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Abstract: The main objective of this paper is to describe a methodology to be applied in the pre-
liminary design of a tiltrotor wing based on previously developed conceptual design methods.
The reference vehicle is the Next-Generation Civil Tiltrotor Technology Demonstrator (NGCTR-TD)
developed by Leonardo Helicopters within the Clean Sky research program framework. In a pre-
vious work by the authors, based on the specific requirements (i.e., dynamics, strength, buckling,
functional), the first iteration of design was aimed at finding a wing structure with a minimized
structural weight but at the same time strong and stiff enough to comply with sizing loads and
aeroelastic stability in the flight envelope. Now, the outcome from the first design loop is used to
build a global Finite Element Model (FEM), to be used for a multi-objective optimization performed
by using a commercial software environment. In other words, the design strategy, aimed at finding
a first optimal solution in terms of the thickness of composite components, is based on a two-level
optimization. The first-level optimization is performed with engineering models (non-FEA-based),
and the second-level optimization, discussed in this paper, within an FEA environment. The latter is
shown to provide satisfactory results in terms of overall wing weight, and a zonal optimization of the
composite parts, which is the starting point of an engineered model and a detailed FEM (beyond the
scope of the present work), which will also take into account manufacturing, assembly, installation,
accessibility and maintenance constraints.

Keywords: civil tiltrotor; wing; design; aeroelasticity; flutter; multi-objective optimization

1. Introduction

Tiltrotors are a class of vehicle that combines the advantages of aircraft (high cruise
speed) and helicopters (Vertical Take-Off and Landing (VTOL) ability). Their commer-
cial appeal is becoming increasingly important, with applications among various users,
such as business, search and rescue, and medical. Within this framework, Horizon 2020
(H2020) Clean Sky 2 FRC IADP NextGenCTR will be dedicated to the design, construction
and flying of an innovative Next-Generation Civil Tiltrotor Technology Demonstrator
(NGCTR-TD) [1], the configuration of which will go beyond current architectures for this
type of aircraft. NGCTR-TD demonstration activities, led by Leonardo Helicopters Di-
vision (LHD), will aim to validate its innovative architecture, technologies/systems and
operational concepts.

Aerospace 2021, 8, 102. https://doi.org/10.3390/aerospace8040102 https://www.mdpi.com/journal/aerospace

https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-2118-0974
https://orcid.org/0000-0002-4310-6329
https://orcid.org/0000-0002-5110-7380
https://doi.org/10.3390/aerospace8040102
https://doi.org/10.3390/aerospace8040102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/aerospace8040102
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/2226-4310/8/4/102?type=check_update&version=1


Aerospace 2021, 8, 102 2 of 16

The NGCTR-TD (https://www.cleansky.eu/fast-rotorcraft-iadp (accessed on 1 April
2021)) is characterized by a 12 m long wing, a V-Tail, pitch and yaw lift surfaces’ command
configuration, and a fixed-engine installation with a split gearbox to provide the proprotor
tilting mechanism.

The T-WING consortium is working on the composite wing of the NGCTR-TD,
planned to be flying in 2023. The consortium, led by the Italian Aerospace Research
Centre (CIRA), is composed of industrial partners Magnaghi Aeronautica and Salver (IT)
and SSM (IT), small and medium-sized enterprises (SMEs) OMI (IT) and IBK Innovation
(DE), and the University of Naples Federico II (IT). The final aim of the project is to de-
sign and qualify the structure of the wing and moveable surfaces, encompassing from
design, manufacturing and ground tests up to flight, in compliance with the technical
specification set by the Work Area Leader Leonardo Helicopters. The wing will be properly
instrumented during the flight, with a set of sensors (strain gages and accelerometers) with
the aim of validating load evaluation methods, structural monitoring for flight safety and
aeroelastic characteristics.

The main innovations pertaining to the wing structure are the highly integrated
composite concept and the presence of two moveable surfaces: one is an external flaperon
and the other is a so-called morphing surface, which has the function of reducing the wing
area exposed to the propeller flow in helicopter mode. All these features lead to a wing
structure which is quite compact, since the largest moveable surface spans almost half of
the wing chord.

