
aerospace

Article

Multi-Fidelity Optimization of a Composite Airliner Wing
Subject to Structural and Aeroelastic Constraints

Angelos Kafkas 1,*,† , Spyridon Kilimtzidis 2,† , Athanasios Kotzakolios 2,†, Vassilis Kostopoulos 2,†

and George Lampeas 1,†

����������
�������

Citation: Kafkas, A.; Kilimtzidis, S.;

Kotzakolios, A.; Kostopoulos, V.;

Lampeas, G. Multi-Fidelity

Optimization of a Composite Airliner

Wing Subject to Structural and

Aeroelastic Constraints. Aerospace

2021, 8, 398. https://doi.org/

10.3390/aerospace8120398

Academic Editors: Spiros Pantelakis,

Andreas Strohmayer and Liberata

Guadagno

Received: 17 October 2021

Accepted: 12 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Technology and Strength of Materials, Mechanical Engineering and Aeronautics Department,
University of Patras, Rio Campus, 26500 Patras, Greece; labeas@upatras.gr

2 Applied Mechanics Laboratory, Mechanical Engineering and Aeronautics Department, University of Patras,
Rio Campus, 26500 Patras, Greece; s.kilimtzidis@upnet.gr (S.K.); kotzakol@upatras.gr (A.K.);
kostopoulos@upatras.gr (V.K.)

* Correspondence: angel.kafkas@upnet.gr
† These authors contributed equally to this work.

Abstract: Efficient optimization is a prerequisite to realize the full potential of an aeronautical
structure. The success of an optimization framework is predominately influenced by the ability to
capture all relevant physics. Furthermore, high computational efficiency allows a greater number
of runs during the design optimization process to support decision-making. The efficiency can
be improved by the selection of highly optimized algorithms and by reducing the dimensionality
of the optimization problem by formulating it using a finite number of significant parameters. A
plethora of variable-fidelity tools, dictated by each design stage, are commonly used, ranging from
costly high-fidelity to low-cost, low-fidelity methods. Unfortunately, despite rapid solution times,
an optimization framework utilizing low-fidelity tools does not necessarily capture the physical
problem accurately. At the same time, high-fidelity solution methods incur a very high computational
cost. Aiming to bridge the gap and combine the best of both worlds, a multi-fidelity optimization
framework was constructed in this research paper. In our approach, the low-fidelity modules and
especially the equivalent-plate methodology structural representation, capable of drastically reducing
the associated computational time, form the backbone of the optimization framework and a MIDACO
optimizer is tasked with providing an initial optimized design. The higher fidelity modules are
then employed to explore possible further gains in performance. The developed framework was
applied to a benchmark airliner wing. As demonstrated, reasonable mass reduction was obtained for
a current state of the art configuration.

Keywords: wing design optimization; structural optimization; composite materials; computational
fluid dynamics; multi-fidelity optimization

1. Introduction

Ever since the early years of aviation, the design, analysis, and optimization of aircraft
structures has been receiving ever-increasing attention from the scientific community and
has, therefore, been subjected to extensive research studies. As a result, a wide variety of
multi-fidelity computational tools, with application to a plethora of analysis disciplines,
has emerged. During an aircraft design process, consisting mainly of the conceptual,
preliminary and detailed design stages [1], the various computational tools are designated
to a corresponding design stage mainly based on the computational time, the modeling
complexity and the ability to capture the physical phenomena present. Early on, low-fidelity
models, associated with fast turnaround times, yet incapable of modeling higher order
phenomena, are employed, along with empirical knowledge, to steer the design towards
optimality. As the design knowledge on the current candidate configuration matures,
higher fidelity tools are employed, aiming to replicate the relevant phenomena with greater
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accuracy, albeit at an elevated and often prohibitive computational cost. Throughout the
stages, all relevant tools are coupled with optimization algorithms in order to gain further
knowledge regarding the design space, as well as to obtain the corresponding optimized
solution.

A key enabler to the mass reduction trend of aeronautical structures is the rise of com-
posite materials in the aeronautics field. Lighter yet stiffer configurations have emerged
with improved static and dynamic aeroelastic response through tailoring of their prop-
erties [2]. One of the main challenges, nevertheless, remains the optimization of such
structures, since the introduction of composite materials induces further computational
and algorithmic complexity. On one hand, ply angles and thicknesses can be expressed
as design variables, resulting into a more complex and irregular design space, but with
facilitated algorithmic applicability. On the other hand, the use of lamination parameters
for optimization purposes has been extensively studied over the past few years. Miki
and Sugiyama [3] was among the first to generate optimum designs of laminated com-
posite plates for required in-plane and maximum bending stiffness, buckling strength
and natural frequency utilizing lamination parameters. Fukunaga et al. [4] explored the
effect of bend-twist coupling on the fundamental frequency of symmetric laminated plates,
indicating that this type of coupling reduces the fundamental frequencies. The optimal
laminate configuration that maximizes the fundamental frequencies was also obtained. In
his work, Liu et al. [5] maximized the buckling load of composite materials panels using
flexural parameters and compared its results with a stacking sequence optimization design
generated via a genetic algorithm, indicating a close correlation between the two methods.
In later works, efforts were directed towards closure of the up-to-then incomplete feasible
design space of the lamination parameters [6], and the aeroelastic tailoring of regular and
variable stiffness composite materials wings [7,8], as well as the stiffness optimization
subject to aeroelastic constraints [9]. Macquart et al. [10], as well as Bordogna et al. [11],
extended the capabilities of the state-of-the art lamination parameters optimization al-
gorithms, introducing blending constraints in order to guarantee a certain degree of ply
continuity inside a variable stiffness composite wing.

It becomes evident that various disciplines must be involved in the design opti-
mization process of a modern airliner composite wing, the main contributors being the
structural and aerodynamic analysis, since they significantly influence the performance
and safety of wing structures. Additional disciplines may be included on a case by case
basis. Regarding the structural representation, Finite Element Analysis (FEA) models
are commonly used at the preliminary and detailed design stages, with reduced order,
equivalent beam or plate models aiming to provide greater insight into the candidate
configurations, as well as reduce the design space at an early stage of the design process.
The equivalent plate methodology (EPM), often preferred due to its inherent facilitated
coupling capabilities with concurrent aerodynamic and optimization codes, initially de-
veloped by Giles in a series of research papers [12–14], was proven to be a robust and
accurate enough numerical tool for the structural analysis of aircraft wings, as the com-
parison with a 3D FEA wing model showed. Later on, Livne et al. [15] included the EPM
in a multidisciplinary structural, aerodynamics and control analysis and optimization
framework of a composite aircraft wing, and went on to also include transverse shear
effects in the EPM formulation [16]. The large deformation non-linear static and dynamic
behavior of wings via the EPM formulation was also studied by Livne and Navarro [17],
with good correlation up to relatively large levels of loading being obtained. In their work,
Kapania and Liu [18] introduced Legendre polynomials in the EPM in order to avoid the
numerical ill-conditioning problem often accompanied by the usage of simple polynomials
as trial functions. The accuracy and efficiency of the method was demonstrated via a
series of static, as well as free, vibration loading scenarios. Through a series of works,
Krishnamurthy and Eldred [19], Krishnamurthy and Tsai [20], Krishnamurthy [21] devel-
oped an optimization framework for obtaining an equivalent plate by minimizing an error
function accounting for the displacements and frequencies between the two numerical mod-
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els under consideration. The methodology was initially tested in plates with and without
discrete damage and was later used to evaluate the static and dynamic structural response
of a baseline aircraft wing. In each case, an optimum thickness and concentrated mass
distribution for the equivalent plate model was obtained. A scaling down methodology
was also developed and put into test via a series of numerical tests. The developed method-
ology indicated that the static response of the wing structure was accurately predicted,
with the equivalent plate model being capable of reproducing the first five frequencies of
the wing structure within five percent. Over the last few years, Na and Shin [22], along
with Henson and Wang [23], further enhanced the current EPM capabilities to account for
control surfaces, as well as for tow steered composite wing skins, respectively.

