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Abstract: The coupling of the longitudinal and lateral stability modes of an aeroplane is considered in
two cases: (i) weak coupling, when the changes in the frequency and damping of the phugoid, short
period, dutch roll, and helical modes are small, i.e., the square of the deviation is negligible compared
to the square of the uncoupled value; (ii) strong coupling, when the coupled values may differ
significantly from the uncoupled values. This allows a comparison of three values for the frequency
and damping of each mode: (i) exact, i.e., fully coupled; (ii) with the approximation of weak coupling;
(iii) with the assumption of decoupling. The comparison of these three values allows an assessment
of the importance of coupling effects. The method is applied to two flying wing designs, concerning
all modes in a total of eighteen flight conditions. It turns out that lateral-longitudinal coupling is
small in all cases, and thus classical handling qualities criteria can be applied. The handling qualities
are considered for all modes, namely the phugoid, short period, dutch roll, spiral, and roll modes.
Additional focus is given to the pitch axis, considering the control anticipation parameter (CAP). The
latter relates to the two kinds of manouever points, where damping vanishes, that are calculated for
minimum speed, take-off, and initial and final cruise conditions. The conclusion compares two flying
wings designs (the “long narrow” and “short wide” fuselage concepts) not only from the point of
view of flight stability, but also from other viewpoints.

Keywords: airline stability; longitudinal-lateral coupling; handling qualities; flying-wing

1. Introduction

The longitudinal stability of an aeroplane is specified by a 4 × 4 matrix, which
determines the phugoid and short-period modes [1–5]. Likewise, the lateral stability is
specified by a 4 × 4 matrix, which specifies the dutch roll and helical modes [6–10].
In the present account, the possibility of lateral-longitudinal coupling (Section 2.1) is
considered leading to an 8 × 8 matrix, which includes [11,12], besides the longitudinal
and lateral stability matrices, two 4 × 4 coupling matrices (Section 2.2). Relative to the
case of negligible coupling, there may be weak coupling (Section 2.3) which is a small
perturbation, or strong coupling (Section 2) for which significant differences occur. In the
case of helicopters [13], larger stability matrices may be needed due to rotor-body coupling.
The theory developed applies both to strong and weak coupling, and in the latter case
specifies the error in neglecting coupling effects. The application is made to two flying
wings designs (Section 3), and it is found that in all flight configurations considered the
terms in the coupling matrices are quite small compared with those in the longitudinal
and lateral matrices. The general theory in the weak coupling casa confirms that the small
coupling terms have a negligible effect on the airplane modes (Section 3.1). This implies
that it is possible to apply (Section 3.2) classical handling qualities (HQs) criteria [14–18]
to the phugoid, short-period, dutch roll and helical modes. Focusing on pitch response
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the CAP (Control Anticipation Parameter) criterion is also considered. It relates to the
manouever points that correspond to center of gravity positions for which mode damping
vanishes and are also calculated (Section 3.3).

The stability assessment concerns two flying wing designs, a “long-narrow” and a
“short-wide” fuselage concept (Section 4). The helical mode always splits into roll and
spiral modes (Section 4.1), but the dutch roll mode never splits into two non-oscillatory
modes. The phugoid and short-period modes do, in some flight conditions, split into
two non-oscillatory modes (Section 4.2). It is found that the HQs are level 2 and level
3 for the slow modes (phugoid and dutch roll) which are easily mastered [19–22] by a
fly-by-wire control system, whereas the fast (short-period, spiral and roll) modes tend to
have level 1 HQs (Section 3.3). The manouever points may limit the c.g. travel, but maybe
there is no need for fuel trim tanks (Section 5), as the stability matrices provide indicated
generally acceptable flight characteristics [23,24]. The analysis in this paper shows that
long-and-narrow BWB1 and short-and-wide BWB2 configurations can have similar stability
characteristics for some modes and dissimilar for others. Each configuration difference
between BWB1 and BWB2 can affect several stability derivatives. Conversely, each stability
derivative can be affected by several configuration differences between BWB1 and BWB2.
A detailed relation among configuration differences and changes of stability derivatives
is a complex process beyond the scope of the present paper. The scope for the paper, for
which the necessary and sufficient data is provided, is to consider the HQs flight modes,
the CAP criterion and the manouever points comparing two BWB configurations in several
low and high-speed flight conditions, including cruise, take-off, and initial and final climb.

There is considerable interest in the flying wing [25–29] as it is favourable from an
aerodynamic [30–36] point-of-view of the lift-to-drag ratio, promising less drag for a given
weight, and hence needing less power and implying lower fuel consumption and emissions
for the same flight distance. Two alternatives of efficient aircraft configurations are the
flying wing [37–47] and box wing [48,49]. A high-aspect ratio flying wing with wide-short
centerbody or “fuselage” (BWB 2) would appear to be aerodynamically preferable to a low-
aspect ratio flying wing with long-narrow centerbody (BWB 1) closer to a conventional tube-
and-wing Cayley-type aircraft configuration [50–52]. However, there are counterarguments
favouring BWB1 such as control [53]. The short-wide BWB2 has a smaller moment arm
for pitch control and for rotation at take-off. If the flying wing has overwing engines for
noise shielding, there is a strong pitch-down moment to be compensated more easily with
a long moment arm by smaller deflection of pitch control surfaces with less area. The
overwing engine location, while ideal for noise shielding [54–59], places the engine nacelles
in an accelerated flow leading to significant wave drag at lower cruising speeds. The
short-and-wide BWB2 would subject outboard passengers to larger roll motions than the
long-and-narrow BWB 1. The advantages and disadvantages of the long-and-narrow (BWB
1) and short-and-wide (BWB 2) designs suggest the comparison of two notional designs
as regards their stability, control, HQs, and manoeuvre points in addition to other aspects
covered in the literature [60–63].

2. Theory of Longitudinal-Lateral Coupling

The link between the decoupled and strongly coupled lateral and longitudinal motions
of an aeroplane (Section 2.1), is made through the case of weak coupling (Section 2.2),
for which the frequency and damping changes can be calculated from the decoupled
state (Section 2.3).

2.1. Basic Coupled and Decoupled Modes

We choose the usual body reference system with 0z axis vertically downwards 0x axis
in the plane of symmetry, in the direction of motion, and thus 0y is orthogonal to the plane
of symmetry. The decoupled motion is extensively covered in the literature [1–10,13–24]
and will be mentioned in passing. The decoupled longitudinal motion for a rigid aircraft is
specified by the variables (1):



Aerospace 2021, 8, 77 3 of 25

i = 1, 2, 3, 4 : Xi = {u, w, q, θ}, (1)
and denoting by dot time derivatives, they are related linearly Equation (2a) for small perturbations:

i, j = 1, 2, 3, 4 :
.

Xi = ZijXj, Zij ≡ ∂
.

Xi/∂Xj, (2a,b)

through the longitudinal stability matrix Equation (2b), whose eigenvalues Equation (3a):

i, j = 1, 2, 3, 4 : A ≡ det
(

Zij − λδij

)
=
(

λ2 + 2ζpωpλ + ω2
p

)(
λ2 + 2ζsωsλ + ω2

s

)
, (3a,b)

specify Equation (3b) the natural frequency ω and damping ratio ζ (or amplification
ratio ξ = −ζ) of the phugoid ‘p’ and short period ‘s’ modes.

Still, in the case of decoupled motion, the lateral variables (4):

i = 5, 6, 7, 8 : Xi = {v, p, r, ϕ}, (4a)

are related to their time derivatives linearly Equation (2a) though the lateral stability matrix
Equation (2b) with i, j = 5, 6, 7, 8. Its eigenvalues:

i, j = 5, 6, 7, 8 : B ≡ det
(

Zij − λδij

)
=
(

λ2 + 2ζdωdλ + ω2
d

)(
λ2 + 2ζhωhλ + ω2

h

)
(4b)

specify the natural frequency ω and damping ratio ζ of the dutch roll ‘d’ and helical ‘h’
modes; by helical mode is meant the combination of spiral “l” and roll “r” convergence
modes; when these are separate, the complex conjugate roots for λ in (6) are replaced by
distinct real roots.

