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Abstract: Aircraft trajectory prediction is the basis of approach and departure sequencing, conflict
detection and resolution and other air traffic management technologies. Accurate trajectory predic-
tion can help increase the airspace capacity and ensure the safe and orderly operation of aircraft.
Current research focuses on single aircraft trajectory prediction without considering the interaction
between aircraft. Therefore, this paper proposes a model based on the Social Long Short-Term
Memory (S-LSTM) network to realize the multi-aircraft trajectory collaborative prediction. This
model establishes an LSTM network for each aircraft and a pooling layer to integrate the hidden
states of the associated aircraft, which can effectively capture the interaction between them. This
paper takes the aircraft trajectories in the Northern California terminal area as the experimental data.
The results show that, compared with the mainstream trajectory prediction models, the S-LSTM
model in this paper has smaller prediction errors, which proves the superiority of the model’s perfor-
mance. Additionally, another comparative experiment is conducted on airspace scenes with aircraft
interactions, and it is found that S-LSTM has a better prediction effect than LSTM, which proves the
effectiveness of the former considering aircraft interaction.

Keywords: air traffic management; multi-aircraft trajectory prediction; Long Short-Term Memory;
pooling layer; social hidden state

1. Introduction

With the increasing flight density in the airspace, how to make full use of the limited
airspace resources has become increasingly urgent. Therefore, the industry has increased
the research and development of intelligent air traffic management (ATM) tools. The
purpose is to provide controllers with intelligent auxiliary decision-making tools to help
detect and resolve conflicts, order approach and departure, monitor abnormal aircraft
behavior, and manage traffic. However, these automated decision support systems rely on
high-precision and reliable aircraft trajectory prediction. As the current ATM mode based
on airspace sectors has certain limitations in predictability, efficiency, and safety, it cannot
meet future high-density traffic requirements. With the development of NextGen [1] in
the United States and Single European Sky ATM Research (SESAR) [2] in Europe, a new
trajectory-based operation (TBO) ATM mode has been promoted. The mode shares the
dynamic information of the trajectory among air traffic control, airlines, and aircraft based
on the accurate 4D aircraft trajectory prediction to realize collaborative decision-making
between flight and control. This will help reduce the workload of controllers, increase the
airspace capacity, improve airspace resource utilization, and ultimately achieve effective
management in high-density, large-flow, and small-interval airspace. In general, trajectory
prediction plays a vital role in the ATM system, whether in the current sector-based
operation or the future TBO.

Aircraft are susceptible to flight intentions, control behaviors, unstable weather condi-
tions, and other uncertain factors during flight. Therefore, they are discussed to improve
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the accuracy and reliability of aircraft trajectory prediction. Usually, the uncertain factors
will change the flight state or planned trajectory of the affected aircraft. For example, when
convective weather or flow control occurs in a certain local area, it will affect the aircraft
that originally planned to fly over the area, forcing them to deviate from the planned
trajectory. In other words, the uncertain factors are indirectly reflected in the changes
in the aircraft’s flight state and planned flight trajectory. If the relationship between air-
craft trajectories can be considered when constructing the trajectory prediction model, the
uncertain factors are indirectly considered. Figure 1 shows a schematic diagram of the
interaction between multiple aircraft in certain airspace. It can be seen from the figure that
the aircraft may be affected by aircraft within a certain range in front of them rather than
the rear, whether it is at the same or different altitudes. For example, the aircraft ahead
does not follow the prevailing trajectory, which means that some uncertain factors (such as
convective weather) have appeared ahead. If this information can be used to predict the
current aircraft trajectory, it will help improve prediction accuracy.

Figure 1. Aircraft network diagram.

The Long Short-Term Memory (LSTM) network can effectively capture the long-
term dependencies of sequences and has been successfully applied to various time series
prediction tasks in recent years [3–5]. In previous research, we proposed a single aircraft
trajectory prediction model based on deep LSTM, which did not consider the interaction
between aircraft [6]. This paper will consider the interaction between aircraft and establish
a multi-aircraft trajectory collaborative prediction model based on Social Long Short-Term
Memory (S-LSTM). Since the hidden state in the LSTM network structure represents
the spatio-temporal characteristics of aircraft, S-LSTM establishes an LSTM network for
each aircraft and establishes a pooling layer to share the hidden state information of the
associated network, which can effectively capture the interactive information between
the aircraft. Therefore, the model is employed for the research-at-hand. In addition, the
method in this paper is a 4D trajectory generation model of multiple aircraft. The input
sequence is the historical trajectory of multiple aircraft, and the output is the corresponding
predicted value of the future trajectory.
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2. Related Work

In recent years, many scholars have performed a great deal of research on aircraft
trajectory prediction. Now, there are three mainstream prediction methods for this problem:
state estimation models, kinetic models, and machine learning models.

