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Current trends in aviation greatly expand the use of highly integrated, increasingly
autonomous air vehicles, with distributed engine control systems (DECS). Such systems
allow for optimizing engine performance by enhancing propulsion control architecture.
The weight of wiring and need for cooling are significantly reduced in the engine controlled
by a DECS when compared to the traditional centralized FADEC. Each element of DECS,
such as a sensor, actuator or controller, individually connects to the network and has
multiple functions.

This Special Issue includes seven selected papers presented during AVT-357 Research
Workshop on Technologies for future distributed engine control systems (DECS), held
online, 11–13 May 2021 [1]. The event was sponsored by NATO Science and Technology
Organization. The programme covered advanced hardware and software technologies
grouped into the following sessions: Distributed Architectures, Control Systems, Chips
and software, Smart Sensors and Diagnostic and Prognostic Systems. Compelling keynotes
and papers were presented by speakers from universities, government research centres
and industry from nine nations.

The key problems discussed during the meeting included:

• Reliability of engine control systems in the face of multi-core processing and the
perceived perfection of consumer electronics;

• Balance between innovation and unforgiving demands for safe and rugged operational
availability for military applications;

• Opportunities and limitations of AI-based control and prognostics;
• Standardization and certification of new DECS technologies.

This issue of Aerospace presents recent advances in gas-turbine engine control systems.
The articles introduce novel engine control approaches, robust sensing solutions, high-
temperature electronics and open architectures that can be applied in on-board systems.
Their implementation will contribute to ensuring the required engine performance and
reducing the overall cost of ownership.

Lytviak et al. [2] studied the self oscillations of the free turbine governor. The control
system was modelled in two configurations: with the main rotor and with water brakes.
The simulation results are invaluable for effective adjusting the hydromechanical governor.
De Giorgi et al. [3] used two Nonlinear Autoregressive Neural Networks to predict the
specific fuel consumption of a degraded turboshaft for several transient flight maneuvers.
Rokicki et al. [4] proposed inductive sensor for measuring blade vibration in high pressure
compressors and turbines and used a rotor rig and turbojet to validate it at elevated
temperatures (200–1000 ◦C). Flaszynski et al. [5] discussed turbine stator’s potential effect
on flow in a combustor and the clocking effect on temperature distribution in a nozzle
guide vane (NGV). It was shown that the NGV potential effect on flow distribution at the
combustor–turbine interface located at 42.5% of the axial chord is weak. The clocking effect
due to the azimuthal position of guide vanes downstream of the swirlers strongly affects
the temperature and flow conditions in a stator cascade. Villarreal-Valderrama et al. [6]
studied the possible advantages of an exhaust gas control through a variable exhaust nozzle
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in a micro turbojet. It was found that the proposed controller improves the expansion
of the exhaust gas to the ambient pressure for the whole operating range of the turbojet,
increasing the thrust by 14%. Popov et al. [7] demonstrated two designs of a more-electric
turbofan in distributed architecture for small and medium-sized unmanned aerial vehicles.
The pumps and guide vane actuators were electrically driven. Control and monitoring
signals were transmitted via a digital bus. The functional and reliability analyses of each
subsystem were presented. Templalexis et al. [8] compared the life consumption rate of the
AE 3007 turbofan powering the surveillance and passenger variant of the Embraer aircraft
(EMB-145 and EMB-135 LR). The rainflow method was used to determine LCF cycles,
whereas the Larson - Miller parameter method was used to determine the consumed life
due to creep of HPT blades. It was found that the engine in the EMB-145 military variant is
much more loaded and has to be closely monitored.
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