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Abstract: A description is given of an application of a linear-quadratic regulator (LQR) for stabilizing
the characteristics of an anti-aircraft missile, and an analytical method of selecting the weighting
elements of the gain matrix in feedback loop is proposed. A novel method of LQR tuning via a single
parameter ς was proposed and tested. The article supplements and develops the topics addressed in
the author’s previous work. Its added value includes the observation that the solutions obtained
are symmetric pairs, and that the tuning parameter ς proposed for the designed linear-quadratic
regulator enables the selection of suitable parameters for the airframe stabilizing loop for the majority
of the analytical solutions of the considered Riccati equation.
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1. Introduction

In anti-aircraft missile homing systems equipped with both mechanically and elec-
tronically controlled seekers, one observes a phenomenon of the impact of the airframe
oscillations on the operation of the tracking systems. Due to the imperfect disturbance
rejection performance, missile motion may severely degrade the tracking accuracy [1–5].
This situation is particularly disadvantageous during the terminal guidance phase, as it
requires a very rapid reaction on the part of the missile, involving significant rotations of
its airframe. In extremely unfavorable tactical conditions—despite the use of an adequate
seeker stabilization loop—the target tracking process may break. It therefore becomes
necessary to identify solutions enabling stabilization of the operating conditions of the
on-board seeker [6–8]. They are often designed using adaptive linear control, which has
certain benefits.

Adaptive linear control is an important component of autonomous vehicle control
systems, in which case linear approximations are useful for analysis and design [9]. Linear
theory is successfully used for the analysis and synthesis of control systems even though
most real systems are nonlinear. The field of linear systems has been declared many times
to be exploited and obsolete from a research point of view, but interest has repeatedly been
renewed due to new viewpoints and the introduction of new theories [9,10]. Recently,
an interest in linear adaptive control in missile and space technology can be observed, where
adaptive-tuned PID [11–14], FPID [11,15–17] and linear-quadratic regulator (LQR) [18–25]
controllers are widely proposed.

Recent research has focused on satisfying performance and stability robustness re-
quirements by designing missile autopilots using optimal control theory [18,23]. These
requirements for current and future missiles are crucial because of the necessity to use
multivariable digital flight control systems [26], which in turn are dictated by the conditions
of the modern air battlefield. In this context, LQR state feedback designs are generally
perceived as providing good performance characteristics and stability margins, with the
availability of the states required for implementation [18,22]. Thus, in the literature, linear-
quadratic regulators are proposed for both integrated missile guidance systems and the
stabilization of their individual components. For example, in [19] the use of an LQR was
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considered wherein entries of the weighting matrix were chosen as an inverse function of
the range-to-go, on the assumption that it is possible to construct a feedback linearized
dynamic system from a simulation model of the missile at every value of the state automat-
ically. In [20], a time-varying LQR design method was proposed to deal with the various
disturbances in the hypersonic vehicle reentry profile, by calculating the weighting matrices
constructed based on the Bryson principle using time-varying parameters. As opposed to
classical approaches, the actual states of the flight system were employed to calculate the
parameters in weighting matrices. The LQR method is also applied in [21] as a solution
for the anti-tank missile guiding process and determines the commands controlling the fin
deflections and the thrust vector via continuously calculating Jacobians. In turn, in [18],
the LQR formulation is the same, but it was extended to describe the full-state feedback
robust integral servo controller equations. The article [24] illustrates that in order to stabi-
lize a highly unstable missile airframe and achieve the required performance, a hybrid of
two control schemes may be used. In this case, a state feedback linear quadratic regulator
was proposed to stabilize the plant and a forward path H∞ optimal controller was used
to achieve the required performance and robustness. Several papers describe the use of
an LQR as a part of the missile stabilization system; e.g., [25] discusses a cascaded LQR
controller for effective roll stabilization of the missile autopilot in a realistic model; robust
missile roll autopilot design with an LQR application for solving the flexible airframe
dynamics is also discussed in [23]; and in [7] LQR was chosen as an equivalent part of the
sliding mode control (SMC) airframe stabilization system. These selected examples show
the multitude of possible LQR applications in aerospace and missile technology.

In the case of a linear time-invariant (LTI) system, the gain coefficients of a linear-
quadratic controller used in a feedback loop can usually be determined without difficulty.
The problem becomes more complicated when the system analyzed contains nonstationary
and nonlinear features. This situation occurs, among others, when guiding the missile
against an aerial target. The lack of stationarity of the airframe dynamics determines the
properties of the whole guidance loop, and can lead to a loss of stability of the entire
system. In the case under consideration, when solving the Riccati equation to find the
gain coefficients for a missile autopilot feedback loop, numerical computation methods can
be applied to a set of static values describing the state of the “frozen” system (i.e., at the
moment—for a short finite-time horizon). The fundamental difficulty with this approach
is the necessity for the computations to be carried out in real time [19,27]. There are also
certain technical hitches related to the software implementation, e.g., the weak conditioning
of the matrices [7,8]. It is therefore valuable to find an analytical solution of the controller,
which ensures adaptability according to the state of the system.

In this paper, an adaptive linear-quadratic stabilization system is considered for which
a novel method of tuning via a single tuning parameter was proposed and tested. Reducing
the stabilization system settings to the case of a single parameter seems attractive from a
practical point of view. The main effort is focused on analyzing obtained solutions in detail
and describing a procedure for selecting appropriate values of the LQR tuning parameter
for the proposed airframe stabilization system. In the author’s previous work, an initial
concept of achieving an analytical solution of a time-varying linear-quadratic stabilization
system was proposed and tested. A basic formula of feedback loop gain matrix equations
(without a tuning parameter) was introduced and used as a part of the SMC stabilization
system in [7].

It has been shown that the proposed solution provides a favorable effect on the operat-
ing conditions of the seeker and a reduction in energy losses resulting from oscillations of
the airframe. In turn, [8] signaled the possibility of introducing a single tuning parameter
and improving the performance of the designed airframe stabilization system. The main
contributions of this paper include: (a) a comparative analysis of the analytical solutions of
a time-varying linear-quadratic airframe stabilization system; (b) a procedure for selecting
appropriate tuning parameter values; and (c) an observation that the solutions obtained
are symmetric pairs, which on the one hand confirms the correctness of the calculations,
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and on the other introduces the possibility of narrowing the range of the sought settings of
the LQR tuning parameter.