2.1. State Estimation Models

The state estimation models construct the state transition matrix in the state equation
through the motion equation. They do not involve the aircraft’s mass, force, and other
performance parameters but study the relationship between the position at each time point
in the future and the historical position, velocity, acceleration, angle, etc. They are also
divided into single-model estimation and multi-model estimation according to different
assumptions about whether the aircraft has a single mode or multiple flight modes in
the prediction process. In single-model estimation, the Kalman filter (KF) algorithm [7,8],
particle filter algorithm [9], hidden Markov model (HMM) [10–13], and their various
improved algorithms [14] have been applied in trajectory prediction. When using the KF
algorithm for short-term trajectory prediction, Chatterji [7] used the current ground speed,
trajectory angle estimation and kinematic equations to propagate the current position
estimate forward to obtain the future estimate. Although single-model estimation models
have been widely used and achieve certain results, they cannot estimate the hybrid system
well with different modes. The aircraft trajectory prediction problem can be regarded as a
Stochastic Linear Hybrid System (SLHS) estimation problem, which needs to be solved
by the multi-model estimation. As an important method to solve the SLHS estimation
problem, the computational cost of the multi-model algorithm increases exponentially
with time. Therefore, the generalized Pseudo-Bayes algorithm, interacting multiple model
(IMM), and other suboptimal algorithms are proposed. In particular, the IMM algorithm
has excellent performance and low computational cost and has been successfully applied to
trajectory prediction [15]. However, the standard IMM algorithm assumes that the residual
is zero mean and calculates the mode transition probability through the likelihood function.
This assumption is usually invalid due to the incompleteness of the mode set in the IMM
algorithm. Therefore, many researchers have proposed improved multi-model estimation
methods [16–19]. Zhang et al. [17] proposed an improved IMM algorithm, abandoning the
assumption that the likelihood function is a zero-mean Gaussian function, and defined a
new likelihood function to update the flight mode probability. In addition, the multi-model
estimation models the flight mode transition as a Markov process with a constant mode
transition probability matrix, independent of continuous state variables [15]. However, the
behavior of an aircraft consists of discrete transitions between many flight modes (discrete
states) and continuous motion (continuous state) corresponding to specific flight modes.
Therefore, many documents try to model the transition probability of aircraft flight mode
depending on its continuous state (such as position, speed, etc.) [20–23]. Seah et al. [20,21]
proposed a multi-model KF algorithm based on the continuous state-dependent mode
transition matrix to solve the aircraft trajectory prediction.

2.2. Kinetic Models

The kinetic models mainly study the relationship between the force acting on the air-
craft and its motion. They are usually expressed as a set of differential equations. Given the
current state of the aircraft, meteorological conditions, and aircraft intentions, the continu-
ous points of the future trajectory can be predicted by integrating differential equations in a
time interval. Therefore, this method integrates aircraft intention, performance parameters,
and meteorological environment data for calculation. The point mass model (PMM) is
the most widely used to model aircraft motion in a fast simulation environment [24–26].
Fukuda et al. [24] used PMM to model aircraft motion, and the work rate of force acting on
aircraft was equal to the increased rate of potential energy and kinetic energy. Since the
motion of the aircraft is an SLHS with different flight modes, it is more reasonable to estab-
lish motion equations corresponding to different flight modes. Therefore, many scholars
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use PMM to predict under SLHS [27–29]. Unified and comprehensive intent information
is necessary for trajectory prediction. At present, related studies have expanded and im-
proved the flight script to provide a formalized aircraft intent description language [30–33].
Félix et al. [30] designed a computer formal language to express aircraft intentions, which
combined standard operating procedures, airline operating preferences, and the actual
pilot’s decision-making process. Aircraft performance parameters provide the aircraft
performance data required by the kinetic models. These parameters are related to the type
of aircraft, the current motion state of the aircraft (position, speed, weight, etc.), the current
atmospheric conditions, and aircraft intention. Aiming at the problem that performance
parameters are difficult to obtain, there are some related studies [34,35]. Thipphavong
et al. [34] proposed a universal real-time adaptive weighting algorithm to improve the
accuracy of climb trajectory prediction. It dynamically adjusted the weight of the aircraft in
the model through the available radar trajectory and weather data without any additional
information from the aviation operation center or the aircraft. Meteorological data provide
information related to the environment, such as temperature, wind direction and speed, air
pressure, gravity, and magnetic force changes. Presently, the most popular meteorological
databases include the European Centre for Medium-Range Weather Forecasts (ECMWF)
and the North American Mesoscale Forecast System (NAM). When environmental informa-
tion cannot be obtained, estimated values are sometimes used instead. Given the problems
of diverse meteorological data formats and sources, some documents have researched the
application of specific types of data in trajectory prediction problems.

2.3. Machine Learning Models

The machine learning models mainly mine the laws of trajectory change over time
from a large amount of data and use them to predict trajectory. On the one hand, they
mainly rely on the similarity of trajectories to mine representative trajectory patterns. On
the other hand, they are based on the reconstruction of input and output space [26]. Here,
they are divided into regression models, neural networks, and other methods.

At present, the commonly used regression methods in trajectory prediction include
local weighted linear regression (LWLR), local weighted polynomial regression, etc. Leege
et al. [36] took the actual trajectory and meteorological data as the model’s input and used
the stepwise regression method to predict the arrival time. Hamed et al. [37] used standard
linear regression models, neural networks, and local weighted regression to predict the
height of aircraft climb, and then used principal component analysis to reduce the input
data’s dimensionality. Tastambekov et al. [38] established a local linear regression model for
trajectory prediction based on historical radar trajectory data without using any physical
or aviation parameters.

Since neural networks (NNs) can approximate any continuous mapping well, it
is a suitable improvement method compared to general linear regression. At present,
more and more researchers use NNs to deal with trajectory prediction problems [39–52].
Commonly used methods include Back Propagation (BP) NN, LSTM and Deep Neural
Networks (DNNs), etc. NNs usually take aircraft position and related information as
input features and output the probability distribution of the 3D position at multiple points,
estimated flight time, or trajectory in the future. Fablec et al. [39] used NN to solve vertical
trajectory prediction in the two cases of trajectory prediction during aircraft flight and
trajectory generation before aircraft takeoff. Shi et al. [40] proposed a trajectory prediction
model based on LSTM that considered the correlation between adjacent states of the
trajectory sequence. Wu et al. [45] studied a 4D trajectory prediction model based on
BP NN. Hang et al. [47] proposed establishing a hybrid model of DNN and LSTM and
used DNN single-step prediction to correct LSTM multi-step prediction. Aiming at the
weather-related aircraft trajectory prediction, Pang et al. [49] proposed a new conditional
generation confrontation network method and used convolutional layers to extract weather
features. Pang et al. [48] used Dropout as a Bayesian approximate variational inference
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to implement a Bayesian neural network, and finally output a predicted trajectory with a
confidence interval.

