ratio and δamb is the pressure ratio, which can be defined as follows:

θamb =
T
T0

(25)

δamb =
P
P0

(26)

where T0 = 288.15 [K] and P0 = 101325 [Pa] are the standard atmospheric temperature
and pressure, respectively.

The BFFM2 uses the ICAO emission data bank to determine the reference emission
index REINOx , REICO, and REIHC for NOx, CO, and HC, which then can be used to
determine the emission indices as follows:

EINOx = REINOx eSHc

√√√√( δ1.02
amb

θ3.3
amb

)
(27)

EICO = REICO

(
θ3.3

amb
δ1.02

amb

)
(28)

EIHC = REIHC

(
θ3.3

amb
δ1.02

amb

)
(29)
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where SHc is the humidity correction factor, which can be calculated using specific humidity
ω as follows:

SHc = −19(ω− 0.0063) (30)

By using the emission indices of NOx, CO, and HC from Equations (27)–(29) and fuel
burn FB, the emissions of these gases can be defined as follows:

ENOx = EINOx FB (31)

ECO = EICO FB (32)

EHC = EIHC FB (33)

where ENOx , ECO, and EHC are respectively the emissions of NOx, CO, and HC in grams.

2.5. Performance Index

A Performance Index (PI) is a function that defines a system’s physical requirements
into mathematical terms. When the PI is optimized, it indicates that the system is perform-
ing in the most desirable manner.

In this study, the first Performance Index is considered to optimize the fuel consump-
tion of the aircraft, which can be defined by the following equation:

J =

t f∫
t0

(FF[h(t), V(t), γ(t)] + CI)dt (34)

where FF[h(t), V(t), γ(t)] [kg/s] is fuel flow, which can be determined using Equations (13),
(15) and (19); t [min] is flight time; and CI [kg/min] is the Cost Index [35], which is an
adjustable constant parameter that represents the cost associated with fuel burn and flight
time. For all aircraft models, the minimum value (zero) of the Cost Index results in
maximum range airspeed and minimum trip fuel, but ignores the time-related cost. When
the Cost Index is maximum, it results in minimum flight time but ignores the fuel cost. In
this PI, the Cost Index is assumed to be zero, as only the fuel cost is taken into consideration.

Principle Aircraft Emissions (AE) that impact the environment most are carbon dioxide
(CO2), water vapor (H2O), sulfur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide
(CO), and hydrocarbons (HC). In this study, the sum of all the aircraft emissions are
minimized in order to reduce the environmental impact caused by the aircraft. So, the AE
can be described as follows:

AE = ECO2 + EH2O + ESO2 + ENOx + ECO + EHC (35)

The second Performance Index that needs to be optimized to reduce the aircraft
emissions can be defined by the following equation:

JAE =

t f∫
t0

AE(t)dt (36)

Typically, these Aircraft Emissions AE are modeled by the Emission Index (EI), which
shows units of grams of emission per kilogram of fuel burned. So, Equation (36) can be
rewritten as follows:

JAE =

t f∫
t0

EIAE(t) FF[h(t), V(t), γ(t)] dt (37)

The EI of the CO2, H2O, and SO2 can be found in Section 2.4, and the EI of NOx, CO,
and HC are given in Equations (27)–(29).
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2.6. Boundary and Path Constraints

Real-world flight operates under several constraints, due to aerodynamic, structural,
and propulsive limitations, so bound constraints are imposed on the state and control
variables as follows:

hmin ≤ h(t) ≤ hmax (38)

Vmin ≤ V(t) ≤ Vmax (39)

γmin ≤ γ(t) ≤ γmax (40)

ψmin ≤ ψ(t) ≤ ψmax (41)

umin
i ≤ ui(t) ≤ umax

i , i = 1, 2, 3 (42)

3. Dynamic Programming

Dynamic Programming (DP) was first proposed by Richard E. Bellman in the 1950s,
based on a simple intuitive concept called the Principle of Optimality (PO). The PO is used
as a necessary condition of optimality to solve the Trajectory Optimization Problem (TOP)
in DP, where it splits the global optimization problem into local optimization subproblems
and explores all the feasible state candidates that satisfy the necessary conditions.

