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Abstract: In large eddy simulation (LES) of turbulent flows, dynamic subgrid models would account
for an average cascade of kinetic energy from the largest to the smallest scales of the flow. Yet, it is
unclear which of the most critical dynamical processes can ensure the criterion mentioned above.
Furthermore, evidence of vortex stretching being the primary mechanism of the cascade is not out
of the question. In this article, we study essential statistical characteristics of vortex stretching.
Our numerical results demonstrate that vortex stretching rate provides the energy dissipation rate
necessary for modeling subgrid-scale turbulence. We have compared the interaction of subgrid
stresses with the filtered quantities among four models using invariants of the velocity gradient
tensor. The individual and the joint probability of vortex stretching and strain amplification show
that vortex stretching rate is highly correlated with the energy cascade rate. Sheet-like flow structures
are correlated with viscous dissipation, and vortex tubes are more stretched than compressed. The
overall results indicate that the stretching mechanism extracts energy from the large-scale straining
motion and passes it onto small-scale stretched vortices.

Keywords: large eddy simulation; vortex stretching; subgrid model; isotropic turbulence

1. Introduction

Turbulence is a high-dimensional chaotic system [1–3]. To correctly capture the break-
down of eddies through a hierarchical process of energy cascade in turbulent flows, the
direct numerical simulation (DNS) approach must deal with an enormous number of degrees
of freedom [4]. In contrast, the LES technique captures the most energy-containing large
eddies [5]. A subgrid-scale model [6] represents the residual stress (τij) exerted by the under-
represented small-scale motion. It is also worth mentioning that in complex flows around
solid geometries, the predicted momentum and turbulence kinetic energy achieve a high
level of accuracy in LES, albeit using appropriate models for the wall-shear stress [7–11]. As
discussed by Moser et al. [3], a comprehensive research goal in LES is to find the best strategy
that predicts satisfactory statistical characteristics of turbulence [4,9,11].

In this article, we demonstrate some causal connections between the vortex stretching
mechanism and the local energy flux from large to small scales. For instance, consider a
rectilinear vortex tube that has the largest velocity components in the plane orthogonal to
its axis. The vorticity and the strain are in complementary distribution for such a vortex
tube, i.e., vorticity is zero outside the tube and strain is zero inside [12]. Such tubes tend to
induce a turbulent stress, which indicates that stretching of vortex tubes will extract energy
from surrounding large-scale strain. Based on the equations representing the evolution of
strain and enstrophy [13,14], however, the role of vortex stretching in turbulence energy
cascade is not out of the question. For example, Carbone and Bragg [15] indicate that the
average energy cascade depends on both vortex stretching and strain self-amplification,
whereas vortex stretching has a dominant role due to the intermittency of the vorticity field.
In contrast, Sagaut and Cambon [14] argue that vortex stretching may hinder the average
energy dissipation [13]. There is thus a need for further investigations in this direction.
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This article presents an eddy-viscosity model based on the second invariant of the
velocity gradient tensor and the vortex stretching vector. The energy flux from large to small
scales is a contraction between the subgrid-scale stress and the resolved strain. If the energy
flux from large to small scales were hindered by vortex stretching, such a model could not
yield the same turbulence statistics as predicted by other dynamic subgrid models [3,16].
Our study here is one way of finding a causal connection between vortex stretching and
energy cascade. Another reason for considering vortex stretching to represent subgrid
dissipation is that the vorticity field is more intermittent than the strain field [15,17–19].
Turbulence intermittency is a result of the subtle balance between convective transport
and diffusive dissipation. In this regard, the dynamics of five invariants of the velocity
gradient tensor through the “restricted Euler equations” becomes vital for understanding
the transport of energy flux in turbulent flows [2,15,18]. In previous studies [19–21], we
demonstrate that these invariants play an essential role in modeling wall layers in LES of
atmospheric turbulence in wind farms, forests, and around mountains.