The paper is organized as follows. The problem is formulated in Section 2.1. The mis-
sile’s airframe dynamics model’s description is given in Section 2.2. The draft of the
stabilization system design is discussed in Section 2.3. The tuning procedure is presented in
Section 2.4. Issues related to numerical computation methods are described in Section 2.5.
To show the features of the proposed solutions, numerical simulations were performed,
and their results are given in Section 3. Finally, Section 4 offers some conclusions.

2. Methods
2.1. Problem Formulation

When guiding a missile towards an aerial target, it is requested that

ω
!
= θ̇ (1)

namely, the angular rate ω of the airframe should be equal to the angular rate θ̇ of
the missile’s velocity vector, and not depend on the dynamics of the missile itself [6–8].
This requirement, impossible to fulfill in practice however, leads to the conclusion that
the absolute rotation angle of the airframe should be approximately equal to the absolute
rotation angle of the missile velocity vector; i.e.,∫

ω2dt ≈
∫

θ̇2dt (2)

Obtaining equality given by Equation (2) depends on the system’s ability to reduce
the effect of the components related to the dynamics of the missile airframe. The left side
of the Equation (2) will be close to the right side when the transitional processes occurring
during guidance are shorter and less oscillatory. Minimizing the value of the left side of
Equation (2) is the task of the designed adaptive linear-quadratic stabilization system.

In the classical approach, the infinite horizon LQR settings are determined based on
linear dynamic equations and a quadratic cost function in the form

J =
1
2

∞∫
0

[
xTQx + uTRu

]
dt (3)

where Q ∈ Rn×n and R ∈ Rk×k are symmetric, positive (semi-positive) definite matrices
of weighting parameters for the state vector x ∈ Rn×1 and the control vector u ∈ Rk×1,
respectively. In general, there are no unified methods of selecting the Q and R entries;
however, several approaches can be found in the literature [21,27–36], usually based on
modified (e.g., time-varying) Bryson principle or “trial and error” methods. The main
problem connecting all of these is the need to define the values of Q and R to find the
solution of the feedback gain matrix K.

In this study, determining the entry values of matrix Q is not necessary. Instead,
a novel method is proposed by introducing a single tuning parameter ς into equations
describing the entries of gain matrix K, allowing the change of LQR performance. A linear-
quadratic controller is applied to a cruciform, canard-controlled, roll-stabilized missile,
treated as a SIMO (single-input, multi-output) system, in which control command u is the
input signal and the airframe angular rate ω and angle of attack α are the output signals.
The motion of such a missile can be separated into two perpendicular channels, and the
problem can be treated as planar in each of these channels.

2.2. Missile Airframe Dynamics

As mentioned above, the study relates to a cruciform, canard-controlled, roll-stabilized
missile. The stabilization loop in the roll control plane is assumed to be ideal. Using this
assumption, its motion can be separated into two perpendicular channels and analyzed
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independently. The equation of motion relative to an axis normal to the velocity vector
V is obtained by projecting the forces acting on the missile onto that axis. The equation
of rotational motion is obtained by balancing the moments of forces acting on the missile.
This is a typical approach to missile dynamics model determination and it can be found in
the form presented or a similar form in a number of research papers [6,37–46]. Neglecting
the gravitational force, for the after-burning phase of flight, the dynamics of the missile in
the control plane are described by the equations:

mV θ̇ =
ρV2

2
Scα

Lα (4)

Iω̇ = −ρV2

2
Slcα

Mα− ρV
2

Sl2cω
Mω +

ρV2

2
Slcδ

Mδ (5)

mV̇ = −ρV2

2
S
[
c0 + µ(cα

Lα)2
]

(6)

δ̇ =
1
τc
(δcom − δ) (7)

The symbols in Equations (4)–(7) have the following meanings: m is the missile mass
(kg); I is the missile moment of inertia (kg·m2); V is the module missile velocity vector
(m/s); ω is the airframe angular rate (rad/s); α is the angle of attack (rad); θ is the angle
of the missile velocity vector in control plane (rad); S is the reference area (m2); l is the
reference length (m); ρ is the air density (kg/m3); τc is the canard servo time constant (s); δ
and δcom are actual and commanded canard deflections (rad), respectively; µ is induced
drag coefficient (–); and c0 is the zero-lift drag coefficient (–). The variables described
by the common symbol c(·)

(·) represent derivatives of the missile nonlinear aerodynamic
coefficients, where subscript M describes moment related components and subscript L is
the lift force related component, as follows:

cα
L =

∂cL
∂α

cα
M =

∂cM
∂α

cω
M =

∂cMω

∂ω
cδ

M =
∂cM
∂δ

(8)

The force and moment coefficients describing the airframe aerodynamics have complex
forms, whose derivations lie outside the scope of this work and will not be considered here.
Polynomial approximations fi, i ∈ {1, . . . , 4} are taken for Mach’s number Ma > 1.15,
and the following are assumed to hold

f1 ≈
∂cL
∂α

f2 ≈
∂cM
∂α

f3 ≈
∂cMω

∂ω
f4 ≈

∂cM
∂δ

(9)

Noting that
α ≡ ϑ− θ → α̇ ≡ ϑ̇− θ̇ = ω− θ̇ (10)

where ϑ is the airframe rotation angle in the control plane (rad), the following equivalent
for Equations (4) and (5) can be obtained:

α̇ = −ρV
2m

S f1α + ω (11)

ω̇ = −ρV2

2I
Sl f2α− ρV

2I
Sl2 f3ω +

ρV2

2I
Sl f4δ (12)

For controller design purposes, and for reasons of simplicity, it is assumed that u =
δcom = δ; i.e., the inertia of the canards is ignored. Taking this into account, approximate
dynamics, which will be used for the design of the linear-quadratic stabilization system,
can be described by linearized vector-matrix equations as