In addition to regression models and neural networks, other machine learning meth-
ods have also appeared [53–55], such as genetic algorithm (GA), ant colony algorithm,
and support vector machine (SVM), etc., as a separate category here. Current trajectory
prediction also uses clustering algorithms [56–59], such as K-means, Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), etc., and usually designs appropriate
trajectory similarity metrics to improve the clustering effect. Tang et al. [56] proposed an
adaptive clustering method that combines the time deviation edit distance similarity mea-
surement index with the K-means algorithm to improve the nominal flight profile accuracy.
Combining clustering with machine learning prediction methods can significantly improve
the prediction accuracy of large-scale clusterable data sets. Therefore, the combination of
machine learning and clustering for trajectory prediction is a valuable and meaningful
research topic. Barratt et al. [58] studied a probabilistic trajectory generation model in
the terminal airspace. They used K-means to cluster trajectories and then constructed
a Gaussian mixture model from the clusters to achieve accurate trajectory inference. Le
et al. [59] proposed a sector-based short-term trajectory prediction method, which divided
multiple trajectory clusters according to the spatial behavior of the historical trajectory in
the sector and used the random forest algorithm to train the corresponding model.

The first two methods usually require explicit modeling of the aircraft’s real-time
state, aircraft performance, and procedures, but most model parameters are not always
available at all times (such as aircraft take-off quality, pilot operation differences, etc.),
which makes them have certain limitations in practical applications. In contrast, machine
learning models do not require explicit modeling of aircraft performance, procedures,
and airspace. They mainly learn the spatiotemporal characteristics and operating rules of
trajectory information from a large amount of historical aircraft trajectory data. They are
constructed under weak or even no assumptions. In some cases, machine learning models
can show better prediction performance.

The current studies mainly focus on a single aircraft’s trajectory, hardly consider the
interaction between multiple trajectories and predict multiple trajectories simultaneously,
which is likely to affect the accuracy of machine learning methods. Faced with this situation,
it is necessary to research multiple aircraft trajectory prediction problems.

Inspired by [60], Alahi et al. proposed an S-LSTM model to predict pedestrians’ trajec-
tories in crowded spaces, which uses the “social pool” layer to connect each individual’s
LSTM network to share their information. In view of the good effect of the model in pedes-
trian trajectory prediction, this paper tries to apply it to multi-aircraft trajectory prediction.
Compared with previous research work on aircraft trajectory prediction, our research has
the following innovations: (1) It considers the interaction between adjacent trajectories;
(2) It converges multiple aircraft trajectories into a predictive model, and it can generate
multiple 4D trajectories simultaneously given past information.

2.4. Method Overview

In the multi-aircraft trajectory prediction problem, the number of aircraft in certain
airspace gradually changes with time. The number of aircraft at time t is N(t), the state
vector (longitude, latitude, altitude, speed and angle) of the n-th aircraft is Xn

t , and the
position (longitude, latitude and altitude) of the n-th aircraft is Yn

t . Since each aircraft enters
the airspace at a different time, the length of each aircraft’s trajectory sequence is different.
Assuming that the n-th aircraft enters the airspace at time τ, the state sequence and 4D
trajectory sequence of the n-th aircraft at Wi time t are Sn

τ,t =
{

Xn
τ , · · · , Xn

t−1, Xn
t
}

and
Pn

τ,t =
{

Yn
τ , · · · , Yn

t−1, Yn
t
}

, respectively. The goal of this paper is to predict the future 4D
trajectory based on the historical state information of multiple aircraft, that is, to construct
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a predictor F that maps the set of historical state sequences
{

S1
τ1,t, S2

τ2,t · · · , SN(t)
τN(t),t

}
to{

P1
t,t+∆T , P2

t,t+∆T · · · , PN(t)
t,t+∆T

}
:

{
S1

τ1,t, S2
τ2,t · · · , SN(t)

τN(t),t

}
F→
{

P1
t,t+T , P2

t,t+T · · · , PN(t)
t,t+T

}
(1)

where T represents the forecast duration.
It can be seen from Equation (1) that each aircraft uses not only its historical state

information but also related multiple aircraft state information. This paper will build a
multi-aircraft trajectory prediction model under the framework of the deep LSTM theory.
The main challenges are as follows:

(a) In order to simultaneously predict the 4D trajectory of multiple aircraft at any time, it
is necessary to encode the aircraft state sequence dynamically. On the one hand, each
aircraft enters and exits the airspace at different time points. How to dynamically
update the historical state information input to the model is problematic. On the
other hand, inputting the state sequence of multiple aircraft as a whole will cause the
input dimension to be too high. How to balance the model’s generalization ability
and computational efficiency is another problem.

(b) How to reasonably consider the interaction between aircraft in the airspace is another
significant difficulty in constructing a high-precision trajectory prediction model.
Usually, during aircraft flight, the controller will perform conflict resolution based on
the aircraft’s flight trend, specified minimum interval, and sector capacity to avoid
collisions between aircraft or seek a balance between sector demand and capacity. For
example, controllers sometimes designate aircraft to deviate from planned routes to
relieve congestion in the airspace sector. This kind of trajectory deviation cannot be
predicted by observing an aircraft alone, but other aircraft around which are most
likely to affect it need to be considered.

Facing the problem of multi-aircraft trajectory prediction, it is necessary to establish
a model to explain the behavior of other aircraft within a certain range and predict the
trajectories of all aircraft at the same time. An LSTM network is built for each aircraft to
avoid the data dimension being too large during simultaneous prediction. At the same
time, a reasonable model integration method must be selected to connect multiple LSTM
models to consider the interaction of adjacent aircraft (this connection method will be
described in detail later). In the model training stage, the optimal sequence length, the
number of neurons in each layer, the size of each batch of training samples, and the
number of iterations are determined by adjusting the parameters of the integrated model
to determine the optimal prediction model. In the trajectory reasoning stage, the entire
flight trajectories of the aircraft can be iteratively predicted by inputting their initial state
into the optimized model.