For such a wing, an iterative and novel optimization process has been necessary, even
if the architectural layout of the structure is set by LHD (e.g., spar and ribs locations). The
optimization process was thus aimed at finding the optimal composite thickness distribu-
tion (at minimum weight). In the present case of the NGCTR-TD wing, the preliminary
structural design strategy is based on a two-level optimization. The first-level optimization,
presented in a previous work by the authors [1], is based on engineering models, used to
perform a multi-objective optimization by means of genetic algorithms, also taking into
account the aeroelastic stability. The aim of the first-level optimization is to have, at the very
beginning of the project, i.e., at concept design level, a safe structural configuration, which
is free from flutter at minimum mass. The second-level optimization is based on a 2D-1D
elements Finite Element Model (FEM), built based on the selected first-level structural
optimization [2]. The composite parts (skin and spars) of this structural configuration
are then subjected to optimization by means of commercial FEM software (OptiStruct®,
ver. 2017.2, Altair Engineering Inc., Troy, MI, USA). In order to speed up the optimization
process and to evaluate different design choices, the equivalent laminate theory is applied
to model the composite properties of the finite elements, also giving an advantage in the
computational effort. The second-level optimization is the main object of the present work.

2. Previous Similar Works

A remarkable example of a design optimization framework for a tiltrotor wing is about
the SUAV TRS4 composite wing [3], in which the mathematical optimization process, based
on a gradient-based method and a Variation Asymptotic Beam Sectional (VABS) analysis,
was performed by implementing numerical analysis modules, in a single MATLAB® (ver.
R2017b, MathWorks, Natick, MA, USA) environment.

Another literature example of tiltrotor wing structural optimization is presented in [4],
in which the use case was the Bell XV-15 Tiltrotor, manufactured by the US Bell Aircraft
Corporation (Buffalo, NY, USA), predecessor of Bell Helicopter Textron. In this work,
the enhancement of the aeroelastic stability is selected as an objective in the upper-level
optimization, in which the Response Surface Method (RSM) is selected. On the other hand,
lower-level optimization seeks to determine the local detailed cross-sectional parameters,
such as the ply orientation angles and ply thickness, which are relevant to the wing
structural properties obtained at the upper level. To avoid manufacturing difficulties, only
a few discrete ply orientation angles and an integral number of plies are considered as
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constraints. A genetic algorithm is selected as the optimizer at the lower level. Finally, a
Korea Aerospace Research Institute (KARI) in-house aeroelastic analysis is carried out in
order to predict flutter stability.

In the present work, the geometrical constraints of the wing architecture are dictated
by LHD; thus, the design variables taken into account for the optimization of the wing-box
are mainly the thicknesses/layups of the composite material. The composite material is an
already certified material owned by one partner of the T-WING consortium. The aeroelastic
problem considered in the optimization is related to the flutter, whereas the whirl flutter is
treated as an ex post verification by LHD. The sizing loads are supplied by LHD as well.
The aeroelastic behavior is influenced not only by the wing stiffness itself, but also by the
local stiffness of the junctions, in this case the junction between the wing and the nacelles.
This behavior was already found by the authors in a previous work on a joined fixed-wing
configuration [5,6].

The first-phase optimization of the NGCTR-TD wing has already been performed by
the authors and briefly recalled in this paper.