To illustrate a detailed picture of how vortex stretching may be active in subgrid
turbulence, we consider the LES of isotropic turbulence and compare the statistics of
resolved eddies concerning four subgrid models. We have investigated the invariants
of the velocity gradient, rate of strain, and rate of rotation. Velocity gradients represent
small-scale intermittency, i.e., the mean separation of activated regions are closely related
to the direct interaction of large and small scales [12,13]. The concepts and ideas behind the
Cauchy–Stokes decomposition of the velocity gradient tensor have been amply described in
the published literature [2,12,22]. From the present mathematical analysis, one of the most
exciting findings is that the contribution to dissipation comes from the regions dominated
by vortex sheets when the vortex stretching rate provides dissipation rate. While using
statistical properties of the subgrid-scale stress tensor [16,22], a heuristic may be that scale
locality of energy transfer holds if the energy flux depends on vortex stretching. We argue
mathematically that the representation of vortex stretching may help subgrid models to
account for local negative values in the energy flux. Such negative local energy flux is
equivalent to representing the effects of energy ‘backscatter’ [2,4]. In previous work, we
considered a similar idea of representing energy flux in LES of atmospheric boundary layer
flows over arrays of buildings [20], mountains [19], and wind turbines [21].

Before moving further, it may be useful to introduce some illuminating ideas that
the mean energy flux to small eddies is directly proportional to the mean rates of vortex
stretching. Taylor [23] introduced the role of vortex stretching in driving energy from the
largest to the smallest scales of turbulent motion [24]. For example, the lift—generated by
a wing—and other fluid–solid interactions come from vortex motion. The fluid flow in
the atmosphere and oceans can be described extremely well by collections of vortices. A
mathematical expression that relates the energy flux to the stretching rate of large-scale
vorticity was observed earlier, e.g., by Borue and Orszag [22]. Nevertheless, no prior
work has hypothesized to consider the rate of vortex stretching to compute the energy
dissipation rate in a subgrid model for LES. Sagaut and Cambon [14] created a classical
text providing rich mathematical details of vortex stretching, strain self-amplification,
and energy dissipation. Ref. [15] considers a statistical analysis of vortex stretching and
strain self-amplification in homogeneous isotropic turbulence. Past studies, such as those
in [24,25], mostly focused on various important dynamical roles of vortex stretching in
turbulence (e.g., [1,2,26–28]). Betchov [29] shows that the average strain skewness can also
be related to average vortex stretching (e.g., see [12]). Shetty and Frankel [30] consider the
spin-up of vortex tubes as a mechanism for the forward cascade of energy in the study of
wall-bounded turbulence (see also [10]). To account for the vortex stretching in the subgrid
model, Nicoud and Ducros [31] considered the rotation tensor and the strain tensor in the
wall-adapting local eddy viscosity (WALE) model for wall-bounded turbulence. Similarly,
Refs. [19,20] considered the second invariant of the square of the velocity gradient tensor in
the subgrid models for LES of atmospheric boundary layer flow over complex terrain [32].
In other words, the invariants of the velocity gradient tensor are fundamental, particularly
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in turbulent flows, which help to understand necessary small-scale information in closing
the filtered Navier–Stokes system [2,31,33–35].

This article is organized as follows. In Section 2, details of the LES method and subgrid
models are discussed. Next, the role of coherent vortices in the dissipation of subgrid-scale
turbulence is discussed in Section 3. Finally, Section 4 provides some concluding remarks
on future research directions.