In the case of arbitrary strong coupling of longitudinal Equations (1a,b) and lateral
Equations (4a,b) motions, the eight variables (1) and (4) combined in (5):

i, j = 1, 2, 3, 4, 5, 6, 7, 8 : Xi ≡ {u, w, q, θ; v, p, r, ϕ}, (5)

are related by a complete matrix Equation (2b) of linear stability derivatives, whose eigenvalues

i, j = 1, 2, 3, 4, 5, 6, 7, 8 : C ≡ det

(
Zij − λδij

)
=

4

∏
g=1

(
λ2 + 2ζgωgλ + ω2

d

)
=

4

∏
g=1

Cg, (6a,b)

specify the natural frequencies ωg and damping ratios ζg of four modes g = 1,..., 4. The
fundamental issue is whether these four modes can be related to the phugoid ‘1′, short
period ‘2′, dutch roll ‘3′ and helical ‘4′ modes, as suggested in Table 1. This identification
should be possible when the coupling is weak, that is the coupled modes ωg with g = 1,...,

4, differ little from the decoupled modes ωg, in the sense
(
ωg −ωg

)2
<< ωg

2.

Table 1. Stability modes of a rigid airplane.

Type Mode Frequency Damping

Longitudinal
Phugoid ωp ≡ ω1 ζp = ζ1

Short period ωs ≡ ω2 ζs = ζ2

Lateral
Dutch roll ωd ≡ ω3 ζd = ζ3

Helical ωh ≡ ω4 ζh = ζ4

2.2. Weak Coupling and Mode Properties

The exact, coupled stability relation Equation (2b) with i, j = 1, . . . , 8, involves four
4 × 4 submatrices namely longitudinal Equation (7a), lateral Equation (7b) and upper
Equation (7c) and lower Equation (7d) coupling:

Zij =


i, j = 1, 2, 3, 4 : longitudinal ∼ O(1),
i, j = 5, 6, 7, 8 : lateral ∼ O(1),

i = 1, 2, 3, 4; j = 5, 6, 7, 8 : upper coupling ∼ O(ε),
i = 5, 6, 7, 8; j = 1, 2, 3, 4 : lower coupling ∼ O(ε),

(7a–d)

and by weak longitudinal-lateral coupling it is meant (8):
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ε2 << 1 :



.
u
.

w
.
q
.
θ
−
.
v
.
p
.
r
.
ϕ


=



O(1) O(1) O(1) O(1) | O(ε) O(ε) O(ε) O(ε)
O(1) O(1) O(1) O(1) | O(ε) O(ε) O(ε) O(ε)
O(1) O(1) O(1) O(1) | O(ε) O(ε) O(ε) O(ε)
O(1) O(1) O(1) O(1) | O(ε) O(ε) O(ε) O(ε)
− − − − | − − − −

O(ε) O(ε) O(ε) O(ε) | O(1) O(1) O(1) O(1)
O(ε) O(ε) O(ε) O(ε) | O(1) O(1) O(1) O(1)
O(ε) O(ε) O(ε) O(ε) | O(1) O(1) O(1) O(1)
O(ε) O(ε) O(ε) O(ε) | O(1) O(1) O(1) O(1)





u
w
q
θ
−
v
p
r
ϕ

, (8)

that the upper Equation (7c) and lower Equation (7d) coupling matrices have terms of O(ε)
smaller than O(1) for the longitudinal Equation (7a) and lateral Equation (7b) coupling
matrices where ε2 is negligible.

In the general case of strong coupling, the natural frequency ∆ωg and damping ratio
∆ζg changes due to coupling:

g = 1, ..., 4 :ωg = ωg + ∆ωg, ζg = ζg + ∆ξg, (9a,b)

can be introduced into the modal factors Equation (6b) of the characteristic polynomial (6a)
for the coupled system:

Cg ≡
(

λ2 + 2ζgωgλ + ω2
g

)
= λ2 + 2

(
ζg + ∆ζg

)(
ωg + ∆ωg

)
λ +

(
ωg + ∆ωg

)2.
(10)

It may be expected, in case (8) of weak coupling:(
∆ζg

)2
<<

(
ζg

)2
,

(
∆ωg

)2
<<

(
ωg
)2,

(
∆ζg

)(
∆ωg

)
<< ζg ωg, (11a–c)

that the natural frequency and damping ratio changes be relatively small.
In the case of weak coupling Equations (11a–c), the modal factor (10) in the coupled

characteristic polynomial Equation (6b) simplifies to:

ε2 << 1 :Cg ≡ λ2 + 2ζgωgλ + ω2
g + 2

[
ωg∆ωg + λ

(
ωg∆ζg + ζg∆ωg

)]
. (12)

where the first three terms on the r.h.s. of (12) correspond Equation (13a) to the decoupled
modal factor:

Cg ≡ λ2 + 2ζgωgλ + ωg
2, C =

4
Π

g=1
Cg = A B, (13a,b)

for which the decoupled characteristic polynomial is Equation (13b) the product of the
longitudinal (3) and lateral (4) characteristic polynomials. The deviation from decoupling
in the modal factors (10) of the complete characteristic polynomial is specified (12) and
Equation (13a) by Equations (14a,b):

∆Cg ≡ Cg − Cg = 2 ωg ∆ωg + 2 λ Eg, Eg ≡ ωg ∆ζg + ζg ∆ωg, (14a–c)

where is introduced the weak coupling coefficient Equation (14c).
Before proceeding to calculate the changes in frequency and damping (Section 2.3),

a brief review is conducted of the mode properties needed in the sequel (Section 3). The
time response is specified by (15) with natural frequency ωg and damping ratio ζg for the
decoupled modes: ..

Xg + 2 ζgωg

.
Xg + ω2

gXg = 0, (15)

and likewise, with ωg, ζg correspond to the coupled modes:
..
Xg + 2ζgωg

.
Xg + ω2

gXg = 0. (16)

In both instances the eigenvalues are the roots of (17):

0 = λ2 + 2ζωλ + ω2, (17)
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where ω is the natural frequency and ζ the damping ratio of any mode. Three cases I to III
arise [9,24,64]. In case I of subcritical damping Equation (18a), the eigenvalues are complex
conjugate Equation (18b):

|ζ| < 1 : λ± = −ζω± iω
√

1− ζ2, (18a,b)

and: (i) the real part is the product amplification ratio Equation (19a) or minus the damping
ratio Equation (19b) by the natural frequency:

Re
(
λ±
)
= ξω = −ζω; ±Im

(
λ±
)
= ω

√
1− ζ2 ≡ Ω, (19a–d)

(ii) the imaginary part is the oscillation frequency Ω that equals the natural frequency
Ω = ω in the absence of damping ζ = 0, it is smaller 0 < Ω < ω in the presence of subcritical
damping 0 < ζ < 1 and vanishes Ω = 0 for critical damping ζ = 1.

For case II of supercritical damping Equation (20a), the oscillation frequency Equations (19c,d)
would be imaginary, which means that the two eigenvalues are real Equation (20b) and
involve the modulus of the oscillation frequency Equation (20c):

|ζ| > 1 : λ± = −ζω±ω
√

ζ2 − 1 = −ζω± |Ω|. (20a–c)

Thus, in case of supercritical damping Equation (20a) there are two damped modes
with eigenvalues 0 > λ+ > λ− since |Ω| < ω, so that λ− has the slowest decay. In the case
of amplification Equations (21a,b), the response is still oscillatory Equations (18a,b) if ζ2 < 1,
but it has exponentially increasing instead of decreasing amplitude with time constant
Equation (21b)

ζ = −ξ > 0 : τ =
1
|ζ| , T =

log 2
|ζ| = 0.693τ, (21a–d)

and time to double amplitude Equations (21c–d). In the case of overcritical amplification
0 > ξ > −1, the real eigenvalues Equations (20b,c) would be positive λ+ > λ− > 0 and the
fastest growing mode is λ+, which could be used instead of |ζ| in the time constant
Equation (20b) and time to double amplitude Equations (21c,d).

For an initial value X0 and rate
.

X0 at the time t = 0, the solution of (15) or (16) specifies
the response at time t that is: (i) oscillatory Equation (22a) in the case I of subcritical damp-
ing 0 < ζ <1 or amplification 0 > ξ > −1 in Equation (22b); (ii) monotonic Equation (24a)
in the case II of supercritical damping ζ > 1 or amplification ξ < −1 in Equation (24b);
(iii) linear in time Equation (23a) in the case III between (i) and (ii) of critical damping ζ = 1
or amplification in Equation (23b):

X(t) = exp(−ζωt)×


X0 cos(Ωt) +

[( .
X0 + ζωX0

)
/Ω
]

sin(Ωt) if ζ2 < 1 (22a, b)

X0 +
( .

X0 + ζωX0

)
t if ζ = ±1 (23a, b)

X0 cos h(|Ω|t) +
[( .

X0 + ζωX0

)
/|Ω|

]
sin h(Ωt) if ζ2 > 1 (24a, b)

In all three cases, there is an exponential factor which dominates the asymptotic
response because |Ω| < ω in Equation (19d), leading to decay for ζ < 0 and growth for
ζ > 0 as time t increases.