The basic approach to apply the numerical procedure of DP consists of approximating
the system differential equations of a continuous system by the difference equations and
approximating the integral in the Performance Index (PI) by a summation.

Considering a nonlinear system whose dynamics is modeled by a set of ordinary
differential equations as in Equation (1), this can be approximated by a set of difference
equations as follows:

Xk+1 = f[tk, Xk, Uk] (43)

where Xk and Uk are respectively the state and control vector with appropriate boundary
conditions at any stage k with (k = 0, 1, . . . , N − 1).

The PI of Equation (2) can be approximated by a summation as follows:

J = Φ[tN , XN ] +
N−1

∑
k=0

L[tk, Xk, Uk] (44)

This assumes that the optimal control, state, and cost are known from initial stage 0
to any stage k. Then, at any stage k + 1, the PO states that whatever the initial state and
the initial decision, in this case, Xk+1 and Uk+1, the remaining decision Uk must be optimal
with regard to the state Xk that results from the first decision Uk+1. Thus, the PI can be
rewritten as:

J∗k+1(Xk+1) = min
Uk+1

[L[tk+1, Xk+1, Uk+1] + J∗k (Xk)] (45)

Equation (45) is the mathematical form of PO; it is also known as the functional
equation of DP [36], where J∗k+1 represents the cost of the optimal path from initial stage
0 to any stage k + 1, and J∗k is the optimal cost from initial stage 0 to any stage k. DP has
many appealing features to solve the TOP as follows:

• The solution obtained by the DP is guaranteed to be the absolute (global) optimum, as
the method uses direct search to solve the recurrence equation.

• The numerical framework of DP is ideally suited to handle equality or inequality
constraints and nonlinear characteristics of the system.

• DP splits a complex optimization problem into a sequence of simple optimization
subproblems; this stage-by-stage optimization procedure is ideally suited for digi-
tal computers.

Although DP has many appealing features, it is not widely used in many practical
applications due to the computational burden (the curse of dimensionality) and the inter-
polation problem (the menace of the expanding grid). However, the proposed Modified
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Dynamic Programming (MDP) approach can be used to resolve these limitations and can
be used to successfully solve 4D flight TOP. This is described in the next subsection.

Modified Dynamic Programming

This subsection proposes a Modified Dynamic Programming (MDP) approach to
solve the flight Trajectory Optimization Problem (TOP). The computational procedure of
MDP greatly reduces the computational burden of the traditional DP and resolves the
limitation of the menace of the expanding grid problem while retaining its appealing
features. Similar to the traditional DP approach, the MDP approach is also based on the
application of Bellman’s Principle of Optimality (PO) concept, which allows it to split the
complex optimization problem into a sequence of simple optimization subproblems and
solve the problem stagewise. There are mainly two basic differences between the traditional
and modified approaches; they are the reduction of search space and the determination of
the control values in each stage.

The MDP approach is based on the reduction of grid points at each stage, which in turn
reduces the search space and required computational time. The reduction is accomplished
by considering a block of grid points in each stage, instead of considering the whole state
space of all possible grid points, where the block in each stage only contains the grid points
that are reachable from the grid points of the block in the previous stage. Assuming that
the initial and final conditions of the problem are known, the block of the first stage only
contains the grid point of the initial or final state, depending on the manner (i.e., forward
or backward) of the computation procedure. Another feature of the proposed MDP is that
instead of applying random quantized control values at any stage, the MDP approach
generates the control values inside the allowable range that leads the states from a grid
point to exactly a grid point at the next stage. This generation of control values eliminates
the limitation of the menace of the expanding grid, as it guarantees reachable grid points
for the states at any stage. However, because this approach does not consider all the
possible quantized states and control values, it is not possible to guarantee global optimum.
However, the proposed MDP approach can successfully find the optimal trajectory within
the considered region of search space and can be used to solve the real-time optimal
trajectory generation problem.