2. Methodology
2.1. Filtering Approach and Energy Flux

We consider a low-pass filter [36] of characteristic width ∆les to obtain the filtered
velocity ūi such that ui = ūi + u

′
i for i = 1, 2, 3. Using the continuity equation

∂ūi
∂xi

= 0, (1)

to determine pressure P̄, one obtains an approximation to ui(x, t) by solving the filtered
Navier–Stokes equations,

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1
ρ

∂P̄
∂xi

+
∂

∂xj

(
2νSij − τij

)
(2)

where ρ and ν are the density and the kinematic viscosity, respectively. The filtering
operation removes eddies smaller than a length scale ∆les. The residual (subfilter-scale)
stress tensor τij = uiui − ūiūj accounts for the effects of such eddies. The residual stress
may also be decomposed through the Germano identity [36], τij = Lij + Tij, where Lij and
Tij are called Leonard and subgrid stresses, respectively. In classical Smagorinsky model,
we define the eddy viscosity ντ = (cs∆)2(2SijSij)

1/2 to approximate the residual stress [4]

τij −
1
3

τkkδij = −2ντSij (3)

where Sij = (1/2)
(
Gij + Gji

)
is the resolved rate of strain, δij denotes the Kronecker delta,

and the velocity gradient tensor Gij = ∂jui denotes partial derivatives of ui with respect to
xj. It is known that Smagorinsky’s model, Equation (3), provides a good approximation to
the subgrid stress; however, filtering the velocity from DNS and applying this model, it was
found that Smagorinsky’s model is weakly correlated with the actual residual stresses [3,37].
The energy flux Π = −Gijτij of the Smagorinsky model takes the following form

Π = c2
s ∆2

les2
3/2(SijSij)

3/2,

which shows that the local behavior of the flux is dependent on the total strain SijSij. Generally
speaking, the local dependence of the energy flux Π on the strain and vorticity is not known
a priori. Moreover, strain skewness and vortex stretching may be quite independent, and
therefore, a complete picture of the local energy transfer may require both [31].

The large-scale dynamics of energy balance in Equation (2) is given by (see [27])

∂E
∂t

+
∂Jj

∂xj
= −Π− 2νSijSij (4)

where the convective contribution to the energy flux of the large eddies is

Jj = Euj + P̄uj + uiτij − 2νūiSij.

The rate of work done by the large-scale velocity gradient against the small-scale
stress leads to the local energy flux Π from large-scale eddies to small-scale ones. Negative
local values of Π cause ‘backscatter’ of energy from small to large eddies. The Smagorinsky
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model, Equation (3), will always lead to a positive local energy flux without accounting for
the effects of ‘backscatter’.

2.2. Subgrid-Scale Turbulence

The idea of a dynamic Smagorinsky model is to account for the spatio-temporal varia-
tion of the energy flux Π in Equation (4), wherein the model coefficient cs(x, t) is calculated
during the simulation relying on the application of two different filters [36]. Below, we
briefly present three classical approaches which account for the dynamic variation of Π.

In the Langrangian-averaged dynamic model (hereinafter SGS-D) [5], we need to solve
two transport equations, respectively, for Flm and Fmm, and finally,

c2
s (x, t) =

Flm
Fmm

.

The Lagrangian model solves following transport equations

∂Flm
∂t

+ ū ·∇Flm =
1
T
(

Lij Mij −Flm
)

and
∂Fmm

∂t
+ ū ·∇Fmm =

1
T
(

Mij Mij −Flm
)
,

where the parameter T = ∆(FlmFmm)−1/8 controls the memory length of the Lagrangian
averaging (see [5] for other options of T ). In the above equations, the Leonard stress Lij
is directly computed from the implicitly filtered velocity ūi through a second filtering
operation considered between ∆ and n∆ (usually n = 2), and Mij accounts for the error of
Smagorinsky model captured by the Germano identity, where

Lij = ̂̄uiūj − ̂̄uî̄uj and Mij = 2∆2
[
|̂S|Sij − 4β|Ŝ |Ŝij

]
.

Here, β is a parameter to control scale dependency in the presence of complex solid
obstacles. For the results presented in this article, β = 1.