2.3. Calculation of Frequency and Amplification Changes
The perturbation in natural frequency Equation (9a) and damping ratio Equation (9b) leads

to a perturbation in the characteristic polynomial (6) of the coupled system Equations (25a):

∆C = C− C = C− A B, C = A B =
4
Π

g=1
Cg, (25a,b)

relative to that Equation (25b) of the uncoupled system, which is specified by:

C− C =
4

∏
g=1

(
Cg + ∆Cg

)
−

4

∏
g=1

Cg =
4

∑
g=1

Cg

4

∑
h = 1
h 6= g

∆Ch, (26a,b)
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to first order in the perturbations by (27):

∆C = 2
4

∑
g=1

(
ωg ∆ωg + λEg

) 4

∏
h = 1
h 6= g

∆Ch, (27)

where Equations (14a,b) was used.
The perturbation of the characteristic polynomial Equation (25a) is a polynomial of

degree seven in λ:

∆C = C− AB =
8

∑
a=1

daλa−1, (28)

because the term of degree eight is the same λ8 in C in Equation (6b) and in the product of
A in Equation (3b) by B in Equation (4b), and thus cancels by subtraction. The coefficients
in (27) are the products of three modal factors of the coupled characteristic polynomial
Equation (6b), and thus are polynomials of degree six in λ, with leading term λ6, viz.:

4
Π

h = 1
h 6= g

Ch = λ6 +
6

∑
b=1

dgbλb−1. (29)

Note that the eight coefficients da with a = 1, . . . , 8 in (28), and 4 × 6 = 24 coefficients
dgb with (g = 1, . . . , 4; b = 1, . . . , 6) in (29) are all determined from the 2 × 4 × 4 = 32
elements of the longitudinal Equation (7a) and lateral Equation (7b) stability matrices
for the decoupled case. Substituting (28) and (29) in (27) leads to an identity between
polynomials of degree seven in λ, viz.:

8

∑
a=1

da λa−1 = 2
4

∑
g=1

(
ωg∆ωg + λ Eg

)
×
{

λ6 +
6

∑
b=1

dgb λb−1

}
. (30)

Equating the coefficients of equal powers of λ in (30) leads to a system of 8 equations,
which are linear in the 4 pairs of variables

(
Eg, ζg

)
with g = 1, . . . , 4. These variables are

equivalent to
(
∆ωg, ∆ζg

)
, Equation (14c) in the form (31):

∆ωg =
(

Eg −ωg∆ζg

)
/ζg, (31)

and thus the changes in natural frequency and damping ratio can be determined by solving
the system (30).

In order to implement this solution, the system (30) is first written explicitly in the
form (32),

d8
d7
d6
d5
d4
d3
d2
d1

 =
4

∑
g=1


∆ζg
Eg
0
0
0
0
0
0

0
∆ζg
Eg
0
0
0
0
0

0
0

∆ζg
Eg
0
0
0
0

0
0
0

∆ζg
Eg
0
0
0

0
0
0
0

∆ζg
Eg
0
0

0
0
0
0
0

∆ζg
Eg
0

0
0
0
0
0
0

∆ζg
Eg




1
d6g
d5g
d4g
d3g
d2g
d1g

 (32)

in which the 8-vector on the l.h.s. is the sum of four terms, each consisting of an 8 × 7 matrix
multiplying a 7-vector. The variables

(
Eg, ∆ζg

)
equivalent to frequency and damping

changes appear linearly in the 8 × 7 matrices in (32), which can be re-written as a linear
relation with the vector

(
∆ζg, Eg

)
leading to an 8 × 8 matrix:



d8
d7
d6
d5
d4
d3
d2
d1



=


1
d61
d51
d41
d31
d21
d11

0

1
d62
d52
d42
d32
d22
d12

0

1
d63
d53
d43
d33
d23
d13

0

1
d64
d54
d44
d34
d24
d14

0

0
1

d61
d51
d41
d31
d21
d11

0
1

d62
d52
d42
d32
d22
d12

0
1

d63
d53
d43
d33
d23
d13

0
1

d64
d54
d44
d34
d24
d14





∆ζ1
∆ζ2
∆ζ3
∆ζ4
E1
E2
E3
E4


. (33)

This system can be inverted to specify the
(
∆ζg, Eg

)
and thus the changes (31) in

damping ratios ∆ζg and natural frequencies ∆ωg. e have thus obtained three sets of results,
indicated in Table 2: (i) the natural frequencies and damping ratios of the decoupled modes
Equations (3a,b) and Equations (4a,b) in Table 1; (ii) the natural frequencies and damping
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ratios of the strongly Equations (9a,b) coupled modes Equations (6a,b); (iii) the natural fre-
quency and damping ratio changes Equations (33, 31) for weak coupling Equations (11a–c).

Table 2. Comparison of coupled, weakly and strongly coupled modes.

Mode Natural Frequency Damping Ratio

Decoupled ωg ζg

Weakly coupled ωg + ∆ωg ζg + ∆ζg

Condition
(
∆ωg

)2
<<

(
ωg
)2 (

∆ζg
)2

<<
(

ζg

)2

Strongly coupled ωg ζg

Condition ∆ωg ≡ ωg −ωg ∼ ωg ∆ζg ≡ ζg − ζg ∼ ζg

3. Natural Stability of Flying-Wing Aircraft

The flying wing configuration has attracted considerable interest for a long-time be-
cause it offers a high lift-to-drag ratio, and thus good aerodynamic efficiency. The early
attempts to realize its potential, faced the stability problems inherent in the configura-
tion. The preceding theory is applied to two flying wing aeroplane designs, considering
the natural modes (Section 3.1) and resulting HQs (Section 3.2) and manouever points
(Section 3.3).

3.1. Relevance of Longitudinal-Lateral Coupling
The complete 8 × 8 stability matrix Equation (2b) ≡ Equations (7a–d) with i, j = 1, 2, 3,

4, 5, 6, 7, 8 written explicitly (34):
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.
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− − − − | − − − −
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ϕ


, (34)

where the forces and moments are divided by the mass and inertia, and steady, straight,
and level flight parameters are used so that Zij has the dimensions of inverse time. There
are three cases: (i) if the coupling sub-matrices vanish Equations (7c,d) then the longi-
tudinal and transversal modes are strictly decoupled; (ii) if the coupling submatrices
Equations (7c,d) have terms comparable to those of the longitudinal Equation (7a) or lat-
eral Equation (7b) stability matrices Equations (7a,d), then there is strong coupling; (iii) if,
when compared with the longitudinal Equation (7a) and lateral Equation (7b) stability
matrices of O(1), the coupling submatrices Equations (7c,d) have terms O(ε) which are
small but non-negligible ε2 << 1, then weak coupling results.

The application given next concerns two flying wing designs (“1” and “2”) in a total of
eighteen flight conditions indicated in Table 3. Four flight conditions are broadly similar for
the two configurations: (a,b) a minimum speed flying condition; (c,d) the take-off condition
corresponding to a speed 14% higher; (e–h) in contrast with the preceding low-speed (a
to d) flight conditions, the high-speed flight conditions (e to h) concern the final (e,f) and
initial (g,h) stages of cruise, respectively, with lower and higher weight whose difference
is the fuel consumption. For the first design, two further flight conditions are considered:
(i) initial climb and; (j) final climb at an intermediate weight. For the four flight conditions
common to the two designs, two positions of the mean aerodynamic chord are considered,
leading to eight cases (“a” to “h”). The clean configuration is considered for all cases,
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including the extra climb cases (“i” and “j”) for the first design, the exception being the
first design low-speed and take-off (cases “1a” to “1d”).

Table 3. Flying-wing flight conditions.

Design Flight Condition Mass Speed Altitude Flaps c.g.

BWB Case × 103 kg kts × 103 ft degrees % mac

1

1a 550 176 0 15/25 25

1b 550 176 0 15/25 35

1c 550 200 0 15/25 25

1d 550 200 0 15/25 35

1e 670 M = 0.85 39 clean 35

1f 670 M = 0.85 39 clean 39

1g 760 M = 0.85 35 clean 35

1h 760 M = 0.85 35 clean 39

1i 700 300 0 clean 35

1j 700 M = 0.70 30 clean 39

2

2a 550 176 0 clean 35

2b 550 176 0 clean 39

2c 550 200 0 clean 35

2d 550 200 0 clean 39

2e 670 M = 0.85 39 clean 35

2f 670 M = 0.85 39 clean 39

2g 760 M = 0.85 35 clean 35

2h 760 M = 0.85 35 clean 39

The stability matrices (for example in Table 4 for the case 1a in Table 3) show that the
terms of the coupling matrices Equations (7c,d) are small compared with the terms of the
longitudinal Equation (7a) and lateral Equation (7b) matrices and the general theory for
weak coupling shows that the effect on frequency Equation (9a) and damping Equation (9b)
can be neglected Equations (11a–c). The general theory with strong coupling was developed
in the expectation of longitudinal-lateral coupling that may occur is some flight conditions,
like high angle-of-attack close to stall. In the present cases of flight at moderate angles-
of-attack far from stall, the weak coupling version of the general theory is still useful to
confirm that the small terms in the coupling matrices do not affect to a significant extent
the frequencies and dampings, allowing the application of the decoupled HQs criteria, for
which there exists substantial literature [64–80].