3. Methods
3.1. The Structure of LSTM

LSTM NN is an extension of the recurrent NN (RNN). RNN has good modeling
performance for nonlinear time series data. However, it has gradient disappearance and
gradient explosion problems, so that it cannot fit the time series with long time steps well.
LSTM is specially developed to overcome the limitations of RNN in terms of long-term
dependence [61]. A typical LSTM consists of an input layer, one or more hidden layers,
and an output layer. Its recurrent structure is similar to RNN, as shown in Figure 2a. The
overall network structure of LSTM is shown in Figure 2b. The processing unit A in the
hidden layer is different from RNN. This special processing unit includes three gates: forget
gate, input gate, and output gate, which are used to control and change the state of the
unit and can better deal with long-term dependence issues. Figure 2c specifically shows
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how the forget gate, input gate, and output gate work. The detailed computation process is
shown in Equation (2) [3]: 

ft = σ(W f [ht−1, xt] + b f )

it = σ(Wi[ht−1, xt] + bi)

C′t = tanh(WC[ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C′t
ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(2)

where σ(·) is the Sigmoid activation function, and tanh(·) is the hyperbolic tangent activa-
tion function. W f , Wi, WC, and Wo are the weights of the LSTM network layer, and b f , bi, bC,
and bo are the bias vectors of the network layer. ∗ in Equation (2) means Hadamard product.
In the process of generating the hidden state, the forget gate determines the information
that should be deleted from the previous cell state Ct−1. It uses the Sigmoid function as
the activation function, and ft is the activation value. The input gate determines what
information should be put into the current cell state Ct. It uses the Sigmoid function as the
activation function, and it is the activation value. C′t is the candidate state calculated using
the hyperbolic tangent activation function at the current moment, which combines the cell
state at the previous moment, the results of the forget gate and input gate to calculate the
new cell state Ct.The output gate is used to generate the output hidden state information
ht. It uses the Sigmoid function as the activation function, and oi

t is the activation value. ht
is the hidden state output by the LSTM layer at time t.

Figure 2. Long Short-Term Memory (LSTM) network structure diagram. (a) Recurrent structure of the network [62].
(b) LSTM overall network structure [62]. (c) LSTM network processing unit A [62].
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3.2. The Structure of Social LSTM

In response to the above two challenges, this paper proposes a pool-based S-LSTM
model that can simultaneously predict all aircraft trajectories in the scene. The model
structure is shown in Figure 3. Next, the model will be introduced in detail.

Figure 3. Social Long Short-Term Memory (S-LSTM) model structure.

S-LSTM has two main improvements compared with LSTM. First of all, a separate
LSTM network is established for each aircraft in the scene to synchronize predictions. As
shown in Figure 3, the state sequence of each aircraft is input into its own network to avoid
the problem of excessively high dimensions of input information. At the same time, the
input historical state information can be dynamically updated according to the different
times when each aircraft enters and exits the airspace. Secondly, a new pooling strategy is
used to connect adjacent LSTMs to filter out the aircraft information that may affect itself
and input the filtered information into the corresponding network. Finally, the interaction
between adjacent aircraft is captured. This pooling strategy corresponds to the pooling
module in Figure 4, and the specific content will be introduced later.

Figure 4. Pooling layer structure (take the aircraft in the red box as an example).
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3.3. Pooling Layers

Since the hidden state of each aircraft’s LSTM network generally contains its important
spatiotemporal characteristics, it makes sense to share the hidden state between adjacent
LSTM networks to consider the interaction of adjacent aircraft. However, each aircraft has
a different number of adjacent objects, and especially in a very dense airspace scene, their
number is greater, resulting in a larger received hidden state dimension.

Therefore, the model uses a unified representation to combine the hidden state infor-
mation from all adjacent objects of the aircraft. This problem is dealt with by introducing
the pool layer shown in Figure 4: First, it is necessary to filter other aircraft in a certain space
in front of the target aircraft because the aircraft trajectory belongs to 3D space coordinates,
and then project all aircraft onto the same plane. Finally, a grid-based method is used to
keep the received hidden state and integrate the information. At each time step, the LSTM
unit will receive the combined hidden state information from other adjacent units. The
specific calculation process is as follows.

hi
t represents the hidden state generated by the LSTM of the i-th aircraft in the airspace

scene at time t, which is a potential representation of the aircraft’s spatiotemporal character-
istics. The social hidden state tensor Hi

t of the i-th aircraft is constructed through the hidden
state shared by other adjacent LSTMs to realize the interaction between multiple LSTMs.
When given a hidden state dimension D, a neighborhood size δ, and a merge window size
N0, the model uses the i-th aircraft as the center to determine the other aircraft within its
front neighborhood, and uses their hidden state at this time to construct a N0 × N0 × D
dimensional tensor for the i-th aircraft:

Hi
t(m, n, :) = ∑

j∈Qi
t

1mn[x
j
t − xi

t, yj
t − yi

t, zj
t − zi

t]h
j
t−1 (3)

where hj
t−1 corresponds to the hidden state of LSTM of the j-th aircraft at time t− 1, and

xi
t, yi

t and zi
t represent the spatial position of the i-th aircraft. 1mn[x, y, z] is an indicator

variable, where m, n ∈ [1, N0] is used to check whether (x, y, z) is in cell (m, n) of the grid.
If the j-th aircraft falls in this cell, the indicator variable takes the value 1, otherwise it is
0. Qi

t is the set of aircraft adjacent to the i-th aircraft at time t. Hi
t(m, n, :) represents the

combined information in cell (m, n). It can be seen from Equation (3) that this method only
retains the hidden state of the aircraft in the specified neighborhood.

The model embeds the pooled social hidden state tensor Hi
t into the vector ai

t, and
embeds the 3D coordinates of the i-th aircraft into ei

t. Then, ai
t and ei

t are input to the LSTM
network of the i-th aircraft at time t. The process is shown in Equation (4):

ai
t = φ(Wa[Hi

t] + ba)

ei
t = φ(We[xi

t, yi
t, zi

t] + be)

hi
t = LSTM(hi

t−1, ei
t, ai

t; Wl , bl)

(4)

where φ(·) is the rectified linear unit activation function, Wa and We are the weights of the
embedding layer, and ba and be are the bias vectors of the embedding layer. Wl is all the
weights of the LSTM network layer, bl is all the bias vectors of the network layer, hi

t is the
hidden state output by the LSTM layer of the i-th aircraft at time t.