ẋ = Ax + Bu y = Cx + Du (13)
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where

x =

[
α
ω

]
A =

[
−a1 1
−a2 −a3

]
B =

[
0
b

]
C =

[
1 0
0 1

]
D =

[
0
0

]
(14)

The entries of matrices A and B are assumed to have the following forms:

a1 =
ρV
2m

S f1 a2 =
ρV2

2I
Sl f2 a3 =

ρV
2I

Sl2 f3 b =
ρV2

2I
Sl f4 (15)

2.3. Stabilization System Design

Using Equation (3), by the variation method of the optimal control theory, the feedback
gain matrix K can be obtained as follows:

K = R−1BTP (16)

where P is the stabilizing solution of the Riccati equation

ATP + PA− PBR−1BTP + Q = 0 (17)

Let us take the matrices Q and R to be

Q =

[
q1 0
0 q2

]
and R = 1 (18)

Scaling R for single-input systems results only in the same amount of scaling on Q.
In the case under consideration, R = 1 was therefore chosen. Assuming that

P =

[
p11 p12
p21 p22

]
(19)

the expanded form of the Equation (17) can be obtained as[
−a1 p11 − a2 p21 −a1 p12 − a2 p22

p11 − a3 p21 p12 − a3 p22

]
+

[
−a1 p11 − a2 p12 p11 − a3 p12
−a1 p21 − a2 p22 p21 − a3 p22

]
+

−b2
[

p12 p21 p12 p22
p21 p22 p22 p22

]
+

[
q1 0
0 q2

]
=

[
0 0
0 0

] (20)

In previous work [7,8], a complete solution was given for the controller in ques-
tion. Here, a draft is presented for the sake of brevity. By summation of the matrices in
Equation (20), rearrangement and while noting that p12 ≡ p21, the system of equations
takes the form: 

−2a1 p11 − 2a2 p21 + q1 = b2 p2
21

p11 − (a1 + a3)p21 − a2 p22 = b2 p21 p22

2p21 − 2a3 p22 + q2 = b2 p2
22

(21)

By multiplying both sides of the second line in Equation (21) by 2 and summing,
we have

(1− a1)p11 + (1− a1 − a2 − a3)p21 + (−a2 − a3)p22 = b2(p21 + p22)
2 − q1 − q2 (22)

The values of q1 and q2 are positive-defined and can be freely chosen by the designer.
Let us assume that

(p21 + p22)
2 − ς2

b2 = 0 where ς = q1 + q2 (23)
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There are two possible solutions of Equation (23)

p21 =
ς

b
− p22 and p21 = − ς

b
− p22 (24)

By using Equation (24) to solve the system in Equation (21), with Equation (16),
after some transformations, eight pairs of entries for the matrix K can be found as follows:

K1,2 =

 −
1

b(1− 2a1)

[
a1(a1 − a2 + a3 + b) + a2 ±

√
Ψ1

]
ς +

1
b(1− 2a1)

[
a1(a1 − a2 + a3 + b) + a2 ±

√
Ψ1

]


T

(25)

K3,4 =

 − 1
b(1− 2a1)

[
a1(a1 − a2 + a3 − b) + a2 ±

√
Ψ2

]
−ς +

1
b(1− 2a1)

[
a1(a1 − a2 + a3 − b) + a2 ±

√
Ψ2

]


T

(26)

K5,6 =


ς +

1
b

[
(a3 + 1)∓

√
a2

3 + 2a3 +
1
2

b2 + 2b + 1

]

−1
b

[
(a3 + 1)±

√
a2

3 + 2a3 +
1
2

b2 + 2b + 1

]


T

(27)

K7,8 =


−ς +

1
b

[
(a3 + 1)∓

√
a2

3 + 2a3 +
1
2

b2 − 2b + 1

]

−1
b

[
(a3 + 1)±

√
a2

3 + 2a3 +
1
2

b2 − 2b + 1

]


T

(28)

where ς is treated as a tuning parameter of the proposed controller, and Ψ1 and Ψ2 are
functions given as

Ψ1 = (a1b + a2)
2 + [a1(a1 + a3)− a1a2]

2 + 2(a1 − a2 + a3)(a2
1b + a1a2)+

+

(
1
2
− a1

)
(b2 − 4a1a2b)

(29)

Ψ2 = (a1b− a2)
2 + [a1(a1 + a3)− a1a2]

2 − 2(a1 − a2 + a3)(a2
1b− a1a2)+

+

(
1
2
− a1

)
(b2 + 4a1a2b)

(30)

Based on Equation (16) and Equations (25)–(30), the control law can be defined as

uLQR = (Nu + KNx)u−Kx (31)

where K is one of the feedback gain matrices given by Equations (25)–(28). The fol-
lowing expressions are used as the feed-forwarding scaling factors of the input signal
(cf. Appendix A):

[
Nx
Nu

]
= Ω−1

[
0
1

]
where Ω =

−a1 1 0
−a2 −a3 b

0 1 0

 (32)

with det(Ω) = a1b. Due to the application specifics, the condition a1b > 0 is always met.
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2.4. LQR Tuning Procedure

The choice of the tuning parameter ς value for the particular feedback loop gain
matrix K is determined on the basis of Equation (2) and three additional quantity indices,
defined as

JA =
N

∑
n=1

A(n) JΛ =
N

∑
n=0

Λ(n) JX =
N

∑
n=0

X(n) (33)

in which A, Λ and X are given as

A(n) =
{

0 ⇔ a(n) ≥ a(n− 1)
1 ⇔ a(n) < a(n− 1)

(34)

Λ(n) =
{

0 ⇔ α(n) ≤ α(N)
1 ⇔ α(n) > α(N)

(35)

X(n) =
{

1 ⇔ α(n) < 0.95α(N) ∧ n > nbound
0 otherwise

(36)

where a is the normal acceleration of the airframe (m/s2), α is the angle of attack (rad)
and (N + 1) is the number of signal samples considered.

The quantity index JA enables the detection of oscillations of the airframe in response
to a step canard-fin deflection: in the case where the instantaneous value of the normal
acceleration of the airframe is smaller than the value of that acceleration at the previous
instant, the value of JA is increased by 1.