As an example, the oscillation frequency and damping ratio of all modes is indicated
in the Table 5 for the case 1g in the Table 3: (i) the phugoid and dutch roll are oscillatory
modes, with oscillation frequency Ω and damping ratio ζ; (ii) the short-period and helical
modes degenerate into two real modes, that may be stable ζ > 0, neutral ζ = 0 or unstable
ζ < 0. The de-coupled modes, calculated from 4 × 4 longitudinal and lateral matrices,
are very close to the fully coupled modes calculated from the 8 × 8 stability matrix; they
coincide to three significant digits, so the weakly coupled approximations are not necessary
at this level of accuracy. In most instances the decoupled and fully coupled values are not
distinguishable at the sixth digit, as can be seen for two modes in the Table 5 and holds
also for all modes in most cases in the Table 3.
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Table 4. Re-arranged 8x8 stability matrix for case 1a in Table 3.

u [m/s] w [m/s] q [rad/s] θ [rad] v [m/s] p [rad/s] r [rad/s] φ [rad]
.
u[m/s2] −2.10 × 10−4 1.51 × 10−1 −8.91 −9.94 × 10−1 1.13 × 10−7 0 0 0
.

w[m/s2] −1.54 × 10−1 −6.55 × 10−1 8.05 × 101 1.10 × 10−1 −1.24 × 10−6 0 0 0
.
q[rad/s2] 5.98 × 10−4 −7.16 × 10−3 −6.13 × 10−1 0 −1.07 × 10−9 −4.93 × 10−5 4.93 × 10−5 0
.
θ[rad/s] 0 0 1.00 0 0 0 0 0
.
v[m/s2] 4.66 × 10−17 4.66 × 10−17 0 0 −5.27 × 10−2 1.11 × 101 −8.81 × 101 9.94 × 10−1

.
p[rad/s2] −1.34 × 10−16 −1.19 × 10−17 0 0 −6.68 × 10−3 −9.07 × 10−1 2.30 × 10−1 0
.
r[rad/s2] −5.06 × 10−15 −2.03 × 10−19 0 0 2.68 × 10−3 −1.85 × 10−1 −1.12 × 10−1 0
.
φ[rad/s] 0 0 0 0 0 1.00 1.11 × 10−1 0

Table 5. Oscillation frequency and damping ratio of natural modes for case 1g in the Table 3.

Type Mode Frequency
Damping De-Coupled Weakly Coupled

Approximation Fully Coupled

Longitudinal Phugoid Ωp/λ−1
ζp/λ+

1

0.201769
0.114

0.202
0.114

0.201968
0.113596

Short period Ωs/λ−2
ζs/λ+

2

/0.124521
/1.7013

/0.124
/−1.700

/0.124266
/−1.70135

Lateral Dutch roll Ωd/λ−3
ζd/λ+

3

0.845291
0.0595375

0.845291
0.0595

0.845291
0.0595375

Helical Ωh/λ−4
ζh/λ+

4

/−4.28162 × 10−6

/−1.13662
/−4.28 × 10−6

/−1.137
/−4.28162 × 10−6

/−1.13662

3.2. Longitudinal and Lateral Handling Qualities

The stability analysis is similar for all eighteen cases. The steps are as follows: (i)
the starting point is the 9 × 9 stability matrix relating linear velocities {u, v, w}, rates
{p, q, r} and Euler angles {θ, ϕ, ψ} and their rates, for example in the Table 6 for the case 1a;
(ii) by omitting

{
ψ,

.
ψ
}

and re-arranging the remaining terms as in (34), the 8 × 8 stability
matrix is obtained in the Table 4 again for the case 1a; (iii) the eigenvalues of the upper-left
4 × 4 matrix apply to the phugoid and short-period modes, and the eigenvalues of the
lower-right 4 × 4 matrix apply to the dutch roll and the helical (spiral and roll) modes and
their values are shown in the Table 7 for the case 1a and all others (whose stability matrices
are omitted for brevity); (iv) since the fully coupled modes specified by the eigenvalues
of the 8 × 8 matrix, are identical to the third digit in accuracy, i.e., the lateral-longitudinal
coupling is negligible, the eigenvalues in the Table 7 indicate the damping or amplification
ratio for all modes and oscillation frequencies of all oscillatory modes; (v) the relations
between damping ζ and amplification ξ ratio Equation (19b) and natural ω and oscillation
Ω frequencies Equation (19d) are recalled in Table 8; (vi) they are applied to Table 7 to
specify in Table 9 the damping or amplification ratio and natural frequency for all oscillatory
modes and the real eigenvalues for the non-oscillatory or monotonic modes. Tables 7 and 9
include data for all the eighteen cases in Table 3, calculated from the original 9 × 9 and
re-arranged 8 × 8 stability matrices respectively, of which only one example (case 1a) is
given in Tables 4 and 6.

The natural ω and oscillation Ω frequencies and damping ratio ζ are related by
Equation (19d) that can be inverted leading to Equation (35a) that is used to calculate the
natural frequencies in Table 9 from the values in Table 7:

ω2 = (ωζ)2 + Ω2; ζ = −Re
(
λ±
)
/ω, (35a,b)

the damping ratio for oscillatory modes Equations (19a–d) in Table 9 is calculated by
Equation (35b) from the real part of the eigenvalues in Table 7. For example, in Table 7,
there is only one case 1i with ζω > 1 for the short-period mode:

ζsωs = 1.031 s−1, Ωs = 1.346 s−1. (36a,b)
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Since this is an oscillatory mode, the damping ratio must be smaller than unity
ζs < 1. This is checked next noting that: (i) using Equation (35b) the natural frequency is
Equation (37a):

ωs =
√

1.0312 + 1.3462 = 1.695 s−1 (37a)
using Equation (36a) the damping ratio Equation (35b) is Equation (37b):

ζs = 1.031 /1.695 = 0.3608 < 1, (37b)

which is less than unity, implying subcritical damping Equation (22b), that is consistent
with oscillatory motion Equation (22a).

The data in Table 9 allows an assessment of the longitudinal and lateral HQs. The
latter are considered for the standard flight phase categories A, B, C and the first three
levels of the Cooper-Harper [25] rating scale. Table 10 lists the main longitudinal and lateral
HQs criteria [24]. Using the data in Table 9, follows the HQs levels are listed in Table 11 for
all eighteen cases illustrated in Figures 1–7.

Table 6. Complete 9 × 9 stability matrix for case 1a in Table 3.

u [m/s] v [m/s] w [m/s] p [rad/s] q [rad/s] r [rad/s] φ [rad] θ [rad] ψ [rad]
.
u [m/s2] −2.10 × 10−4 1.13 × 10−7 1.51 × 10−1 0 −8.91 0 0 −9.94 × 10−1 0
.
v [m/s2] 4.66 × 10−17 −5.27 × 10−2 4.66 × 10−17 1.11 × 101 0 −8.81 × 101 9.94 × 10−1 0 0
.

w [m/s2] −1.54 × 10−1 −1.24 × 10−6 −6.55 × 10−1 0 8.05 × 101 0 0 1.10 × 10−1 0
.
p [rad/s2] −1.34 × 10−16 −6.68 × 10−3 −1.19 × 10−17 −9.07 × 10−1 0 2.30 × 10−1 0 0 0

.
q [rad/s2] 5.98 × 10−4 −1.07 × 10−9 −7.16 × 10−3 −4.93 × 10−5 −6.13 ×

10−1 4.93 × 10−5 0 0 0

.
r [rad/s2] −5.06 × 10−15 2.68 × 10−3 −2.03 × 10−19 −1.85 × 10−1 0 −1.12 × 10−1 0 0 0
.
φ [rad/s] 0 0 0 1.00 0 1.11 × 10−1 0 0 0
.
θ [rad/s] 0 0 0 0 1.00 0 0 0 0
.
ψ [rad/s] 0 0 0 0 0 1.01 0 0 0

Table 7. Eigenvalues λ± of natural modes involving the damping ratio ζ, natural ω and oscillation Ω frequencies.