3.4. Trajectory Inference Process

In order to estimate the trajectory, the model first estimates the position at the cur-
rent moment, and then predicts the position at the next moment based on the estimated
value. In the model training stage, the hidden state at time t − 1 is used to predict
the distribution of the trajectory position

(
x̂i

t, ŷi
t, ẑi

t
)

at the next time t. Assuming that
the 3D trajectory of the aircraft obeys the ternary Gaussian distribution, its distribu-
tion parameters include: the mean is µi

t = (µx, µy, µz)
i
t, and the covariance matrix is
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∑i
t =

 σ2
x Cov(x, y) Cov(x, z)

Cov(x, y) σ2
y Cov(y, z)

Cov(x, z) Cov(y, z) σ2
z

. In order to ensure the positive definiteness of

the covariance matrix, the prediction network outputs the lower triangular component Li
t of

the covariance matrix, which is further constructed by Cholesky decomposition, as shown
in Equation (6). These parameters are predicted by a linear layer with a 9× D dimensional
weight matrix WL, as shown in Equation (7). The predicted coordinate (x̂i

t, ŷi
t, ẑi

t) at time t
is given by Equation (5):

(x̂i
t, ŷi

t, ẑi
t) ∼ N(µi

t, ∑i
t) (5)

∑i
t = Li

t · Li
t
T (6)

[µi
t, Li

t] = WLhi
t−1 (7)

Li(W, b) = −∑Tobs
t=1 log(P(xi

t, yi
t, zi

t

∣∣∣µi
t, ∑i

t)) (8)

here, the negative log-likelihood loss is selected as the loss function of the model to learn
the parameters of LSTM, including all weights and biases mentioned earlier. For example,
the loss function Li of the i-th trajectory is shown in Equation (8),

(
xi

t, yi
t, zi

t
)
, respectively,

represents the real 3D position coordinates at time t, and P(•) represents the probability of
the real coordinates at time t in the corresponding probability distribution. Since there are
multiple aircraft in the airspace at time t, the model is trained by minimizing the sum of
the loss functions of all aircraft trajectories in the training data set, that is, backpropagation
through multiple LSTMs in the airspace. However, it should be noted that S-LSTM connects
multiple LSTM networks to simultaneously predict through the pooling layer. The essence
is still that each LSTM is back-propagated separately at the same time, which shows that
the back-propagation process of the S-LSTM in this paper is actually similar to an LSTM
network. In addition, the LSTM network itself can effectively avoid the gradient explosion
problem through a unique gate design function. Therefore, it is believed that S-LSTM is
unlikely to have such a problem.

In the trajectory reasoning stage, the trained S-LSTM model is used to predict the
future position (x̂i

t, ŷi
t, ẑi

t) of the i-th aircraft. From time step Tobs+1 to Tpred, the predicted
value (x̂i

t, ŷi
t, ẑi

t) at the previous moment is used to replace the real value (xi
t, yi

t, zi
t) to

calculate the social hidden state tensor Hi
t, which is input into the network together with

(x̂i
t, ŷi

t, ẑi
t) at the next moment, and finally predict the entire trajectory through continu-

ous iteration.

4. Case Analysis

This section used the flight trajectories over the San Francisco Bay Area in the United
States for example analysis. The appropriate S-LSTM model was determined by adjusting
the hyperparameters, and the appropriate performance evaluation index was selected. In
the experiment, the prediction error of the model in this paper was compared with the
current mainstream trajectory prediction model to evaluate the performance of the model.
At the same time, statistical analysis was performed on the prediction errors of departure
and arrival flights in different time intervals to observe the differences in the performance
of our models. In addition, a suitable airspace scene was selected to analyze and discuss the
prediction results visually to verify that S-LSTM considers the interaction between aircraft.

4.1. Data Processing

The flight trajectory data set used in this paper comes from the flight trajectory records
over the San Francisco Bay Area from January to March 2006, as shown in Figure 5. This
record covers the Northern California Terminal Radar Approach Control (NCT), which is a
cylinder with a radius of 80 km and a height of 6000 m centered on Oakland International
Airport (OAK). NCT includes three significant airports: Oakland Airport, San Francisco
International Airport, San Jose International Airport, and many smaller airports. NCT
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is the fourth busiest terminal area in the United States, with an average of 133,000 flight
instrument operations per month in 2006. The recorded data consist of the aircraft’s position
(latitude, longitude, altitude), speed, and recording time. This paper only used the flight
trajectory data in January 2006 as the data set to improve the training speed of the model. A
preliminary quality analysis of the data set found that the proportion of duplicate records
and records with missing attribute values was very small, so they were deleted directly.
Then, the trajectory’s latitude, longitude and altitude data were converted into relative
coordinates centered on OAK. According to the duration of the trajectory, it is found that
the number of trajectory points varies from 10 to 550, and the time interval between two
adjacent points is between 4 and 5 s. In order to facilitate multi-trajectory prediction, we
first reconstructed the trajectory at a time interval of 5 s, and then determined the time
stamp sequence with the reference time of 0:00 on 1 January 2006 and the interval of
five seconds, and finally extracted the records corresponding to the previous timestamp
sequence in all trajectories. In the end, 63,000 trajectories were obtained.

Figure 5. Flight trajectory within NCT on 1 January 2006.

The minimum-maximum standardization method was used to standardize the tra-
jectory data, and the data were mapped to [0, 1], eliminating the influence of different
dimensions. Then, the standardized data were divided into a training set and a test set,
where 70% of the trajectory data were used for training, and 30% were used for testing.