The index JΛ is used to detect over-regulation in the stabilization system. Over-
regulation is examined based on the angle of attack α (in view of the dynamic properties of
the system, it is inappropriate to detect over-regulation using the airframe’s angular rate
ω). The reference value is taken to be the angle of attack at instant N, for which it is known
a priori that the steady state of the system was achieved.

The index JX, in turn, is useful in determining the speed of the airframe’s response
to a step canard-fin deflection. The value of the index is increased by 1 for every instant
n greater than nbound for which the airframe’s angle of attack α does not attain 95% of the
value of the angle of attack in the steady state α(N). In the numerical simulations, nbound
was set equal to 1500, which corresponds to a time of 0.15 s for a sampling frequency of
fs = 10 kHz.

The tuning parameter ς waa s selected according to the following rules. For chosen
value of ς: (a) the absolute airframe rotation angle given by Equation (2) takes the minimum
value; (b) the quality indices JA and JΛ take the minimum values in the considered range.
The quality index JX plays an auxiliary role and establishes that the response of the airframe
in the considered case may be slower than the required one. In the case of missiles number
6 and number 7, the values of ς were chosen arbitrarily, because the obtained values of the
quality indices did not make it possible to clearly indicate the solutions, and the responses
of the tested airframes were mostly unstable. To make a decision in this case, the values of
the absolute rotation angle obtained for the individual values of the tuning parameter ς
were used.

With respect to the tuning procedure, an iterative method was investigated for the
response of the missile airframe to stepped canard-fin deflections. Calculations were
performed for a set of coefficients defined in Equation (15) with constant values, describing
the system state in a short-time horizon, for the instant of commencement of the terminal
phase of missile guidance to an aerial target.

As it can be deduced from [7], setting an initial value of ς = 1 gives a good start point
for the beginning of the LQR tuning procedure. Figures 1–8 show the results of numerical
computations for the different forms of the gain matrix K implemented in the stabiliz-
ing loop, and the values taken for the airframe coefficients: a1 = 5 s−1, a2 = 2350 s−2,
a3 = 10 s−1, b = 420 s−2.
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In Figures 1–8, the results obtained for the quantity indices defined by Equation (33)
are shown only in the range |ς| < 10, due to the fact that the numerical analysis did not
reveal any significant changes in the functioning of the analyzed stabilization systems
outside that range (relative to the results attained for the boundary values of the assumed
range of variation of the parameter ς).

The numerical simulations revealed symmetries between the forms of the quantity in-
dices determined for particular gain matrices (compare Figures 1a and 4a, Figures 2a and 3a,
Figures 5a and 8a, Figures 6a and 7a). It may thus be assumed that the matrices given by
Equations (25)–(28) form symmetric pairs of solutions, namely: K1–K4 (with the axis of sym-
metry passing through the point ςsym = 1.25), K2–K3 (with axis of symmetry ςsym = −0.045),
K5–K8 (with axis of symmetry ςsym = 0.79) and K6–K7 (with axis of symmetry ςsym =−0.73).
This is illustrated in detail in Figures 9–12.

Figure 1. Tuning procedure results for feedback loop gain matrix K1: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.

Figure 2. Tuning procedure results for feedback loop gain matrix K2: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.
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Figure 3. Tuning procedure results for feedback loop gain matrix K3: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.

Figure 4. Tuning procedure results for feedback loop gain matrix K4: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.

Figure 5. Tuning procedure results for feedback loop gain matrix K5: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.
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Figure 6. Tuning procedure results for feedback loop gain matrix K6: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.

Figure 7. Tuning procedure results for feedback loop gain matrix K7: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.

Figure 8. Tuning procedure results for feedback loop gain matrix K8: (a) Quantity indices for different
ς values. (b) Step responses of the airframe before and after the tuning procedure.
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This fact suggests that the sought values of the tuning parameter ς should be dis-
tributed symmetrically with respect to those axes, i.e., ςsym ± ∆ς. Indeed, the tuning values
determined numerically based on the indices (33) for particular forms of the matrices given
by Equations (25)–(28) satisfy that relationship (cf. Table 1).

Table 1. Symmetry between gain matrices and tuning parameter values.

Gain Tuning Parameter Axis of Symmetry Tuning Parameter Gain
Matrix ς = ςsym − ∆ς −∆ς ςsym +∆ς ς = ςsym + ∆ς Matrix

K2 −5.060 −5.015 −0.045 5.015 4.970 K3
K4 0.940 −0.310 1.250 0.310 1.560 K1
K6 −9.190 −8.455 −0.735 8.455 7.720 K7
K5 −6.210 −7.000 0.790 7.000 7.790 K8

Figure 9. Symmetry between quantity indices of matrices K1 and K4.

Figure 10. Symmetry between quantity indices of matrices K2 and K3.

Figure 11. Symmetry between quantity indices of matrices K5 and K8.
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Figure 12. Symmetry between quantity indices of matrices K6 and K7.

Figure 13 shows the graphs of angular rates ω and angles of attack α obtained as a
result of the response of missile airframes with stabilization systems using the matrices
K1–K8 to an applied test signal. A symmetric rectangular signal with values ±0.3 rad
and a 50% duty cycle was input to the system, simulating stepped, alternating canard-
fin deflections.

Figure 13. Missile airframe: (a,b) angular rate, (c,d) angle of attack histories for different feedback
loop gain matrices.

The following conclusions can be drawn from the results obtained.
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Stabilization system solutions using the gain matrices K1–K4 ensure a correct reaction
to the applied input signal. In the case of stabilization systems configured based on the
matrices K2 and K3, smooth graphs are obtained with the required response dynamics,
although it should be noted that the system with the matrix K2 exhibits slightly higher
inertia, which may lead to poorer results for missile guidance to an aerial target of high
maneuverability. The graphs of airframe angular rates in the case of stabilization systems
with the matrices K1 and K4 suggest that missiles with these systems will respond very
rapidly to all changes in the input signal, but this may lead to oscillations if changes in
the signal are of too high a frequency. In turn, stabilization systems based on the matrices
K5 and K8, in spite of the absence of oscillations in the recorded responses, exhibit high
inertia, which substantially restricts their possible use in practical solutions.