Like the traditional DP, the numerical procedure of MDP also consists of approximat-
ing the system differential equations of a continuous system by the difference equations
and approximating the integral in the Performance Index (PI) by a summation.

The forward MDP computational procedure to solve the problem outlined in
Equations (43) and (44) is described below:

1. Define the initial condition X0 and final condition XN of the problem.
2. Starting at the stage k = 0, calculate the minimum range of each state variable

xi, k+1,min and the maximum range of each state variable xi, k+1,max at the stage k + 1
that are reachable from the initial state X0, where the number of state variables is
(i = 1, 2, . . . , n).

3. Define the block of grid points at the stage k + 1.

Bk+1 ∈ [Xk+1,min, Xk+1,max] (46)

The states Xk+1 inside the block Bk+1 are considered the admissible states.

4. Generate the number of grid points for each state variable si, k+1, inside the block
Bk+1 at the stage k + 1, as follows:

si, k+1 =

[
xi, k+1,max − xi, k+1,min

∆xi, k+1

]
+ 1 (47)
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where the interval between grid points in each state variable ∆xi, k+1 is selected such

that the ratio
[

xi, k+1,max−xi, k+1,min
∆xi, k+1

]
is an integer. The total number of grid points at the

stage k + 1 is sk+1 =
n
Π

i=1
si, k+1.

5. Generate the trail control values for each control variable uj, k ∈ Ω that lead the state
variables from a grid point at the stage k to exactly another grid point at the stage
k + 1, where Ω is a compact domain of feasible controls, with (j = 1, 2, . . . , m).

6. Now at the stage k, for each admissible states of Xk at this stage, try all the trail control
values and choose the control that optimizes the PI Equation (44), and store the value
of control and performance index to use in the next steps.

7. Step forward at the stage k + 1, then again calculate the minimum range of each state
variable xi, k+2,min and maximum range of each state variable xi, k+2,max at the stage
k + 2 that are reachable from the admissible states of Xk+1, and repeat the procedure
from step 3 to step 5. Then, again for each admissible state of Xk+1 at this stage k + 1,
try all the trail control values. Now, by using Bellman’s PO as the traditional DP
method, the optimal control and optimal value of the performance index from the
previous stage for each admissible states Xk+1 can be used to calculate the values of PI
from the initial stage k = 0 to the stage k + 2. Compare the values of PI for each state
x-grid point and store the value of control that optimizes it along with the value of PI.

8. Repeat the procedure until the last stage N, where the trajectory reaches the final
condition XN . This stage has only a single grid point, since the final condition is
specified. Store the control policy that optimizes the performance index and store the
corresponding X-trajectory.

Figure 2 illustrates the stagewise optimization procedure of the MDP approach. A
problem where the system has 2 state variables X = [x1, x2] is shown in the figure. The
initial state X0 and final state XN are shown by the red dot points at the initial stage k = 0
and final stage k = N.

Figure 2. Stagewise optimization procedure of the modified dynamic programming approach.

The dark blue dotted points in Figure 2 are all the grid points in the full state space.
The highlighted grey area in each stage is the block of grid points in that stage, which
is defined by the state space that is reachable from the admissible states of the previous
stage. Only the grid points inside this highlighted grey area are considered for the MDP
optimization process. This reduction in search space in the optimization procedure reduces
the computational space and time complexity. Figure 2 also illustrates the control values
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that are being generated in the stage k + 1 in light blue, which guarantees that the states
from a grid point in a stage k + 1 reach another grid point in the next stage k + 2.

4. Simulation and Results

This section presents the simulation and results of the aircraft fuel and emissions
optimal trajectories generated by the Modified Dynamic Programming (MDP) approach
for two case studies. The first case study is based on obtaining the fuel optimal trajectories
of a commercial flight from Lisbon to Paris. The second case study is based on obtaining
the minimum aircraft emissions trajectories of a commercial flight from Lisbon to Munich.