3. Requirements and Design Strategy

For the NGCTR-TD, the requirements derived from airworthiness specifications are
drawn from EASA (European Aviation Safety Agency) large airplanes (CS-25) and large
rotorcrafts (CS-29), for the particular nature of the vehicle. In addition to that, tailored
requirements are necessary, since not all the airplane and rotorcraft requirements encom-
pass all the possible scenarios which characterize the tiltrotor. Regarding the structural
architecture, as mentioned before, LHD has fixed a number of technical and functional
requirements, which have as an outcome a prescribed position of the spars, ribs and move-
able surfaces’ geometry. As an example, the fuel capacity of the vehicle is a crucial aspect,
which dictates the space available for the fuel bladders (fuel is stored in bladders to cope
with crashworthiness requirements), whereas the remaining systems (hydraulics, electrical
and avionics equipment, the control surface actuators and the Inter-Connecting Drive
Shaft, ICDS) are hosted in the wing-box according to segregation requirements. Given the
architecture, the wing structural design, in terms of skin and spar web thicknesses and
stringers and spar cap areas, has to cope with strength and buckling requirements, at the
lowest possible weight, and more predominantly, with stiffness requirements. Stiffness
requirements are of paramount importance when designing the wing of a tiltrotor, making
the task quite challen ging also in view of other requirements such as the weight and the
accessibility (numerous and wide access holes and removable panels, which tend to reduce
torsional stiffness). Stiffness requirements are expressed in terms of limitations on the
frequency values of the airframe elastic modes. In particular, for the NGCTR-TD wing,
airframe modes that involve significant movement of the hub center in the rotor disc plane
directions shall have frequencies falling outside “forbidden bands”, and in order to avoid
whirl flutter stability issues, further limits (minimum values) are imposed on some elastic
modes’ frequencies, such as torsion modes [7–11]. There is also a requirement on the lowest
elastic airframe mode frequency, which shall not be lower than a minimum value, in order
to avoid coupling with aeromechanical modes—this is quite demanding when dealing
with big masses at the wing tip (nacelles, engine and propellers).

Based on the abovementioned requirements, the design strategy in the preliminary
phase is composed of two main phases/levels as shown in Figure 1.
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Figure 1. Design strategy flowchart.

The first level consists in a multi-objective optimization (M-OO), looped with aeroelas-
tic analyses, performed with MSC Nastran (ver. 2013.1, MSC Software, Newport Beach, CA,
USA). It mainly consists of Matlab in-house codes (based on classical shear flow formulas
in closed thin-walled sections and panel buckling formulas), which allow the performance
of optimization runs in a very short time (compared with Finite Element Analysis) with
an acceptable degree of fidelity. The process aim is to find a set of feasible web/skin
thicknesses and spar cap areas compliant with the strength and structural dynamics re-
quirements, with the lowest possible structural mass. In this manner, a first composite
wing structure, able to withstand preliminary sizing loads, and free from flutter within
the flight envelope, is obtained [11]. Starting from the solution identified in the first-level
optimization, the models are updated to allow calculation of updated loads and to compute
again flutter speed.

The second level consists in a Finite Element-based multi-objective optimization
within an Altair OptiStruct environment. In particular, the optimization is performed for
the composite elements (skins and spars), in order to find the best solution—in terms of
thickness—which minimizes the structural weight and is compliant with strength and
buckling requirements and mainly with the stiffness (flexural and torsional), which is a
design driver for a tiltrotor wing. The Finite Element model of the wing is mainly built
with 2D and 1D elements (composite 2D elements modeled with equivalent shells based on
the classical lamination theory). The optimization constraints are no buckling up to a pre-
defined percentage of limit load (no buckling up to 80% × LL for the skin; up to 130% × LL
for the spars), positive margins of safety at ultimate load, and minimum flexural (in-plane
and out-of-plane) and torsional stiffness. The algorithm is a gradient descent optimization.
The design variables of this optimization process are the thicknesses of the upper and
lower skins and of the spars, all made of carbon fiber-reinforced plastic. The outcome is a
zonal optimization along the wingspan. The optimized FEM will be used to compute new
stiffness distributions, then to update the structural aeroelastic stick beam model and to
repeat analyses. Moreover, this zonal optimization is the starting point of a detailed FEM,
which will also take into account manufacturing, assembly, installation, accessibility and
maintenance constraints, and which is beyond the scope of the present work.
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3.1. Materials and Methods