On the other hand, implementation of dedicated computational analysis tools for the
relevant disciplines into optimization frameworks is of paramount importance. Pioneering
research was conducted by Triplett [24] and Love and Bohlman [25], where one of the
earliest multidisciplinary design and optimization tool, aeroelastic Tailoring and Structural
Optimization (TSO), was developed. The Rayleigh-Ritz EPM for the structural model,
coupled with the Doublet Lattice Method were combined to optimize the thickness distri-
bution and laminate orientations of a fighter wing subject to strength and flutter velocity
constraints. Haftka [26] developed an automated procedure for the design and optimiza-
tion of composite wings subject to strength and flutter constraints. A major conclusion
drawn from this work was that the flutter speed may not be a continuous function of the
structural stiffness; hence, in optimization under flutter constraint, the constraint should
be formulated in terms of other, continuous parameters relative to the flutter phenomenon.
Haftka [27] also coupled a lifting-line theory-based aerodynamics model with a wing-
box FEA model to perform aeroelastic analysis and optimization of a wing under stress
and drag constraints. Weight versus drag trade-off studies for aluminium and composite
wings were conducted. It was found that the composite wings were associated with lower
mass and drag but their increased flexibility resulted in a larger variation in drag in the
Pareto front. One of the earliest aerostructural optimization analysis was performed by
Grossman et al. [28], where, utilizing lifting-line aerodynamic models, along with beam
equations for the structural representation, the optimum shape, and structural configura-
tion of a sailplane wing was obtained. In a similar but more complex fashion, by means of
numerical tools, Grossman et al. [29] optimized a transport aircraft wing, while in parallel
developing methodologies for the calculation of the sensitivity derivatives, as well as a
sequential approximate optimization module.

While optimization procedures using low-fidelity components for the representation
of the structural and aerodynamic problem have to date offered major gains in the overall
performance of wing structures, they have inherent limitations. The limitations result from
the main assumptions of such methods; for aerodynamics, non-linearities are typically ne-
glected and simplified wetted geometries are used. On the structural side, the assumption
of linear behavior, together with simplified FEA models, sees widespread use in optimiza-
tion. Increasing the fidelity of the aerodynamic and structural solvers can influence the
optimization results [30] and represents a step beyond the current state-of-the-art [31,32].
For the coupled aeroelastic problem, linear approaches, both in terms of structure and
aerodynamics represented in the frequency domain, are commonly used. Studying the
dynamic aerostructural response with such formulations should be limited to linear or
weakly non-linear cases due to the underlying assumptions. The dynamic response of
wings that operate in the transonic region, as well as cases of boundary layer-shockwave in-
teraction and flutter from flow separation (common in rotor blades), requires a high-fidelity
representation of the aerodynamics to be accurately captured [33–35]. Even when the
aeroelastic behavior is correctly captured, the increased detail in the unsteady aerodynamic
loads can influence the optimum result. In Reference [36], different unsteady aerodynamic
methods were used in a multi-fidelity aerostructural optimization of a helicopter rotor,
leading to variation in the final optimum blade geometry. Even for the static aeroelastic
case, differences due to varying fidelity of the aerodynamics solvers have indeed been pin-
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pointed [37]. Furthermore, the presence of structural non-linearities can additionally have
a serious effect on the aeroelastic behavior of a wing structure [38]. Such non-linearities
are expected to become more common in the future due to the tendency to move to ever
more efficient wings of very high-aspect ratio combined with highly flexible composite
materials.

It becomes evident that the obtained optimized solution corresponds to a specific level
of fidelity. Depending on the case, the assumptions in modeling each discipline can be
justified. However, they could also represent an oversimplification of the actual physics of
the problem and yield a sub-optimal design. The optimized solution can be in doubt due to
the level of fidelity with which the various disciplines are approximated regardless of how
tight the optimization constraints are set and how rigorous the optimization algorithm
becomes. Thus, the fidelity of each component of the optimization framework must be
carefully evaluated by taking into account the outstanding properties of each problem or
by confirming the validity of the solution using higher fidelity analysis.

In the following brief overview, the emphasis will be mainly upon the impact of
increasing the fidelity of the aerodynamic formulation. This is a conscious choice because
solution and modeling procedures for even detailed 3D Shell-3D Beam Finite Element
representations of the structure have become quite efficient. However, some examples
covering the impact of high-fidelity structural modeling are also mentioned below.

Gains from the inclusion of high-fidelity analysis component to the optimization
of future unconventional aircraft wing concepts have been reported in literature. In
Reference [39,40], high-fidelity Computational Fluid Dynamics (CFD) was used to provide
realistic predictions of engine-pylon-strut interference and viscous drag that was fed to
the optimization procedure. Significant reduction in structural mass for a strut braced
wing based upon the Common Research Model (CRM) wing planform was obtained
by Variyar et al. [41] by using a complete multi-fidelity optimization framework that
encompassed both high-fidelity aerodynamics and structural dynamics. For a similar
aircraft configuration, the accurate derivation of aerodynamic loads is stressed as a crucial
parameter by Variyar et al. [41] and a multi-fidelity approach even in conceptual stage
deemed advantageous. Qian and Alonso [42] have included a high-fidelity structural model
in an aerostructural optimization procedure to discover gains in range and a reduction in
structural mass. Smith et al. [43] mention that including high-fidelity CFD and non-linear
structural effects in the aeroelastic modeling of high aspect ratio wings can lead to important
differences compared to linear methods. In this particular case, linear methods were found
to lead to an overly conservative result for tip displacement and aerodynamic loads.

Unsurprisingly, most recently published studies regarding high-fidelity optimiza-
tion frameworks deal with innovative wing configurations that are prone to aeroelastic
instabilities (high-aspect ratio wings, transonic aircraft) and may also contain structural
non-linearities. Quantifying the impact of higher-fidelity optimization to current state-of-
the-art wings has not been as prominent in the literature. Liem et al. [44] have shown that
significant benefits from high-fidelity aerostructural optimization can also be realized for
current state-of-the-art wings.

The decision on the required analysis capabilities that dictates the adequate level
of fidelity has important ramifications from a computational-cost perspective. Further
numerical analysis with high-fidelity tools is typically performed to assess the validity of the
low-fidelity results and support the decision on the adequate level of fidelity. This approach
has been used in industry and research centers [45–47]. Multiple strategies to bridge
the gap in computational cost and capabilities between high and low-fidelity potential
flow solutions represented by the 3D Euler Equations and simple Vortex Lattice and
Doublet Lattice Method (VLM and DLM) formulations, respectively have been presented
in the literature. A practical approach is to employ medium-fidelity aerodynamics. This
level of fidelity is represented by advanced 3D Panel Methods. These can allow for
a more detailed geometrical modeling of aeronautical structures, including non-planar
aerodynamic shapes. Furthermore, by employing advanced wake modeling techniques,
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reasonable approximations for re-circulation effects and induced drag can be achieved at
a lower cost than high-fidelity solutions. Kennedy and Martins [48] have employed a 3D
Panel Method in a parallel aerostructural optimization framework and have additionally
checked the validity of the obtained aerodynamic solutions against high-fidelity ones.
Mieloszyk and Goetzendorf-Grabowski [49] have used a 3D Panel method in conjunction
with corrections for viscous effects to evaluate the flight dynamics stability constraints in
the multidisciplinary optimization of a joined wing box configuration. Recently, a finite
element beam model was coupled to 3D Panel Aerodynamics and employed in aeroelastic
optimization by Conlan-Smith and Schousboe Andreasen [50].

A natural path to reduce the computational cost associated with increased fidelity
is to search for an optimized solution in smaller regions of the parameter space (thus
requiring a smaller number of optimization iterations). This approach requires a priori
some knowledge of the region in parameter space where the optimum is likely to be
detected. In our multi-fidelity optimization framework, the low-fidelity part is entrusted
with obtaining an initial optimized design with a high numerical certainty. Then, the
high-fidelity modules explore further gains in performance by modeling the physics that
the low-fidelity modules cannot. Overall, only a fraction of the iterations using high-
fidelity are performed (in the range of 5–10%). Such an approach prevents a drastic
increase in computational cost. The procedure of gradually moving to increasing level of
fidelity but with a smaller number of solutions is typical of a multi-fidelity optimization
framework [51,52].

Still, a very high computational cost due to each high- fidelity solution is incurred,
particularly so if a higher number of runs is needed. This cost is further exacerbated in the
aeroelastic solutions. The cost of solving the unsteady aerodynamics with a high-fidelity
method (typically a form of the Navier–Stokes equations with spatial approximation pro-
vided by the finite volume or element methods) tends to be higher than the structural
solution. A combined computational cost of solving the structure and unsteady aerody-
namics plus the interpolation of data between the two systems is then incurred. To mitigate
this cost significantly, particularly for multiple runs around the same reference flow con-
ditions, Order Reduction techniques can be used. Such techniques strive to approximate
the physical behavior of the system on a greatly reduced (but physically meaningful) set
of degrees of freedom. Most reduced order models are trained using samples from full
solutions. The cost of obtaining those samples represents the main cost considering their
use, since, afterward, they provide extremely rapid solution times. Several types of reduced
order models (ROMs) have been used to treat aeroelasticity, including those based on (a)
Mathematical decompositions, such as proper orthogonal decomposition (POD) [53,54], (b)
Series approximations (for example, Volterra or Wiener) [55], and (c) Machine Learning
techniques [56]. In our work, we integrate a ROM to the optimization framework that
uses a Volterra series approximation for the unsteady aerodynamics coupled with mode
superposition on the structural side. It serves as an intermediate step between low-fidelity
aeroelastic solutions and the full coupled high-fidelity final run.