4.2. Evaluation Index

According to the suggestions in [63], the error indicators of the aircraft trajectory pre-
diction experiment were determined: Mean Absolute Point-wise horizontal error (MAPHE),
Mean Absolute Point-wise vertical error (MAPVE) and Mean Absolute Point-wise error
(MAPE). Where PHE represents the distance between the 2D coordinates of each predicted
point and the real coordinates; PVE represents the distance between the height of each
predicted point and the real value; PE represents the distance between each predicted point
and the real value. MAPHE, MAPVE, and MAPE, respectively, represent their average
errors, as shown in Equations (9)–(11).

MAPHE =
∑N

i=1 ∑
Tpred
t=Tobs+1

√
(x̂i

t − xi
t)

2
+ (ŷi

t − yi
t)

2

N(Tpred − (Tobs + 1))
(9)

MAPVE =
∑N

i=1 ∑
Tpred
t=Tobs+1

√
(ẑi

t − zi
t)

2

N(Tpred − (Tobs + 1))
(10)
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MAPE =
∑N

i=1 ∑
Tpred
t=Tobs+1

√
(x̂i

t − xi
t)

2
+ (ŷi

t − yi
t)

2
+ (ẑi

t − zi
t)

2

N(Tpred − (Tobs + 1))
(11)

where (xi
t, yi

t, zi
t) represents the true 3D position of the i-th aircraft at time t, (x̂i

t, ŷi
t, ẑi

t)
represents the corresponding predicted value, N represents the number of aircraft in the
airspace, Tobs represents the length of the observation sequence of the trajectory, and Tpred
represents the length of the predicted sequence of the trajectory.

4.3. Parameter Setting

S-LSTM comprises multiple LSTM networks, so the model parameters are similar to
LSTM networks, including structural parameters and internal parameters. The structural
parameters include the sequence length lseq, the number of hidden layers L, and the number
of hidden layer neurons hnode. Compared with LSTM, S-LSTM also considers the number
of neurons in the embedding layer enode that combines the social hidden state with the
position coordinates. The internal parameters include the size of each batch of training
samples λ, the number of training iterations ε for all samples, the learning rate, and the
weight parameters. Among them, the weight parameter was initialized by randomly
assigning values in the interval [0, 1]. In the experiment, L was set to multiple, and it was
found that the running time was greatly increased while the prediction accuracy was not
improved much. Therefore, L was defaulted to 1 in order to simplify the model. Commonly
used learning rates are 0.001, 0.01, 0.1, 0.003, 0.03, and 0.3, and commonly used decay
rates are 0.85, 0.9, and 0.95, which are manually adjusted and selected based on experience
during the experiment. Observe the relationship between the number of iterations and
the loss during adjustment and find the initial learning rate and decay rate corresponding
to the fastest loss reduction, which are 0.003 and 0.95, respectively. There is no universal
determination rule for the remaining parameters. In this paper, the parameters were
determined through Bayesian optimization. First of all, the value range of each parameter
is determined: lseq range was [20,25], hnode range was [64, 128], enode range was [16, 64], λ
range was [20,60], and ε range was [50, 100]. Then, the maximum number of evaluations for
Bayesian optimization was set to 100, that is, 100 parameter combinations were generated
from each parameter range, and the parameter combination that minimized the prediction
error of the test set was selected as the optimal parameter combination. In addition to the
above basic parameters, the S-LSTM model also considers the neighborhood size δ and the
social pool merge window size N0 mentioned in the social pool in the previous section.
Since the aircraft trajectory is a collection of 3D space coordinates, δ was divided into a
horizontal range and a vertical range, which were set to 4000 and 800, respectively. This
meant that other aircraft within 2000 m in front of the aircraft and 400 m up and down were
considered. Additionally, N0 was set to 2. At the same time, the average aircraft density
per second in the data set was 50. The data set in this paper was assumed to be able to
predict up to 50 aircraft trajectories at the same time. Finally, the RMSprop algorithm was
utilized to train the model. The parameters of S-LSTM are shown in Table 1.

Table 1. Parameters of S-LSTM model.

Parameter Value

lseq 23
hnode 123
enode 21

λ 29
ε 90
δ 4,000,800

N0 2
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4.4. Model Performance Analysis

In this section, the evaluation indicators were used to analyze the performance of the
trained S-LSTM prediction model on the test set. In the experiment, given the data of the
first 100 s of the flight trajectory, predict the trajectory sequence of the next 150 s, that is,
the length of the observation sequence is 20 and the length of the predicted sequence is 30.
According to the predicted value of each trajectory output by the model, the three types
of error values were calculated for each trajectory point and the prediction accuracy and
robustness of the arrival and departure flights in different time intervals were observed.
Due to the different operating characteristics of arrival and departure flights in the terminal
area, they are discussed here separately and take 30 s as the time interval for statistics, that
is, the results will be displayed in five boxes, as shown in Figures 6 and 7.

Figure 6 is a box plot of PHE and PVE for arrival flights. From the box plot of PHE, it
can be seen that the average error of all trajectory points in each time interval is within the
range of 300 to 400 m, the maximum error does not exceed 750 m, the minimum error does
not exceed 200 m, the average error reaches the maximum in 90 to 120 s, and the overall
change is small. The upper and lower limits of PHE are the smallest in 30 to 60 s, but they
do not change much as the time interval changes. From the box plot of PVE, it can be seen
that the average error of all trajectory points in each time interval is within the range of 5 to
12 m, the maximum error does not exceed 30 m, the minimum error does not exceed 5 m,
the average error reaches the maximum in 120 to 150 s, and the overall change is relatively
stable. Similar to PHE, the upper and lower limits of PVE do not change much as the time
interval changes, and it reaches the minimum in 120 to 150 s. Due to the overall small PVE
error, the box plot of PE is similar to PHE, so it will not be shown here. The analysis shows
that the average error change range is small and the upper and lower limits of each time
interval also change little whether in the horizontal or vertical direction. It proves that our
model can effectively avoid the rapid propagation of errors over time, so as to improve the
accuracy and stability of inbound flight forecasts.

Figure 6. Box plots of different evaluation indicators for arrival flights.