The aim of the optimization is to find the best solution from a set of feasible solutions to
a problem. In structural optimization, the kind of optimization applied in the present work,
typical problems are sizing optimization, shape optimization and topology optimization.
As already reported in the previous section, a two-phase/level structural optimization
method was needed for this application. The first one makes use of 1D beam theory to
achieve the best wing-box thickness distributions able to cope with different load conditions
encountered in-flight by the aircraft and respecting flutter stability; the second one is a
refinement based on the use of a more accurate models, based on finite elements. The
first-level optimization phase rapidly spans the variable space, through an evolutionary
genetic algorithm, in order to highlight the variable space zone with best performances
(in terms of stress, buckling and stiffness properties). The second-level optimization
makes use of a more efficient but local optimization algorithm, to identify the best wing-
box candidate satisfying, from an FE model point of view, the requirements (only the
structure thickness is varied during the optimization process) starting from the good
starting solutions highlighted during the first phase.

3.1.1. Genetic Algorithm Multi-Objective Optimization Approach (First Phase)

A Multi-Objective Genetic Algorithm optimization was used to optimize the wing-
box structure [12]. The Genetic Algorithm is a stochastic algorithm that simulates the
mechanism of natural evolution by applying the principle of survival in order to produce
and obtain improved approximations to a solution. Individuals are encoded as strings,
chromosomes: Chromosome values (the genotype) are uniquely mapped to the design
variables (96 wing-box thicknesses in our problem, the wing-box phenotype).

From the phenotype it is possible to assess the performance of the wing-box rep-
resented by a certain chromosome by calculating the mass and the performance of the
wing-box—its fitness values. Once the individuals have been assigned a fitness value, they
can be chosen from the population, with a probability according to their relative fitness. The
best individuals have more chances to transmit their genetic heritage to future generations.
Then they are recombined (by choosing parts from their chromosome, and thus from their
wing-box thickness distribution) to produce the next generation. The Genetic Algorithm
selects a number of individuals inside the current population, called “parents”, and uses
them to create the individuals of the next generation called “offspring” or “children”. The
performance of individuals in a population tends to increase generation by generation, and
the Genetic Algorithm (GA) is terminated when one or more pre-fixed criteria are satisfied.

During evolution guided by GAs, non-dominated optimal solutions that identify a
Pareto front [13,14] can be recognized, and a solution which best fits the requirements can
be chosen by performing an a posteriori trade-off between non-dominated solutions.

The optimization objectives (wing mass, strength and buckling) together with the
stress and stiffness properties of the wing are calculated through an in-house code, written
in Matlab language, according to bending and shear stress analysis of the wing from
engineering manuals [15].

Input data for the program include wing geometrical and airfoil shapes, wing-box
architecture (positions of the cross-sectional structural elements), wingspan loads, material
data, and initial guess values for skin thickness and spar cap areas. Output data include
internal stresses, wing structural mass estimation, and stiffness properties of the wing at
selected span locations.

The output stresses are used to calculate strength and buckling Margins of Safety (MS).
A solution is considered feasible if all strength and buckling MS are ≥0.

3.1.2. Aeroelastic Model

The first level optimization activity, among the other outputs, gives the wingspan
beam stiffness and structural mass distribution, which is used to build the dynamic part of
the aeroelastic model, Figure 2.
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The model takes into account—concerning structural dynamics—all the parts of the
vehicle, not only the wing and moveable surfaces (represented as beam-like models). The
remaining tiltrotor parts were supplied as Nastran super-elements by LHD (e.g., fuselage,
nacelles, vertical tail and junction between the wing and the fuselage). The kinematics of
the moveable surfaces’ actuation chains are simulated by means of connection elements
of suitable stiffness. The mass model consists in lumped masses (structural and non-
structural) along the wingspan. The wing structural masses are an output of the first-level
structural design optimization, whereas non-structural masses encompass fuel, fuel system,
ICDS, hydraulics system, electrical cables, actuators. The aerodynamic model has been
realized according to the Doublet Lattice Method [16,17]. This aerodynamic method, based
on the linearized potential flow aerodynamic theory, is the extension to unsteady flows of
the simple and steady Vortex Lattice Method. Aerodynamic flat panels are on the wing and
tail, whereas perpendicular flat panels simulate fuselage and nacelles, by creating crosses,
in order to better represent, in addition to the vertical aerodynamic contribution, the lateral
aerodynamic loads induced by the volumetric shape of the abovementioned components.
Infinite Plates Spines [18,19] assure the matching between dynamics and aerodynamics.