Stability Mode
Longitudinal Lateral

Phugoid Short-Period Dutch Roll Roll Spiral

λ −ζpωp ± iΩp or λ−1 /λ+
1 −ζsωs ± iΩs or λ−2 /λ+

2 −ζdωd ± iΩd or λ−3 /λ+
3 −ζrωr = λ−4 −ζl ωl = λ+

4

1a −0.102 ± i0.0374 −0.624 ± i0.768 −0.0759 ± i0.602 −0.920 −0.000397

1b −0.000684 ± i0.0719 −1.031 / 0.268 −0.0605 ± i0.522 −0.853 −0.000382

1c −0.00816 ± i0.0332 −0.720 ± i0.877 −0.0916 ± i0.657 −1.065 −0.000205

1d −0.000146 ± i0.0641 −1.495 / 0.308 −0.0738 ± i0.576 −0.985 −0.000112

1e −0.0727 ± i0.186 −1.503 / 0.138 −0.0458 ± i0.774 −0.958 −0.0000104

1f −0.00150 ± i0.0695 −2.172 / 0.804 −0.0426 ± i0.748 −0.956 −0.0000110

1g −0.114 ± i0.202 −1.701 / 0.124 −0.0595 ± i0.845 −1.136 −0.00000428

1h 0.00227 ± i0.0771 −2.429 / 0.798 −0.0545 ± i0.819 −1.136 −0.0000258

1i −0.00479 ± i0.0332 −1.031 ± i1.346 −0.141 ± i1.000 −1.743 −0.000181

1j −0.0037 ± i0.0208 −0.576 ± i1.181 −0.0587 ± i0.848 −1.087 −0.000296
2a −0.0130 ± i0.0386 −0.652 ± i0.995 −0.0305 ± i0.636 −0.873 −0.00226

2b −0.0286 /−0.00306 −0.555 ± i0.281 −0.0267 ± i0.511 −0.874 0.00160

2c −0.00982 ± i0.0352 −0.751 ± i1.131 −0.0359 ± i0.632 −1.010 −0.00160

2d −0.0241 /0.000679 −0.642 ± i0.299 −0.0325 ± i0.519 −1.009 0.00112

2e −0.00344 ± i0.00246 −0.567 ± i1.051 −0.00800 ± i0.644 −1.193 0.000336

2f −0.00419 ± i0.0155 −0.706 ± i1.867 −0.00271 ± i0.746 −1.211 0.000471

2g −0.00566 ± i0.00194 −0.677 ± i1.142 −0.0173 ± i0.700 −1.407 0.000316

2h −0.00194 /0.00459 −0.841 ± i2.028 −0.0144 ± i0.808 −1.421 0.000442
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Table 8. Eigenvalues of the stability matrix (ω—natural frequency; ζ—damping ratio;
ξ—amplification ratio).

Eigenvalue Quantity Symbol = Value

Complex
λ = −ζω± iΩ Oscillation frequency Ω ≡ ω

√
1− ζ2

Real part
Re(λ) = −ζω

Positive
ζ > 0 Damping ratio ζ = −ξ = −Re(λ)/ω

Negative
ζ < 0

Time constant τ = 1/Re(λ)

Time to double amplitude T = 0.693/Re(λ) = 0.693τ

Table 9. Parameters of flight modes: λ± –eigenvalues;ω–natural frequency; ζ–damping ratio; CAP = control anticipant parameter.

Stability Longitudinal Lateral

CAPMode Phugoid Short-Period Dutch Roll Roll Spiral

Parameter ωp/λ+
1 ζ p/λ−

1 ωs/λ+
2 ζs/λ−

2 ωd/λ+
3 ζd/λ−

3 ζr ωr=−λ+
4 ζ l ωl=−λ+

4

Units s−1 −/s−1 s−1 −/s−1 s−1 -/s−1 s−1 s−1 s−2

1a 0.109 0.936 0.990 0.630 0.607 0.125 0.920 0.000397 0.0939

1b 0.0719 0.00651 /1.301 /0.208 0.525 0.115 0.853 0.000382 0.0114

1c 0.0342 0.239 1.135 0.647 0.663 0.138 1.065 0.000205 0.122

1d 0.0641 0.00228 /1.495 /0.308 0.581 0.127 0.985 0.000112 0.0151

1e 0.200 0.363 /1.503 /0.138 0.775 0.0591 0.958 −0.0000104 0.00303

1f 0.0695 0.0216 /2.172 /0.804 0.749 0.0569 0.956 0.0000110 0.103

1g 0.240 0.475 /1.701 /0.124 0.847 0.0702 1.136 0.00000428 0.00245

1h 0.0771 −0.0295 /2.429 /0.798 0.820 0.0605 1.136 0.0000258 0.101

1i 0.0335 0.143 1.695 0.608 1.010 0.140 1.743 0.000181 0.288

1j 0.0211 0.175 1.314 0.438 0.850 0.0691 1.087 0.000296 0.222

2a 0.411 0.0316 1.189 0.548 0.637 0.0479 0.873 0.000226 0.158

2b /0.0286 /0.00300 0.622 0.892 0.512 0.0521 0.874 −0.00160 0.0126

2c 0.0364 0.270 1.356 0.554 0.633 0.0567 1.01 0.00160 0.204

2d /0.024 /−0.000679 0.708 0.907 0.520 0.0625 1.009 −0.00112 0.0142

2e 0.0161 0.214 1.194 0.475 0.746 0.0125 1.211 −0.000471 0.176

2f 0.00422 0.993 1.996 0.354 0.644 0.00363 1.193 −0.000336 0.555

2g 0.0169 0.335 1.328 0.510 0.700 0.0247 1.421 −0.000442 0.208

2h /0.0194 /0.00459 2.195 0.383 0.808 0.0178 1.407 −0.000316 0.655

Table 10. Longitudinal and lateral handling qualities criteria.

Mode Level 1 Level 2 Level 3

Phugoid ζp > 0.04 ζp > 0 Tp > 55 s

Short period
A + C 0.35 < ζs < 1.30 0.25 < ζs < 2.30 ζs > 0.15

B 0.30 < ζs < 2.00 0.20 < ζs < 2.00 ζs > 0.15

Dutch Roll

A: ζd > 0.19
B+C: ζd > 0.08 ζd > 0.02 ζs > 0.02

A: Ωdζd > 0.35 rad/s
B+C: Ωdζd > 0.15 rad/s Ωdζd > 0.05 rad/s -

Ωd > 0.40 rad/s Ωd > 0.40 rad/s Ωd > 0.40 rad/s

Spiral Mode Ts > 20 s Ts > 12 s Ts > 4 s

Roll Mode τr < 1.4 s τr < 3.0 s τr < 10 s

Table 11. Handling Qualities for all-natural modes (− means that not even level 3 criteria are met by
at that mode or a sub-mode).

Mode Phugoid Short-Period Dutch Roll Roll Spiral CAP

1a 1 1 2 1 1 2

1b 2 − 2 1 1 -
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Table 11. Cont.

Mode Phugoid Short-Period Dutch Roll Roll Spiral CAP

1c 1 1 2 1 1 2

1d 2 − 2 1 1 -

1e 1 − 3 1 1 -

1f 2 − 3 1 1 -

1g 1 − 2 1 1 -

1h 3 − 2 1 1 -

1i 1 1 2 1 1 1

1j 1 1 2 1 1 1

2a 2 1 3 1 1 1

2b 3 1 3 1 1 3

2c 1 1 3 1 1 1

2d 3 1 3 1 1 3

2e 1 1 − 1 1 1

2f 1 1 − 1 1 1

2g 1 1 3 1 1 1

2h 3 1 − 1 1 1

Figure 1. Handling Qualities for the phugoid mode.

Figure 2. Handling Qualities for the short-period mode.

Figure 3. Damping of Short Period mode in oscillatory flight conditions.



Aerospace 2021, 8, 77 13 of 25

Figure 4. Handling Qualities levels for the roll mode.

Figure 5. Handling Qualities levels for the spiral mode.

Figure 6. Level 3 Handling Qualities for the dutch roll mode.

Figure 7. Level 2 Handling Qualities for the dutch roll mode.
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The HQs for the phugoid mode (Table 9) depend only on the damping (Table 10) with
higher minimum values leading to better piloting characteristics in a ladder pattern in the
Figure 1. The HQs are level 1 and 2 for the phugoid mode in all flight conditions in Table 11,
except for 1h, 2b, 2d and 2h that are the only cases of amplification. The amplification is
very small and thus level 3 is met, with 1h being oscillatory and 2b, 2d and 2h monotonic
with one damped and one amplified mode, indicated in Table 11 and illustrated in Figure 1.