The simulation results obtained for the systems with matrices K6 and K7 indicate that
these are unsuitable for use in the problem under consideration.

2.5. Numerical Simulation Issues

The performance of the proposed gain matrices is evaluated through numerical sim-
ulations. The fourth-order Runge-Kutta numerical integration method was used for the
derivation of approximating differential equations for the elements of the system. The time
of the simulation was t f = 2 s.

The numerical examples presented in Section 3 relate to the missile model with
parameters similar to those of modern short-range surface-to-air missiles. The missile’s
initial mass is 250 kg, and the fuel load was taken as 60% of the total mass. The rocket
engine allows the missile to achieve a maximum speed of 1030 m/s with a burning-phase
time of 3 seconds. It is assumed that the terminal missile-engagement phase is considered,
i.e., the missile has no thrust during the tests. Missile velocity change is described according
to the Equation (6). The following additional parameters were assumed in the simulations:
I = 35 kg·m2, S = 0.67 m2, and l = 1.36 m. Partial derivatives of aerodynamic force
and moment coefficients with respect to the variables α, δ and ω, and a zero-lift drag
coefficient were determined on the basis of the classical methodology outlined among
others in [47–49] and approximated by polynomial functions, as shown by Equation (9).
The canard deflection angle is bounded to |δ| < 0.35 rad and the canard servo time constant
is taken as τc = 0.01 s, cf. Equation (7). The atmosphere has been modelled in compliance
with International Standard Atmosphere.

Data supply for the coordinate determination system is provided by the simplified
missile seeker model given by Equation (37). The signal returned by the seeker contains
information about the angular rate of the line of sight (LOS) distorted by the inertia of
the seeker system, by the signal proportional to the angular rate of the airframe, and by
generally understood measurement errors:

λ̇m =
1
τs
(λ + ∆λ + ζω− λm) (37)

where λ and λm are the actual and measured LOS angles (rad); ζ = 0.1 ms is the sampling
period; τs = 5 ms is the time constant of the seeker drives; ∆λ denotes the fluctuating
interference caused by the noise from on-board devices, mechanical vibrations, and the
environment, and is modelled as white noise with Gaussian distribution.

A classical form of proportional navigation law is applied to guide the missiles to the
aerial target [37–39]. The target is assumed as a mass point moving at a constant velocity.
Its first-order lateral manoeuvre dynamics is expressed in the control plane by

ȧT =
1

τT
(uT − aT) (38)

where τT is the time constant of the target dynamics (s), uT is the manoeuvre command
(m/s2), and aT is the lateral acceleration (m/s2) of the aerial target (cf. Appendix B
for details).
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3. Results and Discussion

The proposed gain matrix formulas were examined for the terminal guidance phase.
A comparison of the guidance processes was made for the eight missile models using
the feedback loop gain matrices given by Equations (25)–(28) with the tuning parameter
values presented in Section 2.4 (cf. Table 1). First, a basic examination of the proposed
structures was performed using the sample run test. Next, a Monte Carlo simulation study
was carried out to evaluate and compare the performance of the solutions.

3.1. Sample Run Test

The missiles are aimed at an aerial target maneuvering with sinus-wave lateral ac-
celeration aT = ±10 g in the yaw plane. Target dynamics is described by time constant
τT = 1 s. At time t = 0 the target is located at course angle γT = 3π/4 rad and is moving
at VT = 220 m/s at a height of 4000 m and a distance of 1800 m from the initial position of
the missiles. At t = 0 the missiles have a height of 4000 m, the yaw angle of the airframe
is equal to the yaw angle of the velocity vector ϑ = θ = 0 rad, and the initial velocity is
V = 950 m/s. According to Equation (2), absolute rotation angle Θ is defined by

Θ =
N

∑
n=0

[
1
fs
|ω(n)|

]
where N = fstg (39)

in which n is the sample index, tg is the guidance time, and fs = 10 kHz is the sampling
frequency. Guidance time tg is understood as the time elapsed between t = 0 and the instant
at which the closing velocity changes the sign. The miss distance d is defined as

d =
√
(xT − x)2 + (yT − y)2 + (zT − z)2 (40)

where xT , yT , zT are the Cartesian coordinates of the instantaneous position of the aerial
target, and x, y, z are the Cartesian coordinates of the instantaneous position of the missile
at time tg.

The results of the sample run test are presented in Table 2 and Figures 14–18. The val-
ues of missile airframe normal acceleration a, angular rate ω, and angle of attack α given in
Table 2 are compared for the time instant tg.

Table 2. Simulation results for the sample run test.

Missile Gain tg d a(tg) ω(tg) α(tg) Θ

Number Matrix (s) (m) (m/s2) (rad/s) (rad) (rad)

1 K1 1.68 3.51 163.28 0.170 0.029 0.4009
2 K2 1.68 3.51 161.05 0.136 0.029 0.3608
3 K3 1.68 3.51 164.26 0.154 0.029 0.3615
4 K4 1.68 4.22 −102.01 −0.459 −0.032 0.4604
5 K5 1.68 3.51 159.16 0.090 0.029 0.3744
6 K6 1.61 242.53 — — — 6.6262
7 K7 1.61 242.48 — — — 6.6212
8 K8 1.68 3.51 155.68 0.067 0.029 0.3751

The following conclusions can be drawn based on the simulation results.
Although in Section 2.4 values were indicated for the tuning parameter ς, for which

the gain matrices K6 and K7 ought potentially to provide limited stability for the missile
airframe, it was shown in the simulation tests that the proposed forms of K6 and K7 do not
ensure the required properties of the stabilization system within the entire guidance loop
(Figure 14). For this reason, these solutions were excluded from further considerations.
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Figure 14. Missile and target trajectories for: (a) missiles 1, 3, 5 and 7, (b) missiles 2, 4, 6 and 8.

Figure 15. Angle of attack histories for: (a) missiles 1, 3 and 5, (b) missiles 2, 4 and 8.
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Figure 16. Airframe normal acceleration histories for: (a) missiles 1, 3 and 5, (b) missiles 2, 4 and 8.