Although multiple analysis techniques of varying fidelity have been successfully used
in optimization, the different computational cost that they incur combined with their setup
complexity leads to a different combination of methods being adopted in each design
stage of an aircraft structure. Specifically in industry, the current state-of-the-art is to
include higher fidelity modules as design maturity increases (preliminary and detailed
design stages), while exploiting the low computational cost of low-fidelity methods in
the conceptual stage [47,57]. In the conceptual stage, efficient low-fidelity methods (panel
method aerodynamics and equivalent beam or plate structural models) are commonly
preferred due to the requirement to evaluate the feasibility of a vast number of design
configurations.

Advances in computational capabilities combined with robust and optimized high-
fidelity analysis tools has resulted in a trend to incorporate such methods already from the
preliminary stage. In order to bridge the gap between capabilities and computational cost
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between high and low-fidelity methods, two of the most attractive methodologies consist
of employing correction factors to the lower-fidelity tools [37,58], as well as constructing
surrogate models. Furthermore, the construction of multi-fidelity optimization frameworks
represents a highly active research topic. Such frameworks strive to combine the advantages
of both worlds while mitigating the associated computational cost [47].

The primary research goal of the present study is to evaluate the gains in the structural
optimization of a current state-of-the-art composite airliner wing by implementing a
multi-fidelity optimization framework. Structural and aeroelastic constraints are used to
formulate the optimization problem. The developed framework and the insight gained
in the structural design and optimization of the composite wing model was used in
the GRETEL project [59]. As a case study, a modified, planar (untwisted) version of
the Common Research Model (CRM) [60] wing has been treated. The optimization
framework is based on the Equivalent Plate Model (EPM) and the Mixed Integer Ant Colony
Optimization (MIDACO) algorithm. At the first stage, an optimized configuration for the
wing under low-fidelity aerodynamic loading is obtained. Higher fidelity aerodynamic
solutions are then generated, and possible changes in the optimized solution are explored.
Finally, the static aeroelastic response of the wing under consideration is also investigated.
An overview of the performed actions of the developed optimization framework for the
current case study is presented in Appendix B, highlighting input-output relations.

Although multiple studies in the literature assess the gains of using multi-fidelity
optimization frameworks for innovative wing configurations, the gains for the current-
state-of-the-art wings are less prominently covered. The present study aims to contribute to
closing this gap. We demonstrate that, through the use of this optimization tool, reasonable
gains in structural mass of the test case wing were realized.

2. Materials and Methods

The developed multi-fidelity structural optimization framework is comprised of sev-
eral distinct modules of varying fidelity and computational cost. The flowchart for the
optimization framework is presented in Figure A4. These are combined in a manner that
enables efficient turnaround times, as well as an optimized solution, with high levels of
certainty accounting for the most relevant physics. In the next paragraphs, each of the con-
sisting modules of the optimization framework will be mentioned, and their contribution,
advantages, and disadvantages assessed. In addition, we will then present their combina-
tion in the developed optimization framework. The path from initial design to optimized
solution referring to the potential changes at each separate stage will be described.

2.1. Low-Fidelity Modules

The present module, consisting mainly of low-fidelity computational tools and physics
approximations, initializes the design process and, hence, is responsible for narrowing
down the design space, while simultaneously steering the design towards optimum so-
lutions, as well as accelerating the design procedure. The following sub-modules are
included and described in detailed fashion:

• EPM Structural Model
• Low-Fidelity Aerodynamics
• Optimization Framework

2.1.1. EPM Structural Model

Starting from the cornerstone of this work, the EPM enables a great reduction in the
dimensionality of the problem since under the assumption of a relatively small thickness-
to-chord ratio one can assume that an aircraft wing pertains a plate-like behavior. The
problem is then reduced from a 3D representation to a 2D equivalent plate with smeared
properties, reducing the associated DOFs. Plate kinematics, and specifically the First
Order Shear Deformation Theory (FSDT) [61], can be utilized to describe and calculate the
stress and strain state of each wing component. In particular, the wing skins, spar, and
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rib webs are treated as laminated plates, while, on the other hand, and as per common
practice, spar and rib caps are assumed to resist axial loads only and are, thus, considered
as one-dimensional rods. To obtain the governing equation of the system the principle
of minimum total potential energy is applied [18]. Under the FEA method, interpolation
functions are used to describe the variation of the displacement field within an element,
as well as to obtain the stiffness and mass matrices, [K] and [M], respectively. Another
important assumption of the EPM is that the superposition principle holds; hence, the
individual stiffness and mass matrices of each wing component can be summed in order to
obtain the respective wing global matrices:

[K]wing = [K]skin + [K]sparweb
cap

+ [K]ribweb
cap

[M]wing = [M]skin + [M]sparweb
cap

+ [M]ribweb
cap

(1)

Let F be a generic function that describes the stiffness and mass distribution along the three-
dimensional space for each wing component. The contribution of each EPM element to
the global matrices is derived via the following integrals. Gaussian numerical integration
is employed for the solution of the integrals, along with a coordinate transformation
between the physical coordinates (x, y) and the generalized coordinates (ξ,η). The limits of
integration in the through-the-thickness (z axis) coordinate correspond to the maximum
extent of the local part of the actual wing structure.

∫∫∫
V

F(x, y, z)dV =
∫ 1

−1

∫ 1

−1

( Nz

∑
n=1

∫ zjn

zin

F{x(ξ, η), y(ξ, η), z} |J| dz
)

dξ dη, (2)

where Nz is the number of integration points in the z-direction, zin and zjn the integration
limits of the n-th integration point, and |J| the determinant of the Jacobian of the coordinate
transformation. Each wing component pertains different geometric characteristics; hence,
specific treatment is required for the integration procedure:

1. Skins:

∫∫∫
V

F(x, y, z)dV =
∫ 1

−1

∫ 1

−1

( ∫ zL+
1
2 tL

zL− 1
2 tL

F · |J| dz +
∫ zU+ 1

2 tU

zU− 1
2 tU

F · |J| dz
)

dξ dη, (3)

where tL,U = t0

√
1 + tan2aL,U , the thickness of the upper and lower skins, respec-

tively, and aL,U the local airfoil angle of the lower and upper skin, as illustrated
in Figure 1a. For a laminated plate, the numerical integration in the z-direction is
performed for each lamina individually, along with its corresponding constitutive
matrix. The rest of the components contribute in an analogous manner, albeit the
integration limits are modified according to their relevant geometric characteristics,
as presented in Figure 1b.

2. Spar Webs:

∫∫∫
V

F(x, y, z)dV=
∫ 1

−1

∫ ξs(n)+
t1
c

ξs(n)−
t1
c

∫ zU− 1
2 tU−h1

zL+
1
2 tL+h1

F{x(ξ, η), y(ξ, η), z} |J|dzdξdη =

∫ 1

−1

∫ 1

−1

t1

c

∫ zU− 1
2 tU−h1

zL+
1
2 tL+h1

F
{

x
[

t1

c
ξ + ξs(n), n

]
, y
[

t1

c
ξ + ξs(n), n

]
, z
}
|J|dzdξdη

(4)
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3. Spar Caps:

∫∫∫
V

F(x, y, z)dV=
∫ 1

−1

∫ ξs(n)+
l1
c

ξs(n)−
l1
c

( ∫ zL+
1
2 tL+h1

zL+
1
2 tL

F{x(ξ, η), y(ξ, η), z} |J|dz

+
∫ zU− 1

2 tU

zU− 1
2 tU−h1

F{x(ξ, η), y(ξ, η), z} |J|dz
)

dξdη =

∫ 1

−1

∫ 1

−1

l1
c

(∫ zL+
1
2 tL+h1

zL+
1
2 tL

F
{

x
[

l1
c

ξ + ξs(n), n
]

, y
[

l1
c

ξ + ξs(n), n
]

, z
}
|J|dz

+
∫ zU− 1

2 tU

zU− 1
2 tU−h1

F
{

x
[

l1
c

ξ + ξs(n), n
]

, y
[

l1
c

ξ + ξs(n), n
]

, z
}
|J|dz

)
dξdη

(5)