3.1.3. Size Optimization with FEM (Second Phase)

ALTAIR Hyperworks OptiStruct [20] has the capability of performing size optimiza-
tion, the type of optimization suitable for the problem in hand. In size optimization, the
shape of the structure is known and the properties of structural elements such as shell
thickness, beam cross-sectional properties, spring stiffness, and mass are modified to solve
the optimization problem. In the present work, the thicknesses of 2D FEM elements are
used as optimization variables to search for an optimized structure: thickness variation
during optimization is taken by OptiStruct as continuous. Each size variable is defined by
using a DESVAR (DESign VARiables) bulk data entry. The DESVAR cards are related to size
properties in the model using a DVPREL1 bulk data entry (these cards teach the solver how
to link the design variables—one or more—to FEM properties used by the FE solver). Differ-
ent responses can be set in OptiStruct as design goals, as shown in Table 1. Buckling factor
and static stress/strain are of interest for the present method. There are many different
methods or algorithms that can be used to optimize a structure. In OptiStruct, algorithms
based on the gradient method for size (and shape) optimization are implemented. For
this class of methods, the quality of the starting design is a very important component of
the process: The probability of finding at least one optimal local representative of the best
possible solution is higher when the distance between the initial design parameters and the
global optimum is kept as small as possible based on engineering judgement or previous
global optimizations [21].
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Table 1. Optistruct design goals and functionalities.

Mass Volume Center of Gravity

Moment of Inertia Static Compliance Static Displacement

Natural Frequency Buckling Factor Static Stress, Strain, Forces

Static Composite Stress, Strain,
Failure Index

Frequency Response
Displacement, Velocity,

Acceleration

Frequency Response Stress,
Strain, Forces

Weighted Compliance
Function Weighted Frequency Combined Compliance Index

Temperature

As gradient search methods are iterative procedures, it is necessary to instruct the
optimizer on how long to search by imposing the maximum number of iterations. Further,
it is necessary to specify how fine the search must be: If the difference between two
consecutive proposals is less than a convergence tolerance, acceptable from a design
perspective, the optimizer concludes the job. Before starting the optimization, OptiStruct
performs a design sensitivity analysis of the structural responses (with respect to the design
variables) to maximize the efficiency of the optimization process [22].

3.1.3.1. Structural Finite Element Model—Starting Model

The Nastran FEM used for the optimization was primarily built to allow for strength
and buckling verification in the preliminary design phase. The model is a Global FEM,
meaning that it also comprises the remaining subsystems of the vehicle as super-elements or
concentrated masses (i.e., fuselage, wing tip nacelles, tail, systems hosted in the wing, fuel
mass). Analyses are performed by activating the INERTIA RELIEF option with SUPORT at
aircraft Center of Gravity (CoG). The wing FE model is shown in Figure 3. It is characterized
by 2D (TRIA and QUAD) elements for the wing’s upper and lower skin, stringers, spar
webs and ribs; and by 1D (CROD) elements for caps. RBE3 elements have the function
of transferring loads to the structure (inertial; aerodynamics). Suitable RBE2 elements
simulate the structural links at the wing–fuselage junction.
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For composite element properties, PCOMP cards and 2D orthotropic material MAT8
are used. PSHELL and MAT1 cards are for isotropic material parts. The sizing load
conditions are a number of 50 conditions, which comprise aerodynamic loads, propulsion
forces at nacelle prop-rotor location and inertia loads.
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3.1.3.2. Materials

The main wing components (i.e., spars, skins, shape ribs) are designed in carbon
fiber-reinforced plastics, while the end ribs and ribs joined to the wing–fuselage links are
designed in aluminum alloy. Tables 2 and 3 show the properties used for the optimiza-
tion phases.