In the case of the short period mode (Table 10), it is necessary to distinguish (Figure 2)
the high-gain flight phases (Figure 2, top half) like aggressive flight tracking (A) and
precision landing (C) from low gain tasks (Figure 2, bottom half) like cruise flight (B). In
both cases, the HQs depend only on damping, improve with greater damping that: (i) has
the same lower bound for level 3; (ii) for levels 1 and 2 has a higher lower bound for high
A + C relative to low B gain tasks. The short-period is stable (Table 9) in all oscillatory cases
1a, 1c, 1i, 1j an 2a–h with sufficiently large damping ζp > 0.04 in Table 10 to ensure level
1 HQ in Table 11. The short-period is monotonic in the remaining flight conditions 1b and
1d–1h, with one stable and one unstable mode (Table 7). Since the damping is negative, it
follows (Table 10) that HQs do not even meet level 3. The oscillatory cases of short-period
mode all have damping (Figure 3) in the range of level 1 HQ (Table 11) for all flight cases
A, B, C as indicated in Table 11 and illustrated in Figure 2.

The roll mode is damped in all flight conditions (Tables 7 and 9) whereas HQ levels
1, 2 and 3 allow (Table 10) progressively higher limits for the time constant (Figure 4) of
instability Equation (21b). Thus, the roll mode meets level 1 HQs for all flight conditions
(Table 11). The HQs levels 1, 2 and 3 for the spiral mode (Table 10) allow progressively
smaller minimum time to double amplitude Equations (21c,d) as shown in Figure 5. Thus,
the flight conditions with stable spiral mode 1a–1d, 1e–1j, 2a and 2c in Tables 7 and 9
all have level 1 HQs in Table 11. The flight conditions 1e, 2b and 2d–2h with unstable
spiral mode (Tables 7 and 9) have long-time to double amplitude and thus also have
level 1 HQs in Table 11. Thus, in all flight conditions the spiral mode has level 1 HQs,
regardless of whether it is stable or not, as illustrated in Figure 5. The HQs depend (Table 10)
on a single parameter, namely the damping of the phugoid (Figure 1) and short-period
(Figures 2 and 3) oscillatory modes, and the time to double amplitude of the spiral mode
(Figure 4) and time constant of the roll mode (Figure 5) that are unstable.

Concerning the HQs for the dutch roll mode (Table 10) is necessary to distinguish
level 3 in Figure 6 from level 2 in Figure 7 that apply to all flight conditions, from level 1
that applies differently to flight conditions A and flight conditions B + C in Figure 8. The
level 3 HQs for the dutch roll (Table 10) set a minimum for the damping (Figure 6) and
can be represented on a straight line as in all the preceding cases (Figures 1–5); they are
met in all flight conditions except 2e, 2f and 2h when the damping is too small, so that
not even level 3 HQs are met as indicated in Table 11 and illustrated in Figure 6. The
level 2 and 1 HQs for the dutch roll (Table 10) depend both on damping and oscillating
frequency and require representation on a plane (Figures 7 and 8). In the case of level
2 HQs for the dutch roll (Table 10) there is (Figure 7) a minimum damping ξd > 0.02
and oscillation frequency Ωd > 0.40 rad.s−1 specifying an upper rectangle. Their product
Ωd.ξd > 0.008 rad.s−1 may not satisfy the third condition Ωd.ξd > 0.05 rad.s−1 that specifies
a hyperbola. The hyperbola Ωd.ξd = 0.05 cuts ξd = 0.02 at Ωd = 0.05/0.02 = 2.5 rad.s−1

and cuts Ωd = 0.4 rad.s−1 at ξd = 0.05/0.4 = 0.125. Thus, the region of level 2 HQs for
the dutch roll lies on the right and level 3 HQs on the left of the hyperbola in Figure 7.
The hyperbola on Figure 7 is one of the three hyperbolas on Figure 8, namely that which
coincides with the hyperbola closest to the axis in Figure 8. The level 1 HQs for the dutch
roll in flight conditions B + C impose the same condition on oscillation frequency Ωd > 0.40
but higher damping ξd > 0.08 shifting the rectangle to the right; the third condition is also
more stringent Ωd.ξd > 0.15 than for level 2 shifting the second hyperbola upward and to
the right in Figure 8. The level 1 HQs for flight condition A are still more stringent shifting
the rectangle (Ωd > 0.40, ξd > 0.19) further the right and the third hyperbola Ωd.ξd > 0.35
further upward and to the right in Figure 8. None of the flight conditions lies within the
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third or second hyperbolas in Figure 7 and thus Level 1 HQs for the dutch roll are not
attained. Since for the dutch roll level 1 HQs are not met in any flight condition, and not
even level 3 is met for flight conditions 2e, 2f and 2h, all other flight conditions are level 2 or
3. As indicated in the Table 11 and illustrated in Figure 7. The dutch roll HQs are level 3 for
flight conditions 1f, 1g, 2a–2d and 2g; the remaining flight conditions 1a–1d and 1g–1j have
level 2 HQs for the dutch roll as indicated in Table 11 and illustrated in Figures 7 and 8.

Figure 8. Level 1 and 2 Handling Qualities for the dutch roll mode.

The HQs have been considered for all modes in the Tables 7, 9–11 and Figures 1–7
using only one criterion for each mode. Unsurprisingly it is the pitch axis that has received
most attention in HQs criteria, including the control anticipation parameter [65], the pitch
sensivity criterion [66], the bandwidth criterion [67], the Neal-Smith criterion [68], and the
Gibson criteria for dropback [69], attitude pitch rate [70] and phase rate [71], plus multiple
variants of several of these criteria. Most of these criteria were developed for military
aircraft [72,73] for high-gain tasks like target acquisition and precision tracking. These
aggressive flight manoeuvres are not relevant to civil aircraft flown as smoothly as possible
so as not to upset passengers and keep far away from flight envelope boundaries that
could lead to accidents. Some high gain tasks are common to military and civil aircraft
like precision landing C, and some HQs criteria have been extended from military to civil
applications in this context [74], for example the control anticipation parameter (CAP),
briefly considered next. The CAP is defined (38) as the ratio of pitch acceleration to
normal acceleration

CAP ≡
..
θ
..
z

, (38)

where in the simplest approximation: (i) the pitch acceleration is related to the pitch angle
by Equation (39a) the oscillation frequency of the pitch mode with fastest response, namely
the short period with oscillation frequency Ωs appearing to the square; (ii) the normal
acceleration relates to the lift and is thus specified Equation (39b) by the lift coefficient that
is proportional to the lift slope multiplied CLθ to the pitch angle relative to the angle of zero
lift assumed to be small: ..

θ = Ω2
s θ,

..
z = CL θ θ. (39a,b)

Substituting Equations (39a,b) in (38) the CAP is given by Equation (40b), and using the lift
slope [75,76] for the Joukowsky airfoil (40a) leads to Equation (40b):

CL θ = 2π, CAP =
Ω2

s
CL θ

=
Ω2

s
2π

. (40a–c)
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There are more refined versions of the CAP HQs criterions [77], often used in modern
literature on aircraft HQs [78–85]. The usual approaches CAP need not to be refined further
here, because it is related [73,76] to the manouever margin, considered in more detailed in
Section 3.3.

The CAP criterion as usually applied assumes that the short-period is oscillatory, corresponding
to subcritical damping ζs < 1 and complex conjugate eigenvalues Equations (18a,b) and (19a–d),
and this is the case for flight conditions 1a, 1c, 1i, 1j and 2a–2h in Table 7. However, for
flight conditions 1b and 1d–1h the short period is monotonic corresponding Equation
(20a–c) to supercritical damping ζs > 1 , with one stable λ−s < 0 and one unstable λ+

s > 0
eigenvalue (41a) and it is the latter that dominates pitch response in time (41b):

λ+
s > 0 > λ−s :

..
θ =

(
λ+

2
)2

θ. (41a,b)

Substituting (41b) and (39b) in the CAP (38) leads to (42a):

CAP =
(λ+

s )
2

CLα
∼ (λ+

s )
2

2π
, (42a,b)

that simplifies to Equation (42b) using Equation (40a). Substituting Equation (20c) in
Equation (42a) it follows that CAP is given: (i) by Equations (43a) ≡ (40b) for an oscillatory
short period with subcritical damping Equation (43b); (ii) by Equation (44a) ≡ (42b, 20c)
for a monotonic short period with supercritical damping or instability:

CAP =
1

CLα
×
{

(Ωs)
2 i f 0 < ζs < 1 (43a, b)

(ζsωs − |Ωs|)2 i f ζs < 0 or ζs > 1 (44a, b)

The CAP in the last column of Table 9 was calculated using Equation (43a) for the
oscillatory and Equation (44a) for the monotonic short period that apply to each flight
condition. The HQ criteria for the CAP assume damped response and are illustrated in the
case (i) in Figure 9 in agreement with Table 11. The CAP HQs for class III in category C are
level 1 for flight configurations 1i, 1j, 2a, 2c and 2e–2h, level 2 for 1a and 1c, and level 3 for
2b and 2d.