4. Rib Webs:

∫∫∫
V

F(x, y, z)dV=
∫ 1

−1

∫ ηr(ξ)+
t2
s

ηr(ξ)−
t2
s

∫ zU− 1
2 tU−h2

zL+
1
2 tL+h2

F{x(ξ, η), y(ξ, η), z}|J|dzdξdη =

∫ 1

−1

∫ 1

−1

t2

s

∫ zU− 1
2 tU−h2

zL+
1
2 tL+h2

F
{

x
[

ξ,
t2

s
η + ηr(ξ)

]
, y
[

ξ,
t2

s
η + nr(ξ)

]
, z
}
|J|dzdξdη

(6)

5. Rib Caps:

∫∫∫
V

F(x, y, z)dV=
∫ 1

−1

∫ ηr(ξ)+
l2
s

ηr(ξ)−
l2
s

(∫ zL+
1
2 tL+h2

zL+
1
2 tL

F{x(ξ, η), y(ξ, η), z}|J|dz

+
∫ zU− 1

2 tU

zU− 1
2 tU−h2

F{x(ξ, η), y(ξ, η), z}|J|dz
)

dξdη =

∫ 1

−1

∫ 1

−1

l2
s

(∫ zL+
1
2 tL+h2

zL+
1
2 tL

F
{

x
[

ξ,
l2
s

η + ηr(ξ)

]
, y
[

ξ,
l2
s

η + ηr(ξ)

]
, z
}
|J|dz

+
∫ zU− 1

2 tU

zU− 1
2 tU−h2

F
{

x
[

ξ,
l2
s

η + ηr(ξ)

]
, y
[

ξ,
l2
s

η + ηr(ξ)

]
, z
}
|J|dz

)
dξdη,

(7)

where h1,h2 the thickness of a spar/rib cap, l1,l2 the width of a spar/rib cap, and t1,t2 the
thickness of a spar/rib web, respectively.

(a) Skins (b) Spar/Rib Webs & Caps

Figure 1. Wing cross-section.

2.1.2. Low-Fidelity Aerodynamics

One of the most attractive merits of the EPM is the facilitated coupling with contem-
porary aerodynamic panel methods, and specifically the Vortex Lattice Method (VLM) [62],
since both methods are based on flat-plate representations of their respective discipline.
The VLM, a well-established numerical method used in the early design stages of air-
craft design, assumes an incompressible, inviscid and irrotational flow field, along with
horseshoe vortex elements, in order to model an aerodynamic surface, thus neglecting the
presence of thickness and viscosity in the solution. For an aerodynamic mesh consisting of
N panels, at each collocation point i, the contribution of all the horseshoe vortices is added,
thus generating an Aerodynamic Influence Coefficient (AIC) matrix. Introducing, also, the
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Neumann boundary condition of zero normal velocity across the surface, we obtain the
following set of linear equations, which are solved for the unknown vortices strength, [Γj]:

[AICij] ∗ [Γj] = [bj], (8)

where [bj] the product of the free stream velocity and the panel surface normal vectors.
Tornado VLM [63], a VLM implementation in MATLAB, has been used in our case for

the generation of the critical aerodynamic loading case, corresponding to a 2.5G pull-up
maneuver at sea-level conditions. Prior studies [64,65] have identified the 2.5G condition
at a Mach number of 0.64 as the critical load case for the studied wing, as summarized in
Table 1. Equation (8) can then be evaluated, and the aerodynamic pressure is distributed to
the nodes of each element of the EPM model, since similar meshes for the structural and
aerodynamic analysis have been considered. Nevertheless, more elaborate 2D interpolation
schemes for load transfer purposes between the two meshes can be easily adapted, as
demonstrated in subsequent modules.

Table 1. Critical aerodynamic loading summary as a function of the Maximum Take-Off Weight
(MTOW).

Condition Lift Constraint Mach Altitude (m)

2.5G maneuver 2.5 ·MTOW 0.64 0

2.1.3. Optimization Framework

The present low-fidelity module is completed by integrating the EPM, along with the
aerodynamic loading procedure, into an efficient optimization scheme for the sizing of
the structural components of the wing. In a typical structural optimization scheme, the
minimization of the wing structural mass is set as the objective function with stiffness,
static strength, modal and dynamic aeroelastic constraints completing, and rationalizing
the optimization problem. Concerning the optimization variables, the number of the 0◦,
(45◦, −45◦), 90◦ plies of a baseline layup, corresponding to a component of the wing, and
expressed as multiples of an integer number of the material under consideration, along
with the depth of the spar and rib caps, constitute the design variables vector [66]. As
an example, the composite layup parametrization technique for a wing component is
presented in Equation (9).

[0(ni)
/45(ni+1)

/− 45(ni+1)
/90(ni+2)

]s (9)

where n an integer-valued variable allowed to range between its upper and lower bounds,
and i an internal variable counter, ranging from 1 to the number of variables of the opti-
mization problem. This formulation was deemed advantageous due to a straightforward
and less complex implementation than advanced lamination parameters techniques, such
as Reference [3,4,11]. The results, expressed as the required integer number of plies to
achieve an optimized percentage of different ply orientations up to the required thickness
is deemed satisfactory for the purpose of this study.

Conformity to composite materials design guidelines [67], by means of generating
symmetric and balanced lay-ups, is achieved by setting the number of 45◦ and −45◦

plies equal. The upper and lower bounds, along with the nature of the variables under
consideration, are also presented in Table 2. The spar/rib caps depth variables are allowed
to vary between their designated bounds with a 0.5 mm step. To allow for a wider design
space and an increased structural design freedom, the wing is divided into 6 spanwise
evenly spaced zones, as illustrated in Figure 2.
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Figure 2. Optimization zones.

Table 2. Optimization variables type, lower and upper bounds.

Variable Lower Bound Upper Bound Type

Ply Count, 0◦ 1 20 Integer
Ply Count, 90◦ 1 20 Integer
Ply Count, (45◦,−45◦) 1 20 Integer
Spar/Rib Caps Ply Count 1 10 Integer
Spar/Rib Caps Depth, mm 50 100 Integer

Regarding the constraints of the optimization problem, and although not clearly
stated as design requirements per regulation, static stiffness constraints are accounted for
in the majority of optimization studies of aircraft wings present. For the present study,
the maximum deflection at the tip of the wing is constrained, along with a maximum
twist angle induced at the tip of the wing [68]. The corresponding values are chosen to
represent typical maximum deformation values reached for current state-of-the-art airliner
wings [69]. Additionally, aeroelastic analysis was carried out to ensure safety against
divergence and flutter. To avoid possible local structural designs during the optimization
process and to ensure the required amount of modes for an accurate dynamic aeroelastic
analysis, the first eigenfrequency is also constrained. The static strength of the structure is
also examined via the following algorithm:

• Extraction of nodal displacements.
• Calculation of the membrane and curvature strains.
• Calculation of strains at various wing cross-sections via plate kinematic equations.
• Calculation of forces and moments per unit length.
• Given the forces and moments, the material strength values, and the maximum stress

criterion, calculate the failure indices (FI) for each ply and conduct a First-Ply-Failure
(FPF) analysis.

To avoid local maximum stress driven designs, while simultaneously keeping the
number of constraints for the optimization problem to a minimum, the constraint aggre-
gation technique of Kreisselmeier–Steinhauser (KS) has been employed [70,71]. For an
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optimization problem consisting of Nc constraints, g, having a maximum value of gmax, the
KS functions are of the following form:

KS
(

gj
)
= gmax +

1
ρ

ln[
Nc

∑
j

exp(ρ(gj − gmax))] ≤ 1 (10)

and are formed separately for the calculated FI of each of the components involved in the
static strength evaluation procedure. The aggregation parameter ρ is set to 100 for all KS
functions. This value has been reported in structural optimization studies of the CRM
wing [72,73] and is shown to provide accuracy of the optimal solution. The aeroelastic
stability by means of flutter speed is also investigated for each candidate design. A
MATLAB code developed by NASA, EZ-ASE [74], is utilized for generating the unsteady
aerodynamic loads calculation and conducting the flutter analysis in the frequency domain
via the p-k method. EZ-ASE features flat-plate aerodynamics and particularly the VLM
and DLM, thus allowing for straightforward coupling with the existing structural mesh
of the EPM model; however, since, for higher reduced frequencies, a denser aerodynamic
mesh is needed for accuracy purposes, a bilinear interpolation scheme is used within. The
optimization objective function and constraints are summarized in the following, Table 3.

Table 3. Optimization problem setup.