In both cases, the optimal trajectories were compared with a reference commercial
flight trajectory for the same route. The flight information was taken from the FlightAware
website (https://flightaware.com; accessed on 09 December 2019 (1st case study) and
29 December 2020 (2nd case study)). This website allows tracking a flight online, and the
flight data are available for free. For each flight, the aircraft type, time, position, orientation,
speed, and altitude are provided. However, the website does not provide the take-off
weight of the aircraft. Since the same model is used to calculate the fuel consumption
and emissions of both commercial flight trajectory and proposed optimal trajectory, the
model error does not directly affect the difference in fuel consumption and emissions. The
analysis of the simulation was done using Python 3.7.

4.1. Fuel-Optimal Trajectory

In the first case study, a flight from Lisbon to Paris and a twinjet aircraft was considered
to analyze the fuel-optimal trajectories. In this study, the reference mass of this aircraft
was considered as the take-off weight, which was 60,000 kg, and it was assumed there
was no wind condition. The performance operational data of the aircraft is provided in
Appendix A Table A1. To determine the potential benefit of reduction of fuel consumption,
the obtained fuel optimal trajectory was compared with a commercial flight trajectory for
the same route. The constraints of the case study were selected according to the reference
commercial flight trajectory for the same route as shown in Table 1.

Table 1. Constrains of the flight of the case study.

Altitude (m) : 1000 ≤ h(t) ≤ 12500
True airspeed (m/s) : 120 ≤ V(t) ≤ 253
Flight Path Angle (rad) : −0.1 ≤ γ(t) ≤ 0.13
Heading Angle (rad) : 0.4 ≤ ψ(t) ≤ 1.5

In this case study, the intervals between the states grid points (x, y, h) were ∆x = 1000 m,
∆y = 1000 m, and ∆h = 50 m, and the interval between the stages was ∆t = 60 s.

This case study considered the global trajectory, which consists of the climb, cruise,
and descent phases of flight. The initial and final waypoints of the problem were set
identical to the initial and final waypoint of the reference commercial flight trajectory. The
initial and final 4D waypoints (x, y, h, t) are shown in Table 2.

Table 2. Initial and final waypoints of the reference commercial trajectory.

Waypoint x(m) y(m) h(m) t(s)

Initial 4,912,063.702 −784,235.333 1050 0
Final 4,193,076.371 227,771.503 1550 7260

Figures 3–5 show the comparison between the fuel-optimal and reference commercial
trajectories, where the orange line represents the time history of the optimal trajectory and
the blue line represents the time history of reference commercial trajectory as exported
from FlightAware.

https://flightaware.com
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Figure 3. Comparison of reference and fuel optimal 3D trajectories.

Figure 4. Cont.
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Figure 4. Comparison of reference and fuel-optimal trajectories: (a) true air speed vs. time; (b) flight path angle vs. time;
(c) heading vs. time; (d) control u1 vs. time; (e) control u2 vs. time; and (f) control u3 vs. time.

Figure 5. Comparison of fuel-flow rate vs. time of reference and fuel-optimal trajectory.

Figure 3 shows the three-dimensional (x, y, h) positions of the reference and optimal
global trajectories, where the aircraft reached the Top of Climb (ToC) at 1020 s and the
Top of Descent (ToD) at 5100 s in the optimal trajectory. The cruise altitude of the optimal
trajectory was 12,500 m, with a constant speed of 216 m/s.

Figure 4a–c show the time history of the true airspeed, the flight path angle, and the
heading angle between the reference and optimal trajectories, respectively. Figure 4d–f
represent the time history of controls u1, u2, and u3 of the trajectories, respectively. Figure 5
shows the aircraft fuel-flow rate comparison between the trajectories.

Table 3 compares the fuel consumption of the reference and fuel-optimal trajectories.
The results suggested that the fuel-optimal trajectory reduced the fuel consumption by
439.326 kg, which was an approximately 10.1% reduction of aircraft fuel consumption by
flying the optimal trajectory.

Table 3. Fuel consumption of reference and fuel optimal trajectories.