Table 2. Composite material properties [23].

Properties Direction Modulus RTD Value (MPa) Density
(Kg/m3)

Cured Ply
Thickness (mm)

Tension 0 E11 59,777 1520 0.31877

Compression 0 −E11 55,916

Tension 90 E22 58,053

Compression 90 −E22 55,020

Shear - G12 3930

Poisson ratio - ν12 0.056

Table 3. Aluminum alloy 7050 (room temperature values).

Properties Direction
(◦)

Modulus
(GPa)

Tensile Strength
(MPa)

Density
(Kg/m3)

Yield Strength
(MPa)

Tension 0, 90 71 525 2750 470

Shear - 26.5 -

Poisson ratio - 0.33 0.056

3.1.3.3. Loads

The loads provided by the vehicle manufacturer are in terms of accelerations and
rates at vehicle CoG plus the corresponding aerodynamic pressures, balancing loads and
concentrated loads such as the prop-rotor thrusts. Two sets of load cases are provided:
twenty-five sizing loads conditions at International Standard Atmosphere (ISA) ambient
condition, plus an additional twenty-five sizing conditions at −45◦ Outside Air Temper-
ature (OAT) ambient condition (cold day). The load conditions are employed to load
the wing FEM model and the remainder of the vehicle in order to perform inertial relief
analysis on the whole tiltrotor (each load condition determines fully balanced vehicle
conditions). Preliminary MSC Nastran static analysis was performed in order to calcu-
late the shear/bending/torsion diagrams along the wing and to identify the most critical
load conditions to be used in the optimization FE loop. Each set contains 25 load cases,
encompassing ground (e.g., taxi, turning, brake roll, landing), flight maneuvers both in
helicopter and aircraft modes (e.g., symmetric pull-up, symmetric push-over, yaw, rolling)
and gust conditions. For the case under study, the most demanding load conditions have
been proven to be LC09 (low speed pull-up maneuver in helicopter mode) and LC12
(Taxi). In the Figures 4 and 5, the wing internal loads diagram of the most demanding load
conditions are presented.
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For the first-phase optimization, all the 50 load conditions were used. For the second-
phase optimization, a sub-set of the six most demanding loading conditions was used
(Table 4).
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Table 4. Most demanding loading conditions.

Load Case ID Description Wing Mass Condition Nacelle Angle Airspeed (V/VD)

9 Symmetric Pull-up Zero Fuel 90 0.42

12 Taxi Full Fuel 95 0.00

13 Gust Condition Full Fuel 0 0.43

15 Symmetric Pull-up Full Fuel 95 0.41

17 Symmetric Pull-up Zero Fuel 90 0.99

25 Rolling Pull-out Full Fuel 30 1.06

3.1.3.4. Modifications to the Model Loading Strategy

The baseline Global FEM described in Section 3.1.3.1 was first converted into Altair
Hypermesh compatible format, and subsequently it was necessary to avoid the use of
INERTIA RELIEF, which resulted to be incompatible with buckling in Optistruct. Moreover,
it was necessary to convert super-element matrices from op2 or output binary format to
.pch format. The composite laminates PCOMP were converted into equivalent PSHELL.
The equivalent PSHELL was chosen as the design variable, while the minimization of the
mass is the design objective. The design constraints are set on buckling first eigenvalue,
strains, wing tip displacements and rotations. A scheme of the process followed is shown
in Figure 6.
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As regards the modification needed to avoid the use of INERTIA RELIEF, the model
was constrained at the SUPORT grid (CoG), and then linear and angular accelerations
(previously calculated with the use of INERTIA RELIEF) were applied to the model to take
into account inertial forces for the buckling runs.