Figure 9. CAP boundaries for class III Cat C flight phase.
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3.3. Manouever Points of Two Kinds

For each of the two designs (“BWB 1” and “BWB 2”), the first eight cases (“a” to “h”)
in the Table 4 correspond to the four flight conditions in the Table 12, each for a pair of
positions of center-of-gravity x, specified by two values x1 and x2 of mean aerodynamic
chord. The stability matrix depends on the c.g. position, and thus also the damping ratio ζ
of all modes. For small c.g. excursions this dependence may be taken to the linear:

ζ = ζ1 + k(x− x1) (45a)

= ζ2 + k(x− x2), (45b)
where ζ1, ζ2 are the dampings at c.g. positions respectively x1, x2 and k is the slope:

k ≡ ζ2 − ζ1

x2 − x1
. (45c)

Table 12. Longitudinal and lateral maneuver points.

Design Case Flight Condition

Manouver Point

Speed/Mach Altitude Weight Longitudinal Lateral

kt ×103 ft ×103 kg Range of Values Estimated Value Range of Values Estimated Value

BWB 1

1a/b Minimum speed 176 0 550 0.25 < xs < 0.35 xs = 0.320 xr > 0.35 xr = 0.743

1c/d approach 200 0 550 0.25 < xs < 0.35 xs = 0.320 xr > 0.35 xr = 0.779

1e/f Initial cruise M = 0.85 39 670 xs < 0.35 xs = 0.345 xr > 0.39 xr = 0.992

1g/h Final cruise M = 0.85 35 760 xs < 0.35 xs = 0.342 xr > 0.39 xr = 0.826

BWB 2

2a/b Minimum speed 176 0 550 xs > 0.39 xs = 0.402 xr > 0.39 xr = 0.671

2c/d approach 200 0 550 0.35 < xs < 0.39 xs = 0.390 xr > 0.39 xr = 0.772

2e/f Initial cruise M = 0.85 39 670 xs > 0.39 xs = 0.553 xr < 0.35 xr = 0.330

2g/h Final cruise M = 0.85 35 760 xs > 0.39 xs = 0.419 xr < 0.35 xr = 0.151

The maneuver point where the damping would vanish thus corresponds to the critical
c.g. position:

ζ = 0 : x∗ = x1 − ζ1 /k = x2 − ζ2 /k = (x1ζ2 − x2 ζ1)/(ζ2 − ζ1), (46a–c)

and can thus be calculated by linear interpolation of data at two c.g. positions. The
manoeuver points of the first kind for oscillatory modes are calculated by Equation (46c)
from the damping ratio ζ. In the case of the manouever points of the second kind for
monotonic modes the larger eigenvalue λ+ is used in (47):

x∗ =
(

x1 λ+
2 − x2 λ+

1
)
/
(
λ+

2 − λ+
1
)
. (47)

The process of linear interpolation is: (i) more accurate for small c.g. deviations, that
is, for c.g. position between the positions for which the data is supplied, viz. x1 < x∗ < x2;
(ii) potentially less accurate for large c.g. deviations out-of-range, e.g., x1 < x2 < x∗ with
|x∗ − x1| >> |x2 − x1|. The estimate of the manouever point by linear interpolation can be
checked by considering a third stability matrix at the estimated manouever point; this will
be more relevant in the case (ii) of extrapolation out-of-the-range of starting values. The
manouever point can be calculated for each mode, and two kinds exist, as explained next.

The stability matrix (34) and hence the characteristic polynomial Equations (6a,b),
its eigenvalues λ, the frequencies and dampings of the natural modes depend on the
c.g. position. Since the stability matrix is real, the characteristic polynomial is also real,
and its roots or eigenvalues can be: (i) real or (ii) complex conjugate pairs. A complex
conjugate pair represents an oscillatory mode, and if it is damped the roots lie on the l.h.s.
λ-plane in Figure 10. As the c.g. position moves aft, usually the damping reduces, and
where it vanishes, a manouever point of first kind results. As shown in the Figure 10, at a
manouever point of first kind the mode is oscillatory with zero damping, and the roots are
conjugate imaginary. It may happen that as the c.g. moves the complex conjugate roots
coalesce to a real double root, and then evolve to two distinct roots, as shown in Figure 11;
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it may happen instead that the mode consists of two real negative roots at the c.g. position
x1, meaning that it is damped. As the c.g. moves the first root which ceases to be negative,
specifies a manouever point of the second kind. Thus, at a manouever point of the second
kind one eigenvalue is zero and the other zero or negative. The comparison of manouever
points of the first and the second kind is made in the Table 12. The manouever points in
Table 13 were calculated using Equation (46c) from the damping in the Table 9 and are
discussed next, as part of the stability assessment of BWB 1 and BWB 2 designs.

Figure 10. Manouever points of first kind for oscillatory modes at zero damping.

Figure 11. Manouever points of the second kind for oscillatory modes becoming monotonic modes
(convergent or divergent) before zero damping.
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Table 13. Two kinds of manouever points.

Manoeuver point First kind Second kind

Illustration Figure 10 Figure 11

Eigenvalue λ = −ζω± iΩ λ1 ≤ λ2 < 0

At manouever point λ = ±iΩ λ1 ≤ λ2 = 0

Condition Re(λ) = 0 λ = 0

Mode oscillatory non-oscillatory

4. Assessment of BWB 1 and BWB 2 Designs

The stability assessment of the BWB 1 and BWB 2 designs concerns lateral (Section 4.1)
and longitudinal (Section 4.2) handling qualities and manouever points and have implica-
tions for (Section 4.3) control system design.

4.1. The Dutch Roll, Spiral and Roll Modes

It can be seen from the Table 7 that the “helical mode” always has two real roots,
and thus splits into “spiral” and “roll” modes. As seen in the Table 9 the roll mode has
positive damping, that is stable in all cases; the Table 10 shows that level 1 HQs would
allow moderate instability with rise time not exceeding 1.4s. Thus, the roll mode has level
1 HQs in all cases as shown in the Table 11 and Figure 4. The same Table 11 and Figure 4
show that the spiral mode also has level 1 HQs in all cases in Figure 4 because: (i) it is stable
in all cases, except 1e, 2b and 2d to 2h, as seen in the Table 9; (ii) in these seven unstable
cases the rise time is above the 20s in the Table 10 for level 1 HQs.

The other lateral mode in the Table 7, the dutch roll is oscillatory in all cases, and
corresponds to complex conjugate roots. The dutch roll damping is always low, meeting
level 2 HQs in the Table 11 (cases 1a–1d and 1g–1j), and other cases (1f, 1g, 2a–2d and 2g)
having level 3 HQs; the exception is BWB 2 in cruise conditions (cases 2e, 2f and 2h), for
which the damping is so low it fails to meet even level 3 dutch roll handling characteristics.
These conclusions from Table 11 are illustrated in Figure 5, Figure 6, Figure 7. Since the
dutch roll is always oscillatory, it can only have a manouever point of first kind (Figure 10).
The stability matrices were supplied for two c.g. positions, for BWB 1 and BWB 2, each at
four flight conditions. Since the dutch roll mode is damped in all cases, the manouever
point lies outside the c.g. range. For the BWB 1, the damping decreases as the c.g. moves aft
all flight conditions, and thus the manouever point is aft of the two c.g. values considered.
The same applies to BWB 2 in low-speed flight conditions. For BWB 2 in cruise conditions,
the damping increases as the c.g. moves forward, and the manouever point is forward of
both c.g. positions.

4.2. The Phugoid and Short-Period Modes

From the Table 7 it follows that the phugoid is an oscillatory mode for BWB 1 flight
conditions 1a–1j and BWB2 flight conditions 2b, 2d and 2h. The damping is large enough
for level 1 HQs in cases 1a, 1c, 1e, 1g, 1i, 1j, 2c, and 2e–2g, with level 2 HQs for cases
1b, 1d, 1f and 2a, as illustrated in Figure 1. The level 3 HQs correspond (Table 11) to an
unstable oscillatory mode in flight condition 1h, and to flight conditions 2b, 2d, and 2h
with monotonic modes one of which is instable.