Parameter Reference Trajectory Optimal Trajectory

Fuel Consumption (kg) 4332.239 3892.913
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4.2. Emissions-Optimal Trajectory

In the second case study, a flight from Lisbon to Munich and a twinjet aircraft were
considered to analyze the emissions-optimal trajectories. In this study, the reference mass
of this aircraft was considered as the take-off weight, which was 64,000 kg, and it also
was assumed there was no wind condition. The performance operational data and the
reference emissions indexes of oxides of nitrogen, carbon monoxide, and hydrocarbons of
the aircraft are provided in Appendix A Table A2. To determine the potential benefit of
reduction of aircraft emissions, the obtained emissions-optimal trajectories were compared
with a commercial flight trajectory for the same route. The constraints of the case study
were selected according to the reference commercial flight trajectory for the same route as
shown in Table 4.

Table 4. Constrains of the flight of the case study.

Altitude (m) : 2000 ≤ h(t) ≤ 11850
True airspeed (m/s) : 135 ≤ V(t) ≤ 250
Flight Path Angle (rad) : −0.06 ≤ γ(t) ≤ 0.15
Heading Angle (rad) : 0.8 ≤ ψ(t) ≤ 1.6

The intervals between the states grid points (x, y, h) were ∆x = 1000 m, ∆y = 1000 m,
∆h = 50 m, and the interval between the stages was ∆t = 60 s. This case study considered
the global trajectory consisting of all three climb, cruise, and descent phases of flight.
The initial and final waypoints of the problem were set identical to the initial and final
waypoints of the reference commercial flight trajectory. The initial and final 4D waypoints
(x, y, h, t) are shown in Table 5.

Table 5. Initial and final waypoints of the reference commercial trajectory.

Waypoint x(m) y(m) h(m) t(s)

Initial 4,912,599.596 −781,419.581 2100.0 0
Final 4,163,996.876 882,046.951 2000.0 8820

Figures 6–8 show the comparison between the emissions-optimal and reference com-
mercial trajectories, where the orange line represents the time history of the optimal
trajectory and the blue line represents the time history of reference commercial trajectory
as exported from FlightAware.

Figure 6. Comparison of reference and emissions-optimal 3D trajectories.
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Figure 7. Comparison of reference and emissions-optimal trajectories: (a) true air speed vs. time; (b) flight path angle vs.
time; (c) heading vs. time; (d) control u1 vs. time; (e) control u2 vs. time; and (f) control u3 vs. time.

Figure 6 shows the three-dimensional (x, y, h) position of the reference and optimal
global trajectories, where the aircraft reached the ToC at 780 s and the ToD at 7020 s in
the optimal trajectory. The cruise altitude of the optimal trajectory was 11,850 m, with a
constant speed of 216 m/s.

Figure 7a shows the comparison of true airspeed between the trajectories. Figure 7b,c
show the time history of the flight path angle and heading angle between the reference and
optimal trajectories. Figure 7d–f represents the time history of controls u1, u2, and u3 of the
trajectories, respectively. Figure 8 shows the aircraft emissions rate comparison between
the trajectories.
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Figure 8. Comparison of emissions rate vs. time of reference and emissions-optimal trajectory.

The aircraft emissions of the reference and emissions-optimal trajectories are presented
in Table 6. The emissions of CO2, H2O, and SO2 were calculated using Equations (20)–(22),
and the emissions of NOx, CO, and HC were calculated using Equations (31)–(33). Based
on the results shown in Table 6, the aircraft emissions were 2730.551 kg less in the optimal
trajectory, which was an approximately 10.99% reduction of aircraft emissions by flying the
emissions-optimal trajectory.

Table 6. Aircraft emissions of reference and emissions-optimal global trajectories.