Objective Function Minimize Structural Mass

under the constraints
Constraint Type Limit Value
Maximum Deflection ≤0.15 · Span
Tip Torsion Angle ≤8◦

First Eigenfrequency ≤1 Hz
Flutter Speed ≤1.2 · Dive speed
KS(FI), Upper Skin ≤1
KS(FI), Lower Skin ≤1
KS(FI), Spar Caps ≤1
KS(FI), Spar Webs ≤1

The flowchart of the resulting low-fidelity optimization framework is presented in the
following, Figure 3. The MIDACO solver [75], adopting a combination of an extended Ant
Colony optimization algorithm (ACO) [76], along with the Oracle Penalty Method [77], an
advanced method developed for metaheuristic search algorithms for constraint handling
of the solution process has been chosen for carrying out the optimization problem. A
sequential approach with multiple runs has been adopted, implying that the predefined
number of runs is divided into multiple runs pertaining different algorithmic parameters.
Particularly, initial runs are mainly focused on extensive design space exploration and are
accompanied by a relaxed constraint satisfaction tolerance. As the solution advances, the
search becomes increasingly local by tweaking accordingly the internal FOCUS parameter
that forces the MIDACO solver to focus mostly on the current best solution. In particular,
the ACO algorithm implemented in MIDACO generates samples of iterates based on multi-
kernel Gaussian probability density functions (PDF). For a generic variable k with upper
and lower bounds xu and xl , respectively, the FOCUS parameter applies an upper bound for
the standard deviation of a Gaussian PDF given by xu(k)−xl(k)

FOCUS and max( xu(k)−xl(k)
FOCUS , 1√

FOCUS
)

for continuous variables and integer variables, respectively. As a result, smaller values
of the FOCUS parameter is recommended for the initial runs, with larger ones used for
refinement purposes. In parallel, the constraint satisfaction tolerance is tightened. At each
succeeding run, the previous best solution obtained serves as the starting point for the
current run. As stated earlier, this procedure is repeated for a predefined number of runs,
satisfying user-defined stopping criteria. The parameters of the optimization approach are
summarized at the following Table 4.
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Table 4. Optimization algorithm parameters.

Run Iterations Tolerance FOCUS Parameter Starting Point

1 200 0.1 0 from scratch
2 100 0.01 10 previous solution
3 50 0.001 100 previous solution
4 50 0.001 1000 previous solution

Figure 3. Low-Fidelity Module Optimization Flowchart (Figure A4).

2.2. High-Fidelity Modules

The high-fidelity analysis modules encompass aerodynamics of the undeformed body
and static and dynamic aeroelasticity. The aerodynamic component is treated using the
OpenFOAM framework while the high-fidelity structural system is formulated in ANSYS
APDL Mechanical. The aerodynamic solution is provided by the Navier–Stokes equations
discretized using the Finite Volume Method (FVM), including turbulence modeling using
the Spalart-Allmaras model. Either the EPM approach described above or a 3D-shell
3D-beam FEA model is used to represent the structure. Each of those components are
discussed in detail below.

2.2.1. Steady (Undeformed Body) Aerodynamic Loads Module

The main components that comprise this module are:

• High-Fidelity Finite Volume CFD Solver.
• High-Fidelity or Medium Fidelity FEA solver.
• Load Interpolation Module using General Grid Interface (GGI) method.

For the CFD solution, the 3D Navier–Stokes equations in compressible form are
discretized with the finite volumes method and are solved with an implicit integration
scheme. Turbulence modeling in the form of RANS methods can be included. There is
voluminous bibliography on CFD with Finite Volumes Methods, to which the reader is
referred for a detailed description of the respective numerical methods [78,79]. Below, only
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a brief overview of the CFD formulation for the studied wing geometry will be provided,
with emphasis on important choices that influence the solution procedure.

The compressible Navier–Stokes equations in integral form were solved. The spatial
terms of the Navier–Stokes equations are discretized on the computational finite volume
mesh with appropriate discretization schemes. The mesh itself is a hybrid C-grid consisting
mainly of unstructured tetrahedron volumes but using inflated prism layers near the wing’s
surface to achieve the first cell wall distances (Y+) necessary for capturing the boundary
layer using RANS turbulence models. In particular, a Y+ of 50–70 was targeted. The CFD
grid is shown in Figure 4.

Figure 4. Finite Volume C-Grid Mesh for the coarse density (Table A4).

The unstructured internal volume mesh is advantageous for mesh deformation pur-
poses, as will be emphasized in the description the aeroelastic module at the next stage of
analysis. The Pressure Implicit Splitting of Operators (PISO) method is used to treat the
problem. More details can be found in Demirdzic et al. [80].

The spatial convection terms are discretized using second order upwind schemes.
These schemes offer a good balance between accuracy and mitigation of numerical oscilla-
tions. The spatial diffusion and source terms are discretized using central differences.

First order implicit time integration is used for the numerical solution. The form of
the system of equations is represented in Equation (11):

φn = φn−1 + ∆t · f (φn), (11)

where φ denotes any flow quantity that takes part in the Navier–Stokes equations.
The implicit formulation allows to use a wide range of timesteps with Courant num-

bers higher than unity. This is important for using the same mesh in the aeroelastic system
as the flexibility in selecting the timestep makes the synchronization of data transfers
between the structural and aerodynamic systems easier.

Turbulence was successfully treated with the Spalart-Allmaras model with wall func-
tions providing near wall treatment. This turbulence model is integrated in most modern
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CFD solvers. A first cell Y+ of 30–100 is required for this formulation. Due to the size of the
wing, turbulence models that require lower values of Y+ incur a very high computational
cost. The mesh convergence study at a load corresponding to a 2.5G maneuver is provided
in Table A4.

For the structural component, the finite element method using either the EPM (low-
fidelity) or a 3D-Shell (Shell 181 of ANSYS MEchanical APDL), 3D-Beam (Beam 188 of
ANSYS MEchanical APDL) medium fidelity representation of the wing structure is used.
The latter uses 4-node, 3D layered Shell Elements to discretize the wing skins, spar and rib
webs, and 3D beam elements to discretize the spar and rib caps. Linear shape functions
were used. The structural mesh is presented below in Figure 5.

Figure 5. Finite Element Structural Mesh.

In the current module, this component was only used to receive the steady aerody-
namic loads and provide a steady state solution of the stress/strain field for optimization
purposes. The interpolation of the aerodynamic loads from the CFD mesh to the structural
mesh was realized using the GGI methodology [81]. This technique has seen widespread
use in the transfer of loads between sliding mesh interfaces in CFD. A significant advan-
tage compared to distance-based interpolation after projection of nodes upon a common
boundary is that it takes into account the overlap between the elements. As a result, the
area loads, such as pressure, are transferred consistently. This is highlighted in Figure 6
and Equation (12).

Figure 6. Transfer of pressure loads upon a common boundary with GGI.

Ptarget f ace =
n

∑
i=1

(
Atarget f ace ∩ Asource f ace,i

Atarget f ace
Pi). (12)
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A second interpolation layer is used if the loads must be transferred to the EPM. Then,
after transfering them to the 3D Finite Element Mesh with the GGI approach, each node
is mapped to the nearest ones of the EPM using a distance-based approach. This is less
accurate, but, in any case, if maximum accuracy in interpolation is required the 3D-Shell, 3D-
Beam structural formulation is preferred, and this layer not used. The complete flowchart
of the High-Fidelity Steady Aerodynamic Loads Module is given in Figure 7.

Figure 7. Steady Airloads High-Fidelity Module (Figure A4).

2.2.2. Formulation of the Aeroelastic Problem and Order Reduction

The methodology to consistently interpolate surface pressure from the CFD to the
structural mesh with the GGI technique was outlined in the previous subsection. To
enable a coupled aeroelastic solution, the structural displacement must additionally be
passed into the wing surface boundary of the CFD mesh and the internal mesh deformed,
accordingly. For passing the structural displacements to the aerodynamic mesh, distance-
based interpolation is sufficient. This contrasts with surface loads (aerodynamic pressure),
for which the overlap of element face areas between the structural and aerodynamic mesh
is taken into account by the GGI technique. An overview of the final staggered coupling
scheme is given in Figure 8.

Structural System

Aerodynamic System New timestep

load

transfer

iterations

Figure 8. Staggered coupling scheme.

During deformation of the CFD mesh, the deterioration of element quality must be
avoided. To that end, a Laplacian smoothing function with variable diffusivity based on
distance from moving boundary is used. A detailed overview of the implementation of this
mesh deformation technique, along with application examples, can be found in Reference
[82,83]. Remeshing is only used if several cells violate the quality limits. The usage of
unstructured tetrahedron internal meshes is advantageous because it is easier to maintain
mesh quality upon deformation compared to structured meshes. A triangular-shaped
element can retain quality upon movement of each nodes much more robustly than a
rectangular one. The same applies to 3D for tetrahedrons.