Figure 7 is a box plot of PHE and PVE for departure flights. From the box plot of
PHE, it can be seen that the average error of all trajectory points in each time interval is
within the range of 270 to 500 m, the maximum error does not exceed 1500 m, the minimum
error does not exceed 120 m, the average error reaches the maximum in 0 to 30 s, and
the overall change is small. The upper and lower limits of PHE are the smallest in 90 to
120 s. After 60 s, the upper and lower limits tend to be stable as the time interval changes.
From the box plot of PVE, it can be seen that the average error of all trajectory points in
each time interval is within the range of 5 to 10 m, the maximum error does not exceed
40 m, the minimum error does not exceed 5 m, the average error reaches the maximum in
30 to 60 s, and the overall change is very stable. Unlike PHE, the upper and lower limits
of PVE do not change much as the time interval changes, and it reaches the minimum
in 120 to 150 s. The analysis shows that the average error changes relatively smoothly
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whether in the horizontal or vertical direction, similar to the arrival flight. However, the
difference is that the upper and lower limits change more steadily in the vertical direction
than in the horizontal direction as the time interval changes. It proves that our model can
improve departure flights prediction performance as time changes, but stability needs to
be improved.

Figure 7. Box plots of different evaluation indicators for departure flights.

Through calculation, the MAPHE of arrival flights is about 364 m and the MAPVE
is about 11 m, while the MAPHE of departure flights is about 730 m and the MAPVE is
about 13 m. Comparing the overall average error of arrival and departure flights, it is
found that the error of the latter is greater than that of the former, no matter whether it
is in the horizontal or vertical direction. Comparing Figures 6 and 7, it is also found that
the upper and lower limits of the overall error of departure flights are larger than those of
arrival flights, indicating that the model has better stability and robustness for predicting
the arrival trajectory. Therefore, the prediction effect of our model on arrival flights is better
than on departure flights.

This experiment compares this model with LWLR, HMM, BP NN, and LSTM proposed
in the current trajectory prediction research to verify the performance of the model in this
paper. For the same trajectory data set, all models use the same training set and test set for
parameter setting and model training. MAPHE, MAPVE and MAPE are used as evaluation
indicators and 0 to 30 s is selected as the time interval to evaluate the performance of
each model. The specific results are shown in Figures 8 and 9, respectively, showing the
comparison of prediction error for the arrival and departure flights.

It can be found from Figure 8 that for arrival flights, LWLR has the worst prediction
effect in the horizontal direction, BP NN is slightly better than LWLR, and BP NN is the
worst in the vertical direction, and LWLR is slightly better than BP NN. In general, the
prediction effects of these two methods are not good, and the LSTM model is better than
them in the horizontal and vertical directions, which proves that the LSTM model has
certain advantages in trajectory prediction and can fully consider time dependence. At the
same time, the prediction accuracy of LSTM is lower than that of HMM, possibly because
HMM is more suitable for short-term prediction of arrival flights than LSTM. Finally, it is
found that the S-LSTM proposed in this paper can further improve the prediction accuracy
compared with HMM. It reduces the error by about 40% in the horizontal direction and
about 8% in the vertical direction. This may be due to its consideration of the interactive
influence of the surrounding aircraft trajectory rather than its own trajectory.
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Figure 8. Radar chart of predicting errors for arrival flights.

It can be found from Figure 9 that for departure flights, the prediction effect of LWLR
is the worst in both horizontal and vertical directions. Although BP NN is better than
LWLR, the prediction effect is still not ideal, which is similar to the prediction result of
arrival flights. Similarly, the prediction accuracy of LSTM is higher than the previous
two methods, but it is significantly lower than HMM. Compared with HMM, the S-LSTM
proposed in this paper can further improve the prediction accuracy, and the error is reduced
by about 35% in the horizontal direction and about 6% in the vertical direction. Therefore,
the model in this paper is significantly better than others in the prediction effect of arrival
and departure flights. At the same time, compared with Figure 8, the prediction results of
the departure flights in Figure 9 show that the overall error in the horizontal and vertical
directions is larger than that of arrival flights. Therefore, our model is more suitable for
predicting the 4D trajectory of arrival flights than departure flights.

Figure 9. Radar chart of predicting errors for departure flights.

Next, this paper randomly selects the prediction results of three trajectories in the
airspace over a period from the test set to visualize and predicts the 3D trajectory in the
future 150 s. Figure 10a shows the prediction results of trajectories from a horizontal per-
spective. It can be found that S-LSTM fits well on the three trajectories, while other models
have poor fitting effect on the trajectory with larger steering during flight. Figure 10b,c
shows the prediction results from a vertical perspective. Spatial coordinates are used to
display the trajectory for clarity, as shown in Figure 10d, and the gray boxes in the figure
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represent other aircraft in the airspace. Similarly, S-LSTM has a better fitting effect than
other models and can capture the steady climb or decline of the trajectory well, avoiding
aircraft that may collide.

Figure 10. Visualization of prediction results for each prediction model.