Emission Gases Reference Trajectory(kg) Optimal Trajectory(kg)

Carbon dioxide (CO2) 17,765.477 15,812.284
Water vapor (H2O) 6965.418 6199.618

Sulfur dioxide (SO2) 4.505 4.009
Oxides of nitrogen (NOx) 89.767 79.857
Carbon monoxide (CO) 8.99 8.048

Hydrocarbons (HC) 1.998 1.788

Total 24,836.155 22,105.605

5. Conclusions

In this paper, a Modified Dynamic Programming (MDP) approach was proposed
to solve the 4D Trajectory Optimization Problem (TOP). The proposed MDP approach
addressed the two serious drawbacks of traditional DP. It reduced the first drawback of the
curse of dimensionality by limiting the search space at each stage and considering only
the grid points of that reduced search space. The second drawback of the menace of the
expanding grid also was solved by the MDP approach by generating the control values
inside the allowable range. This generation of the control values guaranteed reachable grid
points for the states at any stage.

The proposed MDP approach was applied to two case studies to validate its appli-
cability. In the first case study, the MDP was applied to generate optimal trajectories that
minimized aircraft fuel consumption. The generated fuel-optimal trajectories were com-
pared to the corresponding reference airliner trajectories. The results suggested that the
optimal trajectories improved the flight efficiency by reducing fuel consumption by 10.1%
over the reference airliner flight trajectory. In the second case study, the MDP approach
was applied to generate an aircraft emissions-optimal trajectory. The results suggested that
the optimal trajectories reduced aircraft emissions by a margin of 10.99% over the reference
airliner flight trajectory.
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This new modified approach of DP has the potential to become one of the core com-
ponents of a future autonomous air transportation system, as the numerical examples
demonstrated it could successfully generate fuel- and emissions-optimal trajectories with lit-
tle computational effort, which implies it can also be applied to online trajectory generation.

Future work will include consideration of the dynamic weather information and air
traffic regulation in the trajectories. In addition, consideration of other performance indexes
to reduce the environmental impact caused by airlines, such as noise emissions, would be
of interest.
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Appendix A. Performance Operational Data

Table A1. Performance operational data of aircraft A1.

Performance Parameters Value Units

Reference mass mref 60,000 kg
Reference wing surface area s 124.65 m2

Parasitic drag coefficient (cruise) CD0, CR 0.0235 N/A
Induced drag coefficient (cruise) CD2, CR 0.0445 N/A

1st maximum climb thrust coefficient CTc,1 145,730 N
2nd maximum climb thrust coefficient CTc,2 55,638 ft
3rd maximum climb thrust coefficient CTc,3 0.14200 × 10−10 1/ft2

1st thrust temperature coefficient CTc,4 10.7 K
2nd thrust temperature coefficient CTc,5 0.0075 1/K

1st thrust-specific fuel consumption coefficients C f 1 0.9468 kg/(min·kN)
2nd thrust-specific fuel consumption coefficients C f 2 0.1000 × 1015 knots

1st descent fuel-flow coefficients C f 3 11.031 kg/min
2nd descent fuel-flow coefficients C f 4 54,252 ft

Cruise fuel-flow correction coefficient C f cr 0.9737 N/A

Table A2. Performance operational data of aircraft A2.

Performance Parameters Value Units

Reference mass mref 64,000 kg
Reference wing surface area s 122.6 m2

Parasitic drag coefficient (cruise) CD0, CR 0.024 N/A
Induced drag coefficient (cruise) CD2, CR 0.0375 N/A

1st maximum climb thrust coefficient CTc,1 136,050 N
2nd maximum climb thrust coefficient CTc,2 52,238 ft
3rd maximum climb thrust coefficient CTc,3 2.6637 × 10−11 1/ft2

1st thrust temperature coefficient CTc,4 10.29 K
2nd thrust temperature coefficient CTc,5 0.005845 1/K

1st thrust-specific fuel consumption coefficients C f 1 0.94 kg/(min·kN)
2nd thrust-specific fuel consumption coefficients C f 2 100,000 knots

1st descent fuel-flow coefficients C f 3 8.89 kg/min
2nd descent fuel-flow coefficients C f 4 81,926 ft

Cruise fuel-flow correction coefficient C f cr 1.06 N/A
Reference emission index of oxides of nitrogen REINOx 21.1 g/kg
Reference emission index of carbon monoxide REICO 0.9 g/kg

Reference emission index of hydrocarbons REIHC 0.2 g/kg
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