Each of the loading conditions is characterized by a different position of the center of
gravity, different fuel mass values, and different positions of the moveable surfaces and
the tip masses. For this reason, to easily allow the program to select the appropriate mass
conditions for each analyzed load case, it was necessary to define multipoint constraint
equations for masses and CoG grids. Once the preparatory phase of the model is finished,
the thicknesses associated with the equivalent PSHELL of the upper panel’s skin, lower
panel’s skin and of the spar are selected as design variables, by imposing upper and lower
limit values. Subsequently the response functions are defined: the first buckling eigenvalue,
the torsional and flexural stiffness, and total structural mass. The final objective is the
minimization of the mass (objective response). Different constrained optimization analyses
were performed for the different design constraints.

3.1.4. Wing Stiffness Evaluation from FEM (Second Phase)

The wing Finite Element model resulting from the Optistrut optimization is then used
to extract the wing stiffness properties of a beam-like model equivalent to the wing FEM
in order to feed the aeroelastic stick-beam model. The evaluation of the wing stiffness
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properties is based on static FE calculation with unitary loads (forces/moments) applied at
the tip of the wing, having as output a set of nodal displacements at a certain number of
wingspan stations. The calculation of equivalent beam properties is done by means of a
3D point cloud registration method [24]. The position and the displacements of the nodes
corresponding to the selected wing stations were extracted from the BDF and PCH Nastran
files for the un-deformed and deformed wing (for each one of the six load conditions: force
and moment along each axis). Sections displacements and rotations were then calculated
as the rigid motions (three translations and three rotations) of the un-deformed section
that minimize the root mean square error between the FEM deformed and rigid displaced
section points.

Relations between beam stiffness and section displacements can be obtained making
use of the theory for Saint-Venant [24].

4. Preliminary Structural Design Results
4.1. Results of the Optimization Process and Flutter Analysis in the First Phase

The work already presented in [2] gives a number of solutions on the Pareto front,
which can also be analyzed from a manufacturing point of view. In particular, the solution
which guarantees the strength and buckling requirements at minimum mass and is feasible
from a manufacturing point of view is selected for flutter analyses, and if cleared (flutter
speed VF ≥ 1.15 times the Dive Speed, VD), it is further involved in the second-level
optimization performed in this work, which is based on FE models.

4.2. Results of Finite Element Optimization (Second Phase) and Comparison with Respect to the
Base Design

By performing dimensional optimizations in Optistruct, it is possible to obtain a wing-
box with minimum weight, and optimal strength and flexural and torsional stiffness. The
results obtained in terms of percentage of weight reduction with respect to the baseline
model obtained in the first-level optimization for the main combinations of interest are
reported in Table 5, where it is apparent that the more the objective functions considered,
the less the weight reduction obtained.

Table 5. Results of Optistruct optimization in terms of percentage of delta weight with respect to the
baseline obtained in the first-phase optimization.

Optimization Delta-Weight (%)

Buckling −26%

Buckling
Stiffness (Out-of-plane flexural and Torsional) −14%

Buckling
Strength −5%

Buckling
Stiffness (In-plane and Out-of-plane flexural and Torsional)

Strength
−3%

As an example, Figures 7 and 8 depict with different colors the thickness distribution
of the upper and lower skin, for the buckling-optimized case, where the numbers represent
the fraction with respect to the maximum thickness.
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4.3. Wing Stiffness Evaluation

Starting from the optimized configuration, the beam-like stiffness properties of the
wing are evaluated (Section 3.1.4) and shown in Figure 11. The output of this calculation
will be used for updating the aeroelastic model and then to perform the flutter calculation
on the optimized configuration.

Aerospace 2021, 8, x  14 of 16 
 

 

 
Figure 11. Wing stiffness properties and elastic axis position, to feed aeroelastic model. 

4.4. Flutter Results Comparison 
A schematic comparison between flutter results related to first-phase and second-

phase optimizations is shown in Table 6. 

Table 6. Comparison of flutter speed (ratio of flutter speed and dive speed) between first-phase 
and second-phase optimization. 