In the case of the gain matrices K1 and K4, tests confirmed the oscillations predicted
in Section 2.4, which appeared in the initial phase of guidance towards an aerial target.
Over the time of the simulation the oscillations are suppressed (Figures 15–18), but the
fact of their occurrence is an unfavorable phenomenon and excludes the matrices K1 and
K4 from the set of desired solutions. This is an interesting observation, leading to the
conclusion that it is not appropriate to design individual elements of the system while
neglecting properties of the guidance loop as a whole.

It should be noted, however, that in the case under consideration the presence of these
oscillations, in spite of the increase in the value of the index Θ, did not have a significant
impact on miss distances (cf. Table 2). Moreover, missiles 1 and 4 attained the smallest
instantaneous values of angle of attack (Figure 15) and normal acceleration (Figure 16)
among all of the cases considered.

The gain matrices K2, K3, K5 and K8 ensure the correct operation of the airframe
stabilizing loop. They correctly perform the task of regulation within the entire guidance
loop. It may be noted here that the solution pair K5–K8 produces greater inertia of operation
than the pair K2–K3. This manifested in the higher values of the angular rates (Figure 17),
angles of attack (Figure 15) and normal accelerations (Figure 16) attained by missiles 5 and
8. In this way, their regulation systems attempt to make up for the initial losses related to
the delayed time of response to the input signal. Finally, however, in the case of all four
missiles (numbers 2, 3, 5 and 8) the same values were obtained for the miss distances and
guidance times, although the Θ values indicate the slight superiority of missiles 2 and 3.
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Figure 17. Canard-fin deflection histories for: (a) missiles 1, 3 and 5; (b) missiles 2, 4 and 8.

Figure 18. Airframe angular rate histories for: (a) missiles 1, 3 and 5; (b) missiles 2, 4 and 8.

3.2. Monte Carlo Simulation Study

A Monte Carlo simulation study consisting of 500 sample runs for each missile model
was carried out. In these simulations, the aerial target was located at a height of 4000 m and
a distance of 1800 m from the initial position of the missiles, which was taken as described
in Section 3.1. The target control commands performed square-wave evasive maneuvers in
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the pitch and yaw planes with a period of ∆T and a phase of ∆ϕ relative to t = 0. For each
test case, the random variables were distributed uniformly and chosen to be: time constant
τT = (0.01 ÷ 0.5) s, velocity VT = (220 ÷ 340) m/s, initial pitch angle θT = (−π/6÷ π/6)
rad and initial course angle γT = (3π/4÷ 5π/4) rad of the aerial target.

The results of the Monte Carlo simulation study are presented in Figures 19–24.
Figures 19a–24a correspond to the results of the simulation in which the proposed stabi-
lization system was treated separately and tested in isolated conditions, where only the
phenomena connected with the missile airframe dynamics were taken into account, i.e., for
u = δcom = δ, λ̇m = λ̇ and ∆λ = 0.

Figures 19b–24b correspond to the numerical simulation results achieved for the
stabilization system tested as a part of the whole guidance loop. The remaining elements
of the guidance loop were selected as typical and were not optimized in any way due to
the final miss distance or time-to-go. Mean values of guidance results for missiles 1–5
and 8 are given in Tables 3 and 4. For comparison, the simulation results obtained for
the unstabilized airframe (missile 9) are presented, for which only the basic condition of
static stability was met (the center of pressure was located behind the center of mass);
cf. Figure 25, Tables 3 and 4.

Figure 19. Miss distance distributions for different aerial target dynamics—stabilization system with
matrix K1 tested: (a) in isolated conditions, (b) as a part of a guidance loop.

Figure 20. Miss distance distributions for different aerial target dynamics—stabilization system with
matrix K2 tested: (a) in isolated conditions, (b) as a part of a guidance loop.
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Figure 21. Miss distance distributions for different aerial target dynamics—stabilization system with
matrix K3 tested: (a) in isolated conditions, (b) as a part of a guidance loop.

Figure 22. Miss distance distributions for different aerial target dynamics—stabilization system with
matrix K4 tested: (a) in isolated conditions, (b) as a part of a guidance loop.

Figure 23. Miss distance distributions for different aerial target dynamics—stabilization system with
matrix K5 tested: (a) in isolated conditions, (b) as a part of a guidance loop.
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Figure 24. Miss distance distributions for different aerial target dynamics—stabilization system with
matrix K8 tested: (a) in isolated conditions, (b) as a part of a guidance loop.

Figure 25. Miss distance distributions for different aerial target dynamics—unstabilized airframe
tested: (a) in isolated conditions, (b) as a part of guidance loop.

Table 3. Mean values of guidance results (for isolated conditions).

Missile Number Gain Matrix
1

500

500
∑

i=1
tgi

1
500

500
∑

i=1
di

1
500

500
∑

i=1
Θi

(s) (m) (rad)

1 K1 1.5536 0.0269 0.8779
2 K2 1.5442 0.0324 0.8034
3 K3 1.5536 0.0259 0.8046
4 K4 1.5535 0.6617 1.0073
5 K5 1.5544 0.2885 0.8369
8 K8 1.5543 0.4090 0.8334
9 unstabilized 1.5536 5.7028 6.3302
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Table 4. Mean values of guidance results (for the whole guidance loop).

Missile Number Gain Matrix
1

500

500
∑

i=1
tgi

1
500

500
∑

i=1
di

1
500

500
∑

i=1
Θi

(s) (m) (rad)

1 K1 1.5575 3.87 0.7433
2 K2 1.5580 4.10 0.6692
3 K3 1.5580 3.86 0.6705
4 K4 1.5576 5.44 0.8537
5 K5 1.5585 4.07 0.6946
8 K8 1.5553 4.17 0.6945
9 unstabilized 1.5609 23.99 5.3195

The absolute rotation angle Θ for a Monte Carlo simulation study was taken as

Θ =
N

∑
n=0

[
1
fs
(|ωθ(n)|+ |ωγ(n)|)

]
(41)

where ωθ and ωγ are the missile airframe angular rates in the pitch and yaw planes
(rad/s), respectively.