The short period mode is oscillatory for BWB 1 only in cases 1a, 1c, 1i and 1j, i.e., low-
speed flight conditions at forward c.g. as seen in the Table 7. The short-period mode
degenerates to two real roots for: (i) low-speed flight at the aft c.g. position; (ii) cruise at
any (forward or aft) c.g. position. It follows that the manouever point lies between the two
c.g. positions at low-speed and forward of the forward c.g. position in cruise, as seen in the
Table 13. The short period mode is well damped in all modes, except 1b and 1d-h which
have an unstable mode. Thus, HQs are level 1 for the short-period mode, except for those
six cases in which it does not even meet level 3 as shown in Figure 2.
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The longitudinal manouever points for BWB 1 are of the second kind (Figure 11),
because they arise from two real roots in the short-period mode. For BWB 2 the short
period mode is always oscillatory (Table 7), and well-damped (Table 9) leading to HQs
(Table 10) which are level 1 in all cases (Table 11). In the case of BWB 2 it is the phugoid
which ceases to be oscillatory, and degenerates to two real roots, in cases 2b, 2d and 2h.
The phugoid damping implies that the HQs are level 1 or 2 in all cases (Table 11), except
the unstable case 2d, when the rise time is long, so that HQs meet the level 3 criterion. For
BWB 2 the longitudinal manouever points at low-speed are due to the phugoid and are
due to the short-period in cruise and lie beyond the aft c.g. position except in the case 2c, d,
when it lies on the aft c.g. position.

4.3. Implications for Control System Design

It is seen in Table 11 that the HQs are worst for the slow modes, viz. level 2 or 3 for
the phugoid and level 2 or 3 or worse (unstable) for the dutch roll, due to poor damping or
weak instability. This is of little concern, since a fly-by-wire control system is quite effective
at damping these modes. The fast modes, viz. the roll and spiral modes always have level
1 HQs, and the same is true for the short-period mode, except for BWB 1 in cruise when it
is unstable. The latter situation may require attention in control system design.

The lateral manouever point is aft of the rear c.g. position in all cases, except BWB 2 in
cruise, when it is forward of the forward c.g. position. The longitudinal manouever point
for BWB 1 is forward of the forward c.g. position in cruise, and between the c.g. positions
at low speed. For BWB 2 the longitudinal manouever point lies aft of the aft c.g. position,
except on take-off. Thus, the cost and complexity of a trim fuel tank could be avoided by
small modifications.

5. Discussion

The two flying wing designs represent different approaches (Table 14) in the sense
that: (a) the long, narrow fuselage of BWB 1 is closer to a conventional design; (b) the wide,
short fuselage of BWB 2 is a more radical departure from conventional design. The main
qualitative differences are: (i) for the same fineness ratio and surface area, that is equal
drag, BWB 1 has a thicker fuselage with higher volume; (ii) BWB 1 also has a longer tail
moment arm, allowing longitudinal trim with smaller elevator area, assuming the same
elevator deflection and c.g. range; (iii) pitching motion is more noticeable to the passengers
at the ends of the longer BWB 1 fuselage but it is the rolling motion which may affect most
passengers at the sides of the wide BWB 2 fuselage; (iv) the longer BWB 1 fuselage has
greater side area for speedy passenger evacuation. In conclusion, the conservative BWB 1
design appears qualitatively to be less risky.

Table 14. Comparison of flying wing designs.

Example BWB 1 BWB 2

Fuselage Length
Width

Long
Narrow

Short
Wide

Equal Fineless Thickness
Volume

Thick
High

Thin
Low

Tail Moment arm
Elevator area

Long
Small

Short
Large

Passenger motion Pitch
Roll

Large
Small

Small
Large

Evacuation Easy Difficult

Conclusion Conservative Radical

Risk Lower Higher
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The purpose of the present paper is to assess quantitatively the stability of the two
designs. The assessment concerns the basic flight conditions of minimum speed, take-off,
initial and final cruise; the extreme conditions, like the low-speed, high-altitude or high-
speed, low-altitude would be a next step. The stability assessments made before have in all
cases been limited to steady, straight flight; stability during flight manouevers would be
another aspect. It has been found that the damping of the slow modes (phugoid and dutch
roll) is small, but this is of no concern for a fly-by-wire control system. The fast lateral
modes (roll and spiral) always have level 1 HQs. The fast longitudinal mode also has level
1 HQs, except for BWB 1 on approach to land and in cruise when it degenerates into two
real modes, one of which is unstable. This requires attention, because it could lead to a PIO
(pilot induced oscillation or “probably inevitable oscillation”).

The availability, for each of the four flight conditions of BWB 1 and 2, of the stability
matrix at a forward and an aft c.g. position, allows a rough estimate of manouever points.
The method of linear extrapolation applies best for small c.g. changes, and the conclusions
could be checked by reconsidering the stability matrix at the estimated manouever point.
The lateral manouever point, due to the vanishing of dutch roll damping, is always out of
the c.g. range, viz. rearwards (except for BWB 2 in cruise where is forward). The longitudinal
manouever point for BWB 1 is due to the vanishing of damping of the short-period for
BWB 1 and lies forward of the c.g. range in cruise and within the c.g. range at low-speed.
For BWB 2 the longitudinal manouever point is aft of the c.g. range and is due to the
short-period in cruise and phugoid at low-speed. It may be possible to avoid the cost and
complexity of fuel trim tanks by small design adaptations.

The CAP appears in the Table 9 both for: (i) the oscillatory case with sub-critical
damping (43a,b); (ii) the monotonic case when one mode is damped and the other is
amplified, with the latter appearing in (44a,b). Since the HQs for the CAP assume positive
damping (Figure 9), only the oscillatory short-period modes are considered and for: (i) the
BWB 1 configuration leads to level 1 HQs in flight conditions 1i and 1j, and level 2 in
flight conditions 1a and 1c; (ii) the BWB 2 configuration leads to level 1 HQs for flight
conditions 2a, 2c, and 2d–2h, and level 3 HQs, for flight condition 2b and 2d. The short
period is oscillatory for all flight conditions of BWB 2 and for flight conditions 1a, 1c, 1i,
and 1j for BWB 1 which CAP HQs are always better than level 3. For BWB 1, the flight
conditions 1b and 1d–1h have an unstable monotonic mode and the negative damping
may be understood as not meeting even level 3 HQs for CAP.
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Abbreviations

da coefficients of polynomials (28)
dgb coefficients of polynomials (29)
k slope of manouever point linear approximation (45c)
p x-component of angular velocity (4a)
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q y-component of angular velocity (1)
r z-component of angular velocity (4a)
u x component of linear velocity (1)
x position of c.g. as percentage of m.a.c. (45a)
x∗ critical c.g. position for manouever point (46a–c)
v y-component of linear velocity (4a)
w z-component of linear velocity (1)
..
z vertical acceleration (38)
A characteristic polynomial of longitudinal stability sub-matrix (3b)
B characteristic polynomial of lateral stability sub-matrix (4b)
C characteristic polynomial of complete stability matrix (6a,b)
C characteristic polynomial of decoupled complete stability matrix (13b)
Cg modal factor (10)
Cg modal factor for decoupled stability matrix (13a)
CLθ lift coefficient slope (39b)
Eg weak coupling coefficient (14c)
T time to double amplitude (21c,d)
X aircraft state variables (1, 4a)
Xi coupled flight variables (5)
Xg decoupled flight variables (15)
Zij stability matrix (2b)
ε small quantity (8)
θ Euler angle of pitch (1)
δab identity matrix (3a)
ϕ Euler angle of bank (4a)
ψ Euler angle of sideslip (Table 5)
λ± eigenvalues (3a) for modes (18a,b; 20a–c)
ζ damping ratio (3b)
ζ decoupled damping ratio (9b)
ω natural exact coupled frequency (3b)
ω natural decoupled frequency (9a)
Ω oscillation frequency (19d)
τ time constant (21b)
ξ amplification ratio (ξ = −ζ)
∆C difference between the exact coupled C and decoupled C complete characteristic

polynomial (27)
∆Cg difference between the exact coupled Cg and decoupled Cg modal factor (14a–c)
∆ω difference between the exact coupled ω and decoupled ω natural frequency (9a)
∆ζ difference between the exact coupled ζ and decoupled ζ damping ratio (9b)
Subscripts
p or 1 phugoid mode
s or 2 short period mode
d or 3 dutch roll mode
h or 4 helical mode
r or 4- roll mode
l or 4+ spiral mode
Superscripts
X decoupled value of X
Abbreviations
c.g. center of gravity
m.a.c. mean aerodynamic chord
CAP Control Anticipation Parameter (38)
BWB Blended Wing Body
HQs handling qualities
Symbols
.

X time derivative of X
∆X variation of X
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