Case Analyzed First-Phase Optimized Wing Second-Phase Optimized Wing 
Full fuel case 1.52 1.67 
Zero fuel case 1.48 1.63 

With respect to the first-phase optimization, no changes in the flutter mechanisms 
have been detected. Due to the fact that the tail is the main driver of these flutter mecha-
nisms, the only effect of the update of the wing structural properties, in line with the wing 
second-phase optimization, is a small increase of the flutter speed. 

5. Higher Fidelity Models 
The results of this two-level optimization, in terms of wing-box sizing, will be trans-

ferred into higher fidelity models (detailed FEM and digital mockup) to verify compliance 
with all the remaining requirements, such as stress and fatigue, crashworthiness, accessi-
bility, assembly and integration, and manufacturability. After that, the final wing config-
uration will be launched for manufacturing. In Figure 12, an image of the digital mockup 
(DMU) is reported, which takes into account manufacturing, assembly, installation, acces-
sibility to internal systems and maintenance constraints. 

Figure 11. Wing stiffness properties and elastic axis position, to feed aeroelastic model.

4.4. Flutter Results Comparison

A schematic comparison between flutter results related to first-phase and second-
phase optimizations is shown in Table 6.
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Table 6. Comparison of flutter speed (ratio of flutter speed and dive speed) between first-phase and
second-phase optimization.

Case Analyzed First-Phase Optimized Wing Second-Phase Optimized Wing

Full fuel case 1.52 1.67
Zero fuel case 1.48 1.63

With respect to the first-phase optimization, no changes in the flutter mechanisms have
been detected. Due to the fact that the tail is the main driver of these flutter mechanisms,
the only effect of the update of the wing structural properties, in line with the wing
second-phase optimization, is a small increase of the flutter speed.

5. Higher Fidelity Models

The results of this two-level optimization, in terms of wing-box sizing, will be trans-
ferred into higher fidelity models (detailed FEM and digital mockup) to verify compli-
ance with all the remaining requirements, such as stress and fatigue, crashworthiness,
accessibility, assembly and integration, and manufacturability. After that, the final wing
configuration will be launched for manufacturing. In Figure 12, an image of the digital
mockup (DMU) is reported, which takes into account manufacturing, assembly, installation,
accessibility to internal systems and maintenance constraints.
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6. Conclusions

This work is a continuation of a former work by the authors [2]. The previous and
the present works represent an overview of a two-level optimization of the composite
wing of a tiltrotor. The main requirements underpinning the design of the wing have been
presented, with a focus on the limitation on certain wing structural mode frequencies and
aeroelastic clearance. The objective of the present paper is the description of the second
part, i.e., second-level multi-objective optimization by using FE models (not engineering
models as done in the former work). The problems (e.g., compatibility issues between
Optistruct and Nastran INERTIA RELIEF) encountered in implementing such a process
and the modification needed to the model have been described. The output of the process
is the best solution—in terms of thickness—which minimizes the structural weight and
is compliant with stiffness (flexural and torsional), strength and buckling requirements.
The validation of the numerical methodology and tools could be delegated to other papers,
using the preliminary results obtained in this work as a reference and the experimental
results that will be achieved in the next project phases. The acquired experience with
tiltrotor wing design allowed the authors to reduce the computational optimization effort
by streamlining the set of sizing load conditions, which are quite different with respect to a
fixed-wing aircraft. The optimal solution was then analyzed from a flutter point of view
and results compared with previous outcomes, showing that the optimized wing structure
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is flutter-free in the flight envelope. The results of this two-level optimization, in terms of
wing-box sizing, will be transferred into higher fidelity models (detailed FEM and digital
mockup) to verify compliance with all the remaining requirements, such as stress and
fatigue, crashworthiness, accessibility, assembly and integration, and manufacturability.
After that, the final wing configuration will be launched for manufacturing.

Author Contributions: All authors have equally contributed to this article. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Clean Sky 2 Joint Undertaking under the European Union’s
Horizon 2020 research and innovation program under Grant Agreement number: 807090—FRC GAM
2018—H2020-IBA-CS2-GAMS-2017 Amendment Reference No. AMD-807090-23 [1].
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