The following conclusions can be drawn based on the simulation results.
The greatest effectiveness of the guidance processes was obtained, in line with expecta-

tions, for missile number 3, with a stabilization system configured based on the gain matrix
K3. It should be noted that in the case under consideration, not only was the smallest mean
miss distance obtained (cf. Tables 3 and 4) but the scatter of miss distances around the
mean value was also the smallest. Moreover, this scatter tends to decrease with increasing
values of the time constant τT characterizing the aerial target dynamics (Figure 21b).

In line with prior expectations, missile number 2, with a stabilization system based on
matrix K2, exhibited reduced effectiveness in the case of guidance to aerial targets with a
short time constant τT (for τT > 0.4 s the results are analogous to those for missile number
3; compare Figures 20 and 21). This led to an increase in the mean miss distance.

Surprisingly high effectiveness was achieved in the case of missile number 1, stabilized
by means of a system with matrix K1 (Figure 19). In spite of the imperfections of this
solution as outlined in Section 3.1, the system enabled the execution of guidance processes
to an aerial target with an effectiveness equal to that of the system using matrix K3 (compare
Figures 19 and 21). The following proved to be key factors in the case of missile number 1:
rapid reaction of the system to a dynamically changing combat situation, and the ability to
suppress undesired oscillations effectively.

The stabilization systems configured based on matrices K5 and K8 had higher mean
miss distances than those based on matrices K3 and K1. In the case of missiles 5 and 8,
as for missiles 1, 2 and 3, a reduction was observed in the scatter of the miss distances
around the mean value as the time constant τT increased (Figures 23 and 24).

The solution using the gain matrix K4 is to be rejected (cf. Figure 22).
It can be seen that for each of tested systems the miss distance was reduced by an

order of magnitude with a radical reduction of the airframe rotation. It must be highlighted
that the proposed airframe stabilization system is just a part of the autopilot and is not able
to reduce the miss distance to zero. Its main task is to protect the on-board seeker before
unexpected and rapid dynamic changes, which exert a negative influence on the target-
tracking process. The non-zero miss distances observed in Figures 19b–24b can be explained
by the fact that there are inertial components in the assumed guidance loop, e.g., from the
seeker drives and actuators. Moreover, the simplest version of the proportional navigation
method is used. The missiles are not guided to an overtaken point, so there are always lags
behind the indications, which are evident in the case of maneuvering targets. A zero miss
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distance in this situation would only be achieved were the angular rate of the LOS equal
to zero.

4. Conclusions

This paper has described the use of an adaptive linear-quadratic regulator to stabilize
the static and dynamic characteristics of the airframe of a canard-controlled anti-aircraft
missile. A procedure to determine analytically the entries of the feedback-loop gain
matrix was outlined and a novel method of LQR tuning via single parameter ς was
proposed and tested. The main effort was directed towards describing a procedure for
selecting appropriate values of parameter ς for the designed airframe stabilization system,
and presenting the results of the simulation tests. It was observed moreover, that the
solutions obtained are symmetric pairs, and that the tuning parameter ς proposed for the
designed adaptive linear-quadratic regulator enables the selection of suitable parameters
for the airframe stabilizing loop for the majority of the analytical solutions of the considered
matrix, the Riccati equation.

The results confirm that the analytical methods initially applied in [7,8] are correct.
Likewise, they confirm the implication that the solutions found to the equations should
display symmetry. In the case of six of the eight analytical solutions, it was possible to find
values of the tuning parameter ς for which the system with a linear-quadratic regulator
effectively performs the task of stabilizing the missile airframe. It should be noted, however,
that not all of these solutions also provide effective guidance of the missile to an aerial
target. Rather, this is a result of the properties of the guidance loop as a whole.

As mentioned at the beginning of the paper, in the aerospace field, for the applica-
tions of the LQR, the Q and R matrices are usually determined based on Bryson principle
(or modified, e.g., time-varying Bryson) or “trial and error” methods. The main prob-
lem connecting all of these is the need to define the Q values to find the solution of
the feedback gain matrix K. In the proposed concept, a basic formula of feedback loop
gain matrix equations (without defining parameter ς, or—more precisely from the point
of view of this paper—for tuning parameter ς = 1 in covert form) for the time-varying
linear-quadratic stabilization system eliminates the need to choose Q values at all, as was
shown in [7]. However, the approach proposed in [7] does not use all the available
pairs of equations (i.e., potential solutions) describing the required operation of the sta-
bilization system. In previous works [7,8], these pairs of equations, which give unstable
solutions (with positive feedback) or which lead to inappropriate system response quality,
were rejected. Here, by introducing a single tuning parameter ς into the equations describ-
ing the entries of gain matrix K, all of the analytical solutions can be examined and fully
exploited against assumed requirements.

Obtaining an analytical solution for an LQR with a single tuning parameter is very
attractive from a practical (applicational) point of view. First of all, the basic form of
an adaptive controller is obtained naturally. Secondly, the tuning procedure is reduced
to the selection of one parameter instead of the whole matrix. The disadvantage of the
proposed method is that the condition for its application is to find an analytical solution of
the controller, which in general cases is difficult or impossible, e.g., because of obtaining
systems of equations in entangled forms. For this reason, the discussed concept may
constitute a solution for some specific control systems (those for which it is possible to find
a solution in analytical form), but it cannot be treated as a universal method of designing
LQR controllers.

The proposed method could be useful, e.g., when upgrading anti-aircraft missile
systems of previous generations, enabling a significant increase in the capabilities of the
missile with relatively negligible hardware and software interference. The algorithm is
relatively easy to implement in practice. Since the coefficients given by Equation (8) are
generally functions of missile velocity, with knowledge of the velocity profile, the entries
of gain matrix K can be found for successive time instants via preprocessing mode and
then tabulated or approximated by polynomial functions. Moreover, knowledge of the
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airframe angular rate ω and the angle of attack α is required. The actual value of ω
in the control plane is supplied by an angular rate gyroscope. The value of α may be
determined directly or indirectly: by using an on-board instrument for measuring the angle
of attack or by means of Equation (10) where the actual angle of the airframe in the control
plane is supplied by a free gyroscope, whereas the angle of the velocity vector is obtained
by integrating, with respect to time, the ratio of the airframe acceleration in the control
plane to the missile velocity module. Both approaches give rise to certain technical and
implementation problems. Discussion of these issues is beyond the scope of this paper.