Order reduction was achieved by coupling a series approximation of the unsteady
aerodynamics with a modal space description of the structure. The unsteady aerodynamics
component of the aeroelastic reduced order model (ROM) is based on the Volterra series
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theory. Volterra series ROMs for aerodynamics have been pioneered by Silva [84] and have
seen implementation in complex aeroelastic problems [85].

In our work, a more basic form of a Volterra series ROM is used for unsteady aerody-
namics. Linear kernels up to 50–100 timesteps in length were used to model the unsteady
aerodynamic response. Although the first 2–3 non-linear kernels of the series were built,
their influence was minor. This is a result of the combination of flow regime (0.64 Mach at
atmospheric conditions) and the behavior of test case wing that does not generally exhibit
non-linear aerodynamic phenomena at those conditions.

A Volterra series consists of linear and/or non-linear convolution integrals. The
final assembled series represents an expansion of the linear convolution theorem and
associates the time history of input states to the one of the outputs. For discrete systems,
the convolutions are formulated as multiplications of scaled and shifted characteristic
responses (or kernels of the series) with the time history of the input. For a multi-input
multi-output (MIMO) system, an output state is then dependent on the input states of the
system and the kernels of the series as briefly presented in Equation (13):

yout,i = y0,i +
mode number

∑
j=1

[ n

∑
k=1

hji(n− k) · xj(k)
]
+

mode number

∑
j=1

[ n

∑
k=1

n

∑
l=1

Hji(n− k, n− l) · xj(k) · xj(l)
]
,

(13)

where:
y0,i denotes the initial state of the ith modal coordinate,
yout,i is the output state of the ith modal coordinate,
xj is the jth modal force,
h, H are the linear and non-linear kernels, respectively, and
n denotes the length of kernels in timesteps.

The Volterra series kernels were obtained by interpolating impulsive motions in
each generalized coordinate to the aerodynamic system and obtaining the associated
aerodynamic load response. For more information considering the construction of Volterra
series models for aeroelasticity, the reader is referred to the corresponding references given
in the start of this subsection.

Order reduction of the structural system was achieved by casting it in modal space
and then formulating the resulting equations of motion in state-space form. Their form is
provided in (14) and (15):

˙[x] = Ass[x] + Bss[F]
[y] = Css[x] + Dss[F]

(14)

Ass =

[
[0]nxn [I]nxn

[−ω2
n]nxn [−2ζnωn]nxn

]
Bss =

[
[0]nxn
[I]nxn

]
Css =

[
[I]2nx2n

]
Dss =

[
[0]2nxn

]
,

(15)

where ωi,ζi are the natural frequencies and modal damping ratios.
The assembled aeroelastic ROM, together with the associated input parameters that

can be used, is presented in Figure 9 below.
The output of the ROM consists of the time history of the state variables (modal

forces and modal displacements). The aeroelastic oscillation frequency at each mode is
obtained by pinpointing the position of maximum for the absolute value of the Fast Fourier
Transform (FFT). A window of greater length than the period of oscillation is used to scan
the signal for each mode. The window moves a period of oscillation corresponding to
the aeroelastic oscillation frequency at each time if it is found to be non-zero; otherwise,
this is a period of oscillation corresponding to the specific structural eigenfrequency. The
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maximum of the absolute value of the windows is recorded. Termination is triggered when
one of the following is true:

• The oscillation frequency approaches zero and the maxima of successive windows
show an ascending pattern in any mode, indicating static divergence. This criterion
exploits the fact that as divergence progresses the motion becomes non-oscillatory
and the frequency approaches zero.

• The oscillation frequency approaches zero and the maxima of successive windows
converge to a constant finite value within a specific predefined tolerance in all modes.
This indicates that a static equilibrium position is reached.

• The oscillation frequency does not approach zero, but the system oscillates near a
specific single frequency in all modes. The maxima of successive windows show an
ascending pattern in any mode. Such behavior is indicative of flutter.

Volterra series unsteady aerodynamics
Steady Airloads

Dynamic Pressure

Structural modal state space

External structural 

load input 

(if any)

Eigenfrequencies and Modes

Damping (Rayleigh or Modal)

deformation

unsteady

aerodynamic

loads

Figure 9. Aeroelastic reduced order model.

The third criterion is only used for dynamic aeroelastic analyses.
The time history of the state variables is also printed to file to allow for manual

inspection. The complete module for aeroelasticity using order reduction as implemented
in the interpolation framework is shown in Figure 10.

Figure 10. Implementation of aeroelasticity using order reduction to the optimization framework
(Figure A4).
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The final validation consists of a full order staggered (or loosely) coupled solution
between high-fidelity aerodynamics and structural solvers. This full order module is run
only once to validate the final optimized design candidate.

3. Results and Discussion
3.1. Benchmark Solution

A benchmark structural optimization case study is initially solved in order to enhance
our confidence in the MIDACO solver. This problem refers to the optimization of the
dimensions of the cross sections of a stepped cantilever beam under the application of a
point load at the free end [86]. The minimization of the beam volume subject to various
engineering design constraints formulate the mathematical optimization problem. In
particular, the bending stress in each part of the cantilever should not exceed the maximum
allowable stress, σmax. The deflection at the free end is also constrained by the maximum
deflection, δmax. For each cross section, the height of the beam should also be twenty times
less the corresponding width. The stepped cantilever beam, along with the constraints and
the input data, are illustrated in the following, Figure 11.

Figure 11. Stepped cantilever beam benchmark problem.

Regarding the nature of the variables of the problem, the height and width (Hi and Bi
for the i-th cross-section) of the first section are integers; for the second and third section,
these are chosen from a discrete set, while, for the fourth and fifth, they are continuous,
resulting into a mixed-integer design problem. Several optimization techniques, including
the non-linear branch and bound method, simulated annealing or genetic algorithms, and
approximation methods, were investigated in Thanedar and Vanderplaats [86]. The results
of the optimization study, along with those obtained by the MIDACO solver, are reported
in Table 5.

Overall, the optimum height and width of each cross section, as well as the overall
beam volume values, are similar to the ones obtained by the MIDACO solver. The conver-
gence history of the objective function and of the constraints satisfaction, expressed as the
L-1 norm, are illustrated in the following, Figures 12 and 13.
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Table 5. Benchmark problem optimization results.

Design Continuous Precise Linear Conservative

MIDACOVariable Optimum Discrete Approximate Approximate

Optimum Discrete Discrete
Optimum Optimum

B1 (cm) 3.06 3 3 3 3
B2 (cm) 2.81 3.1 3.1 3.1 3.1
B3 (cm) 2.52 2.6 2.6 2.6 2.6
B4 (cm) 2.2 2.276 2.262 2.279 2.2834
B5 (cm) 1.75 1.75 1.75 1.75 1.75
H1 (cm) 61.16 60 60 60 60
H2 (cm) 56.24 55 55 55 55
H3 (cm) 50.47 50 50 50 50
H4 (cm) 44.09 45.528 45.233 45.553 45.598
H5 (cm) 35.03 34.995 34.995 35.004 34.998

Volume (cm3) 61.110 64.537 64.403 64.558 64.562

Figure 12. Stepped cantilever beam benchmark problem.

Figure 13. Stepped cantilever beam benchmark problem.

A study on the effect of tightening the constraints satisfaction tolerance value is
included in Appendix C.
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3.2. Main Case Study

A modified version of the original CRM wing serves as a baseline model for the analy-
ses described earlier, with the relevant geometric parameters being presented at Table 6.
The baseline CRM wing is modified by neglecting the twist distribution, the resulting
geometry being planar. This modification was necessary due to the limitations of the VLM
code at our disposal. Additional effort would be required for the implementation of twist
angle in the low-fidelity aerodynamics software, and, since the present work constitutes
a structural optimization study, it was decided to proceed with a planar representation
of the original CRM wing. Furthermore, the lack of accounting for the twist distribution
constitutes a limitation of the current realization of the EPM.

Table 6. CRM wing geometric data.

Wingspan 58.76 m
Root Chord 13.56 m
Tip Chord 2.73 m
Wing Gross Area 383.8 m2

Taper Ratio 0.375
Leading Edge Sweep 35◦

Yehudi Chord 7.56 m

As far as the internal configuration of the CRM wing is concerned, a three-spar
configuration, with each spar laying at 10%, 30%, and 70% of the local chord, respectively,
along with thirty-eight evenly spaced and aligned with the airflow ribs, similar to the one
presented in Jutte et al. [87], is considered. Spar caps, along with full-depth rib caps of
rectangular cross section, are also present. A view of the Outer Mold Line (OML), as well as
of the internal structure of the CRM wing, can be seen in Figure 14. Concerning the material
model and pertaining to all numerical models, all relevant components are assumed to
be manufactured of composite materials with linear elastic behavior, and specifically the
Hexcel 8552/IM7 prepreg [88] with unidirectional carbon fibers, whose properties are
summarized in Table 7.