4.5. Discussion of Results

A suitable airspace scene is selected to visually analyze and discuss the prediction
results to verify whether S-LSTM considers the interaction between aircraft in the airspace.
Here, only representative trajectories are selected in the airspace to display their trajec-
tories for clarity of visualization. The visualization results are shown in Figure 11. They,
respectively, show the real-time position and representative trajectory of the aircraft at
seven times. A gray triangle represents the representative aircraft in the figure, and the
solid red line represents the actual trajectory of the corresponding aircraft. The blue dotted
line represents the predicted value using S-LSTM, the orange dotted line represents the
predicted value using LSTM, and other aircraft are represented by squares.
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Figure 11. Scene visualization.
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In Figure 11, at time T = 1, there are 28 aircraft in the airspace (numbered from 1 to 28,
respectively). However, aircraft continue to leave the airspace over time. Aircraft No. 24
left the airspace at time T = 2, aircraft No. 1 left at time T = 5, and No. 8 and No. 21 left at
time T = 6. In the end, eight aircrafts of No. 2, No. 6, No. 14, No. 15, No. 16, No. 11, No. 19,
and No. 27 are selected to show their trajectories. At time T = 1, according to the real
trajectory, No. 2 is an arrival flight, and its trajectory is basically the same as No. 6 ahead of
it. No. 27 may interact with No. 11. No. 14 may affect No. 15 and No. 16 at the same time,
and No. 16 may affect No. 15. At this time, there is no aircraft that may affect No. 19 in the
airspace in front of it. From T = 2 to T = 7, according to the prediction result of S-LSTM,
No. 2 began to descend gently, which can effectively avoid collision with No. 6 during the
descent. No. 27 slowed down the turning speed and descent speed, reducing the risk of
collision with No. 11. No. 15 climbed up to avoid collisions with No. 14 ahead and No. 16
at the front and bottom, and No. 16 gradually descended to avoid collisions with No. 14
ahead and above. In contrast, the prediction results of LSTM did not take into account
the potential impact of the surrounding aircraft. No. 2 still followed the downward trend
of the trajectory at time T = 1, resulting in a steep decline, which is likely to collide with
No. 6. No. 27 did not slow down the speed during the turning and descent stage, which
may have an impact on the descent process of No. 11. No. 15 was still falling according
to the original trend, and may conflict with No. 16, while No. 16 was still rising and may
conflict with No. 14.

Table 2 further lists the errors of the representative trajectories in Figure 11 under
the two prediction models. In general, the trajectories of aircraft No. 2, 27, 15 and 16
predicted by LSTM are quite different from S-LSTM, while the prediction error of aircraft
No. 19 is relatively small. This indirectly reflects that our model can significantly improve
prediction accuracy when predicting aircraft trajectories affected by other aircraft. Still,
when predicting unaffected aircraft trajectories, our model’s prediction effect is the same
as LSTM.

Table 2. Comparison of aircraft prediction errors under the two models.

Aircraft Number MAPHE (m) MAPVE (m) MAPE (m)

S-LSTM LSTM S-LSTM LSTM S-LSTM LSTM

2 435.52 765.67 28.41 131.66 436.44 776.90
6 481.51 581.63 45.55 204.44 483.66 616.52

11 548.52 892.38 49.02 47.17 550.71 893.63
14 544.52 868.61 15.57 109.92 544.75 875.54
15 414.20 688.75 18.33 144.01 414.61 703.64
16 343.39 500.51 38.25 76.61 345.52 506.34
27 303.30 600.91 21.27 37.86 304.05 602.10

Different types of flight trajectory data are input in S-LSTM to predict and calculate
the prediction errors to investigate whether there is an interaction between the arrival and
departure flights of several major airports in NCT. The results are shown in Table 3. When
only the arrival flights data are input, the average error in the horizontal direction is 690 m
and the vertical direction is 12 m. When only the departure flights data are input, the
horizontal direction is 762 m and the vertical direction is 23 m. However, if all flights data
are input at the same time, the average error of arrival flights trajectory in the horizontal
direction is reduced by 38 m, the vertical direction is reduced by 4 m, departure flights is
reduced by 87 m in the horizontal direction, and the vertical direction is reduced by 6 m. It
can be seen that the arrivals and departures of major airports in this airspace interact with
each other.



Aerospace 2021, 8, 115 19 of 22

Table 3. Comparison of prediction errors of arrival and departure flights under different input
conditions.

Input Output MAPHE (m) MAPVE (m) MAPE (m)

arrival arrival 690.24 15.42 690.58
departure departure 762.39 22.93 762.96

all all 660.05 13.07 660.17
all arrival 651.97 11.19 652.44
all departure 675.31 16.46 675.51

5. Conclusions

This paper proposes the use of S-LSTM to predict multiple aircraft trajectories si-
multaneously. Different from other trajectory prediction models, this model considers
the interaction between trajectories and breaks through the limitations of single aircraft
trajectory prediction. In the modeling process, an LSTM network was first established for
each aircraft in the control area, and the pooling layer was used to integrate the hidden
state output of the LSTM network associated with the aircraft. Then, the integrated social
hidden state, trajectory information, and its own hidden state were used as the input of the
next time step of the network, and the model was trained by maximizing the probability of
the output trajectory. In trajectory generation, the model used the predicted value at the
previous moment to replace the real value to predict the trajectory at the current moment
and iterated until the entire trajectories were generated.

In the case analysis, box plots were used to calculate the prediction errors of arrival and
departure flights in different time intervals, and it was analyzed that when using our model
to predict in the selected NCT, arrival flights were better than departure flights in terms of
prediction accuracy and stability. At the same time, the radar chart was used to compare the
prediction errors of arrival and departure flights under S-LSTM and four typical trajectory
prediction models. The results showed that the prediction effect of our model was better
than other comparison models, whether it was arrival or departure. Additionally, the error
of arrival flights was smaller than that of departure flights, indicating that our model was
more suitable for predicting the 4D trajectory of the arrival flights in NCT.

A suitable airspace scene was also selected to visually analyze and the prediction
results were discussed during the experiment, which showed that our model can indeed
effectively utilize the interaction between aircraft. In addition, the trajectory data of the
arrival and departure flights were separately input into the model to predict, and it was
found that the arrival and departure of the main airports in NCT were mutually affected.

In addition to the above conclusions, there are still some areas worthy of further
improvement and perfection. The model in this paper only uses trajectory information
such as longitude, latitude, altitude, speed and angle, without considering the impact
of high altitude meteorological conditions in actual operations. Therefore, the future
research work of multi-aircraft trajectory prediction can further consider how to integrate
the meteorological conditions around the aircraft into the prediction model to achieve
more accurate and stable trajectory prediction. In addition, the pooling layer is used to
select other aircraft that may interact with each other around the aircraft in this study.
At present, the popular element attention mechanism in neural networks is also used to
complete similar tasks, making the neural network focus on processing a small part of the
useful information in a large amount of input information, and ignore other information.
Therefore, we can consider using the attention mechanism to improve the S-LSTM network
in future research.
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