However, it is necessary to note the potential dangers of the proposed approach,
especially from the robustness point of view. After linearization, the control action can
be very sensitive to omitted high-order terms; i.e., linear systems are not stable in a
Lyapunov sense. In this paper, by calculating the feedback loop gain matrix K based on
the time-varying parameters and tuning parameter ς, an adaptive-tuned linear-quadratic
stabilization system design is proposed to deal with the various disturbances affecting the
operation of the seeker during the missile–target engagement process. The fact that the
missile airframe behaves as a natural low-pass filter gives some additional protection (the
airframe bandwidth, depending on the missile class, is usually in the range from a few to
several Hz). This airframe dynamics feature quite effectively removes unwanted distortions
and reduces the impacts of high order terms on the guidance process. Nevertheless,
under certain unfavorable conditions, the stability of the whole system could be potentially
violated. Therefore, further work should take into account the development of the proposed
stabilization system towards adaptive linear robust control under external disturbance
effects. From this point of view, the analysis based on the attractive ellipsoid method (AEM)
seems adequate to the problem under consideration, as a methodology providing robust
stabilization of dynamic systems [50,51]. In this approach, use of the dynamic model of
the system is not necessary. Instead, the AEM uses basic information (i.e., the number of
state variables, the number of measurable outputs and the bounds of disturbances), while
providing practical stability and guaranteeing that each of the possible trajectories of the
closed-loop system achieves an ellipsoid of a minimal size [50]. Future work will also be
aimed at searching for a solution for the system of equations, taking into account the inertia
caused by fin servos and attempting to generalize the proposed solution for the case of the
pitch–yaw–roll-integrated stabilization system.

Funding: I have not received external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Sample data available on request.

Conflicts of Interest: I declare no conflict of interest.

Appendix A

The closed-loop system described by Equation (13) is given as:

ẋ = (A− BK)x + Bu (A1)

with output equation

y = Cx + Du →
[

yα

yω

]
=

[
Cα

Cω

][
α

ω

]
+

[
0
0

]
u where C =

[
Cα

Cω

]
=

[
1 0
0 1

]
(A2)

The transfer function due to the ω takes the form

Yω(s)
U(s)

= Cω [sI− (A− BK)]−1B (A3)
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The full-state feedback system does not compare the output to the reference. Instead,
it compares the state vector x multiplied by the gain matrix K to the reference. To obtain
the desired output, the reference input must be scaled:

ure f = Nu−Kx (A4)

where N is the extra gain used to scale the closed-loop transfer function. Now we have:

ẋ = (A− BK)x + BNu (A5)

Yω(s)
Ure f (s)

= Cω [sI− (A− BK)]−1BN = Gclosed(s)N (A6)

It can be computed that

N = Gclosed(0)
−1 = −

[
Cω(A− BK)−1B

]−1
(A7)

N = −
{[

0 1
]([−a1 1
−a2 −a3

]
−
[

0
b

][
k1 k2

])−1[0
b

]}−1

(A8)

N = −

[0 1
]

−b
a2 + a1a3 + bk1 + a1bk2

−a1b
a2 + a1a3 + bk1 + a1bk2



−1

(A9)

N =
a2 + a1a3 + bk1 + a1bk2

a1b
(A10)

N =
a2 + a1a3

a1b︸ ︷︷ ︸
Nu

+
[
k1 k2

]︸ ︷︷ ︸
K

 1
a1
1


︸ ︷︷ ︸

Nx

= Nu + KNx (A11)

By substituting (A11) into (A4), Equation (31) is obtained. By closing Nu and Nx in an
elegant matrix form [28,52], we get

[
Nx
Nu

]
= Ω−1

[
0
1

]
where Ω =

[
A B

Cω 0

]
=

−a1 1 0
−a2 −a3 b

0 1 0

 (A12)

[
Nx
Nu

]
=


−1
a1

0
1
a1

0 0 1
−a2

a1b
1
b

a2 + a1a3

a1b


0

0
1

 =


1
a1
1

a2 + a1a3

a1b

 (A13)

[
Nx
Nu

]
=


 1

a1
1


a2 + a1a3

a1b

 (A14)

which is consistent with Equations (A11) and (32).

Appendix B

For simulation purposes, the aerial target is modeled as a mass point [6,41,45,53–55]
whose motion in space is described by the vector of parameters

T ∈ R1×7 : T =
[
xT yT zT θT γT φT VT

]
(A15)
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where xT , yT , zT are the coordinates of the target’s position (m); θT and γT are the pitch and
yaw angles of the target’s velocity vector (rad), respectively; φT is the roll angle (rad); VT is
the modulus of the target’s velocity vector (m/s). Changes in the target’s accelerations are
approximated by the first-order dynamics

ȧL =
1

τT
(uL − aL) ȧθ =

1
τT

(uθ − aθ) ȧγ =
1

τT
(uγ − aγ) (A16)

where uL is the commanded longitudinal acceleration (m/s2); uθ and uγ are the manoeuvre
commands in the pitch and yaw plane (m/s2), respectively; aL is the actual longitudinal
acceleration (m/s2); aθ and aγ are the actual accelerations in the pitch and yaw plane
(m/s2), respectively; τT is the time constant of the target’s dynamics (s). The manoeuvre
commands are subject to limitations in the form

|uL| ≤ ūL |uθ | ≤ ūθ |uγ| ≤ ūγ (A17)

Changes in the target’s velocity and in the pitch and yaw angles are defined as

V̇T = aL θ̇T =
aθ

VT
γ̇T =

aγ

VT
(A18)

while the roll angle is approximated by

φT = arctan
(

VT
g

γ̇T

)
= arctan

(
aγ

g

)
(A19)

where g is the gravitational acceleration (m/s2). The following kinematic equations for the
motion of the target’s center of mass are used:

ẋT = VT cos θT sin γT ẏT = VT sin θT żT = VT cos θT cos γT (A20)
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54. Bużantowicz, W. Dual-control missile guidance: A simulation study. J. Theor. Appl. Mech. 2018, 56, 727–739. [CrossRef]
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