Figure 14. CRM wing OML and internal structure.
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Table 7. Hexcel 8552/IM7 UD CFRP properties.

E1 [GPa] 158.5
E2 [GPa] 8.96
G12 [GPa] 4.68
G13 [GPa] 4.68
G23 [GPa] 2.63
ν12 0.356
ν13 0.356
ν23 0.5
Ply Thickness [mm] 0.183
ρ [kg/m3] 1590

3.3. Low-Fidelity Module

The dimensionality reduction capability of the EPM in comparison with the corre-
sponding 3D FEA model is initially investigated. As demonstrated in the following, Table 8,
the EPM achieves a significant reduction of DOFs when compared with the 3D FEA model
of the CRM wing, which eventually translates into faster computational time by a factor
of 4.

Table 8. Numerical models size comparison.

EPM NASTRAN

Element Type Nr of Elements Element Type Nr of Elements

Skins
QUAD-9 370 CQUAD4 14,839

Spar, Rib Webs 13,248
Spar, Rib Caps CROD 4694

Associated DOF 7875 149,648

The MIDACO optimizer was executed for the optimization problem presented in
Table 3 with the parameters demonstrated in Table 4. In brief, the KS stress constraints
represent the aggregate value of the Failure Indices of each wing component considered,
with the limit value of 1 indicating failure under the maximum stress criterion. A strategy
of tightening the constraints tolerance value was employed with the final value at each
stage serving as an improved initial prediction for the next, as presented in Table 4. The
convergence of the objective function, as well as of the constraint satisfaction, expressed
via the L-1 norm, being demonstrated in the following, Figures 15 and 16.

Figure 15. Wing mass convergence.
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Figure 16. Constraint satisfaction, expressed via the L-1 norm.

Convergence to a minimum mass, along with non-violating design constraints, has
been achieved. The corresponding mass, as well as design constraints, at the optimized
solution are presented in Table 9. The values of the constraints, and especially the static stiff-
ness and strength related ones, approach their limit values, indicating a well approximated
true optimum solution.

Table 9. Low-Fidelity module optimization results summary.

Mass, kg 1.7005× 104

Tip Deflection, m 4.1131
Tip Torsion, ◦ 7.6
First Eigenfrequency, Hz 2.1010
Flutter Speed, m/s 509.2607
KS, Upper Skin 0.9831
KS, Lower Skin 0.9755
KS, Spar Caps 0.9766
KS, Spar Webs 0.9369

As far as the thickness distribution for the relevant wing components is concerned,
a general spanwise decrease in thickness for the relevant components is demonstrated
in Figures 17 and 18. Of particular interest is the fact that the aforementioned decrease
appears to start at the outboard section of the wing, indicating a highly stressed region near
the yehudi break, namely the coalescing region between the inboard and outboard sections
of the wing. On the front of the individual thickness of each component, the thickness
values associated with the wing skins are higher in comparison to the other components
mainly due to the fact that they contribute more to the secondary moment of inertia of the
wing. The thickness values of the spars are close to the corresponding skin thicknesses,
albeit lower, being closer to the neutral axis of the wing section. Nevertheless, they take
torsional loads; thus, relatively high thickness values are necessary. On the other hand,
the wing ribs are associated with relatively low thickness values, as expected, since they
are not the main load carrying components of an aircraft wing; they, however, aid at the
relief of a portion of the developing shear stresses. The spanwise ply percentages for each
component of the wing are illustrated in Figure 19.



Aerospace 2021, 8, 398 23 of 34

Figure 17. CRM wing components optimal thickness distribution.

Figure 18. CRM wing components optimal spanwise thickness distribution.

Figure 19. CRM wing components spanwise layups percentages.
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3.4. High-Fidelity Module

High-fidelity aerodynamics using the RANS formulation described in Section 2.2.1
were incorporated in structural optimization. The optimization was performed for a
specified lift load (2.5G maneuver condition) rather than a constant angle of attack.

A single optimization pass that includes multiple high-fidelity solutions to pinpoint
the new optimized solution is conducted. The main goal is to pinpoint a good balance
between loss in lift and reduced structural mass. The change to the required load for a
2.5G maneuver due to the change in wing structural mass was accounted for. For the
termination of the high-fidelity aeroelastic optimization, an attained lift within 5% of the
rigid wing was demanded. A tighter termination criterion for the attainable lift could have
been implemented; nevertheless, due to limited computational resources, it was deemed
satisfactory for the purpose of this study.

Significant changes in the required angle of attack to attain the targeted lift load were
obtained by the inclusion of high-fidelity aerodynamics and are summarized in Table 10.

Table 10. Change in required angle of attack to attain a 2.5G Lift Load.

VLM RANS Static RANS Static Aeroelastic

AoA 1.6 3.3 4.4

The initial optimization pass uses static structural solutions for the wing with the
loads provided by high-fidelity rigid body aerodynamics. Specifically, the loads were
interpolated onto the EPM mesh, providing a more realistic loadset than VLM for the static
solution. Following convergence to a new optimized design, a final optimization pass that
treated the coupled problem by using a high-fidelity aeroelastic formulation of the wing
was performed. In this stage, the loads are transferred directly onto the wetted surface of
the 3D-wing model. Both stages fail to satisfy the minimum lift that is required for the 2.5G
maneuver scenario at the angle of attack of the base geometry. The inclusion of viscous
effects reduces the maximum lift compared to the VLM method, the main culprit being
pressure recirculation effects near the wingtip and trailing edge.

Using high-fidelity rigid body aerodynamics, an increase of the angle of attack to
3.3 degrees was deemed necessary to attain the same CL. The static deformation of the new
optimized wing geometry after the inclusion of the change in angle of attack is presented
in Figure 20, for both the EPM method and a full 3D model of the structure.

Figure 20. Deflection to static aerodynamic RANS load. EPM (left); 3D Shell Model (right).
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The reasonable agreement between the two approaches points to the success of the
EPM structural representation and a proper analogy between the loads on the 3D model
and the ones on the plate. The structural mass remained largely unchanged after the
inclusion of the new loads. Possible mass gains were deemed too small (in the region
of 1–2%) to conduct further optimization iterations at this stage. From an aerodynamic
perspective, however, the change in angle of attack is not negligible.

The high-fidelity aeroelastic ROM pinpointed both a further loss in lift compared to
the high-fidelity static structural solution and a lower aeroelastic tip deflection. The wing
candidate is characterized by strong bending-torsion coupling at structural level, and, as
a result, the aeroelastic twist tends to cause negative twist angle near the wingtip upon
aeroelastic deformation. The loss in lift is mainly a result of this bend-torsion coupling of
the wing combined with the planar (untwisted) geometry at the undeformed state; upon
aeroelastic deformation, negative twist angle is attained near the wingtip resulting in loss
of lift. Near the root the aeroelastic twist angle changes are smaller; thus, a portion of the
lift continues to be generated. In order to compensate for the loss of lift, a higher angle
of attack for the entire wing is selected. An additional factor that leads to a reduction in
lift (although minor in this specific case study due to the requirement for a reasonable
bending deflection) is the curvature of the outer part of the wing due to aeroelastic bending
deflection. The generated load at each section of the wing, being normal to its surface,
becomes slightly tilted with respect to the vertical axis upon aeroelastic deflection. A
loss of a part of the total lift ensues due to the lift load becoming tilted with respect to
the vertical axis. This reduction due to bending is minor compared to the one due to
change in twist angle for the current case. However, it could be significant for wings that
exhibit a high magnitude of tip deflection (for example, in high aspect ratio configurations).
Consequently, a further increase in AoA compared to the rigid case is required to attain the
target lift load, as presented in Table 10.

Additionally, the difference between negative twist angles at the tip and much lower
aeroelastic twist values towards the root also provides an opportunity for a reduction
in structural mass. At the new increased angle of attack, the negative twist at the tip is
increased due to the higher aeroelastic deflection magnitude and a restoring bend-torsion
coupling tendency. At the same time, a much smaller change in aeroelastic twist results
near the root. Thus, an even greater portion of the of the lift is generated near the root,
and the bending moment is reduced significantly as a result. This reduction in bending
moment at a similar lift load causes a smaller maximum deflection for the coupled problem,
as presented in Figure 21, in which the static (right) and static aeroelastic (left) equilibrium
deformation for the final design candidate of each stage are compared. The reduction of
bending moment due to aeroelastic twist cascades to a reduction in structural mass as
captured in Table 11.

Table 11. Change in structural mass.

Property EPM * 3D Static Aeroelastic Solution *

Mass, kg 17,005 15,498
* high-fidelity aerodynamics.

In a non-planar baseline backswept wing with an optimized twist distribution, lower
gains are expected. Since negative twist angles are already used near the wingtip together
with a higher incidence angle at the root a lower bending moment even for the static case
would be obtained compared to the planar wing results. It needs to be, therefore, stressed
that the non-optimized aerodynamic shape of the considered wing (due to lack of proper
twist distribution) exacerbates the reductions in structural mass that were attained in the
present study.

A structural mass reduction in the order of 9% was realized using a static aeroelastic
description of the wing in optimization as opposed to the static high-fidelity one. A loss of
approximately 4% resulted. The final mass is compared against the static case in Table 11.
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The wing was additionally checked against divergence and flutter using high-fidelity
aeroelasticity. Divergence was pinpointed as the dominant aeroelastic instability, but the
dynamic pressure of occurrence is more than three times higher than the operational
one for a constant Mach number of 0.64. The modified wing is, therefore, Flutter- and
Divergence-free at the considered point of the flight envelope, confirming the results of the
low-fidelity aeroelastic analysis.

Figure 21. Comparison of static deflection distribution versus aeroelastic solution (z-axis scale not
actual). Note that a higher angle of attack was required for the aeroelastic solution to attain the same
coefficient of lift. Only deformation is shown in the figure; angle of attack is not plotted.

4. Conclusions

A multi-fidelity optimization framework for current state-of-the-art composite aircraft
wings, based on the Mixed Integer Distributed Ant Colony Optimization (MIDACO) has
been presented. The main case study consisted of a modified CRM wing with a planar
geometry. The structure was represented using the Equivalent Plate Method (EPM) or a 3D
shell and rod model, while aerodynamics were treated with a Vortex Lattice Method (VLM)
or Reynolds Averaged Navier–Stokes (RANS) solutions, depending on level of fidelity. The
aeroelastic solutions were provided by Reduced Order Models (ROMs). Upon completion
of the optimization procedure, optimized layups for the various wing components were
obtained, as illustrated in Figures 18 and 19. As a general trend, a spanwise decrease in
thickness was observed, as expected. A region near the yehudi break was accompanied
with an increase in the relevant thicknesses, indicating that this region is in fact a highly
stressed one due to the slope change in geometry of the wing.

Comparison between the different fidelity modules was performed with the aim of
highlighting the merits and contribution of each to the optimization process. The EPM
enabled a great reduction of the associated DOFs of the problem, as discussed in Table 8
and in Section 3.3, while a good comparison with the high-fidelity structural model was
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demonstrated in Figure 20. Significant changes to the angle of attack to attain the target
lift load resulted from the inclusion of high-fidelity aerodynamics and aeroelasticity. The
differences have been attributed to negative aeroelastic twist angles near the wingtip and
resulted in a lift degradation in the order of 4% and reduced bending moment which
cascaded to a structural mass reduction in the order of 9%. It should be stressed that
the reduction in mass is exacerbated by the planar baseline geometry of the wing since,
for an optimized twist distribution, a smaller bending moment is exhibited, even in the
undeformed state, as discussed in Section 3.4. The inability of the current framework to
account for a realistic twist angle distribution at all levels of fidelity is acknowledged as an
important shortcoming.

Overall, the present methodology presents a successful blend of current state-of-the-art
multi-fidelity structural, aerodynamic, and fluid-structure interaction analysis for structural
optimization. It is shown that employing such frameworks can result in performance gains
even for current state-of-the-art-wings. Further possible enhancements to the current
optimization framework could include the modification of the VLM and EPM code to
account for twist angle distributions, implementation of buckling constraints in the high-
fidelity structural model, and incorporation of aeroelastic tailoring capabilities. Another
major addition would be the development aerodynamic shape optimization procedures.
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Appendix A. EPM Validation Test Case

In this section, the accuracy and efficiency of the EPM is thoroughly investigated via
a test case concerning a built-up wing composed of composite materials skins, spar/ribs
webs and caps. A typical internal geometry, consisting of two spars placed at 20% and
70% of each chord and 12 evenly spaced and aligned with the airflow ribs is considered.
In addition, spar and rib caps of rectangular cross-section are also present. The relative
dimensions of the various components were selected such that no local modes, which
the EPM is incapable of capturing, will be present to the results as much as possible.
Additionally, two numerical models are developed and compared, namely a 3D FEA model
in NASTRAN and its corresponding EPM model. Regarding the latter, the FEA is employed
for the solution of the numerical integrals present in the Materials and Methods section,
with the solution procedure being carried out entirely in MATLAB. Initially, and based on
the external geometry of the corresponding wing, the geometry of the equivalent plate is
generated, upon which a FEA mesh is built. To avoid shear locking phenomena and reduce
the spurious mechanisms present, isoparametric nine-noded Lagrange plate elements with
selective integration for the membrane, bending and shear terms have been chosen for
the analysis. Eigenfrequencies and eigenmodes extracted from a free vibration analysis
constitute the quantities of interest for the comparison between the two methods, since both
the stiffness, as well as the mass matrix, are involved in this type of analysis. Concerning
the 3D FEA mesh, the wing upper and lower skins, along with the spar and rib webs, are
modeled via shell elements, (CQUAD4), while the spar and rib caps are assumed to resist
axial loads only and are, thus, modeled via rod elements (CROD). For the EPM, QUAD-9
elements have been chosen to model the equivalent plate. The particulars of the two FEA
meshes along are presented in Table A1, while the resulting FEA mesh for both of the
methods is presented in the following Figure A1a,b. Each component pertains a [45/0/
−45/90]s quasi-isotropic, balanced and symmetric layup, with similar material properties
to the one presented in the Results section. Regarding the boundary conditions, the wing is
considered clamped at its root for both of the numerical models, fixing all 6 DOFs.

Table A1. Numerical models comparison.

EPM NASTRAN

Element Type Nr of Elements Element Type Nr of Elements

Skins
QUAD-9 675 CQUAD4 16,932

Spar, Rib Webs 5448
Spar, Rib Caps CROD 1888
Associated DOF’ 14,105 136,168

The efficiency of the EPM is further emphasized for this test case, since the addition of
more components (spars/ribs webs and caps) is accompanied by an increase in the DOF’s
for the 3D FEA, which is not the case for the EPM, where the associated DOFs remain
unaltered. The natural frequencies, mode shapes (as illustrated in Figures A2 and A3) and
the mass of the wing for the two methods, presented in Table A2, are also examined.
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(a) 3D-FEA Mesh (b) EPM Mesh

Figure A1. FEA & EPM mesh.

Table A2. NASTRAN-EPM natural frequencies and mass.

Mode Nr NASTRAN Value, Hz Error, %

1 16.12 16.521 −2.492
2 61.009 61.603 −0.973
3 98.908 94.546 4.409
4 139.348 140.791 −1.036
5 160.549 166.408 −3.649
6 245.620 250.112 −1.828
7 311.941 311.121 0.262
8 325.066 326.562 −0.460
9 373.481 384.695 −3.003
10 468.341 483.222 −3.177
Total Mass, kg 250.765 244.4 2.539

Figure A2. Eigenmodes comparison—Modes 1–3.
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Figure A3. Eigenmodes comparison—Modes 4–6.

A close agreement between the shapes of the eigenmodes is observed in general, with
the EPM being capable of predicting the trends of the 3D-FEA model.

Appendix B. Flowchart of the Developed Optimization Framework

Figure A4. Flowchart of the optimization framework.
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Figure A5. Action list of the developed optimization framework for the CRM case.

Appendix C. Benchmark Solution Tolerance Value Study

Table A3. Effect of tolerance on the optimized solution of the benchmark case study.

Constraint Tolerance Value 1× 10−1 1× 10−2 1× 10−3 1× 10−4 1× 10−5 1× 10−6 1× 10−7

Optimized Volume (cm3) 63,880 64,419 64,562 64,577 64,578 64,578 64,578

Appendix D. High-Fidelity CFD Grid Convergence Study

Table A4. CFD grid convergence study to a 2.5G lift load.

Lift (N) Drag (N) Grid Convergence Indexes

Mesh 1 (1.4× 106 Cells) 3.003 × 106 1.306 × 105 GCI (lift) GCI (drag)
Mesh 2 (2.6× 106 Cells) 3.027 × 106 1.295 × 105 8.68 × 10−1 5.98 × 10−1

Mesh 3 (5.4× 106 Cells) 3.016 × 106 1.264 × 105 4.07 × 10−1 1.69 × 100
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