Another approach of incorporating variations in the eddy viscosity (hereinafter SGS-
C), commonly used in atmospheric boundary layer simulations [38–41], is to consider local
variations of subgrid-scale TKE, ksgs = (1/2)Lkk. This model solves the following trans-
port equation,

∂ksgs

∂t
+ ūj

∂ksgs

∂xj
= −τijSij − ε +

∂

∂xj

[
(ντ + ν)

∂ksgs

∂xj

]
. (5)

The eddy viscosity and dissipation are written in terms of ksgs and ∆les (see [19,41]):

ντ = Ck

√
ksgs∆les, ε = Cεk3/2

sgs /∆.

Fixed values of ck ∼ 0.1 and cε ∼ 0.19 + 0.74`/∆les are commonly used in meteo-
rological applications [41]. Clearly, the resulting eddy viscosity is adjusted dynamically,
which is due to the subgrid scale dynamics introduced by Equation (5). The parameter `
aims to model local variation of length scales in the presence of stratification (otherwise,
` = ∆les). There have been several other variants of the above ksgs-based model. One of
which (hereinafter SGS-B) employs the Germano identity in order to dynamically estimate
both Ck and Cε (e.g., see [19,42] for details).

In general, dynamic Smagorinsky model refers to wherein the Germano identity is
applied to calculate the model constant cs(x, t). In this article, the dynamic variation of
the eddy viscosity ντ(x, t) is referred to as dynamic subgrid model. The accuracy of three
dynamic subgrid models discussed above was thoroughly scrutinized in the literature,
particularly in the context of wall-modeled LES, e.g., see [3,9,11,20].
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2.3. Vortex Stretching and Subgrid-Scale Stress

Consider the Taylor series expansion of ūi(x, t) about a local average ˜̄ui(r, t), where

ūi(x, t) ≈ ˜̄ui(r, t) +

[
∂ūi
∂xj

(r, t)

]
(x− r).

Considering the local average ˜̄ui(r, t) with respect to a box of size 2∆les, the Leonard
component of the residual stress [43] is

τL
ij = ck∆2

lesGikGjk. (6)

Note that we have used the symbol τL
ij instead of Lij. The most important character-

istics of τL
ij is its connection to vortex stretching—a mechanism that plays an important

role in turbulence energy cascade. Following Betchov’s theory [29], and considering that
Trace Gij = Gii = 0, the energy flux Π = Gijτ

L
ij is expressed as

Π = ck∆2
[
−Trace S3 +

1
4

ωiωjSij

]
(7)

where ωi = εijkGkj denotes the vorticity vector. In fact, appealing to the pioneering Betchov
theory [29], it follows that the local energy flux is positive if the skewness of the filtered
strain matrix is negative and the vortex stretching term ωiωjSij is positive. Using Betchov’s
relation (see [22,29]), such as −〈Trace S3〉 = (3/4)〈ωiωjSij〉, the dissipation of TKE leads
to 〈Π〉 = ck∆2〈ωiωjSij〉. It is worth mentioning that vortex tubes tend to induce a tensile
stress in the plane orthogonal to their axis [2]. In other words, stretching of vortex tubes
requires large-scale strain to lose energy by overcoming this opposing stress [15].

For brevity, we ignore the factor ck∆2
les in Equation (6), and note that Gij = Sij +Rij.

One finds that GikGjk = GikGkj + 2GikRjk the second invariant of the deviatoric Leonard
stress tensor

τLdev

ij =
1
2

[
τL

ij + τL
ji

]
− (1/3)τL

kkδij

takes the form

−1
2

τLdev

ij τLdev

ij = −1
4

[
SijωjSikωk +

1
3
(GijGij)

2
]

.

Now, consider dimensional reasoning similar to [31], which leads to the following
form of the subgrid-scale TKE (hereinafter SGS-A),

ksgs =
∆2

les

(
1
2SijωjSikωk +

1
6 (GijGij)

2
)3

[
(SijSij)5/2 + ( 1

2SijωjSikωk +
1
6 (GijGij)2)(5/4)

]2 . (8)

Consider Equation (8) to compute ksgs without solving Equation (5). Thus, the subgrid-
scale stress tensor may be expressed as

τij −
1
3

τkkδij = ck∆les

√
ksgsSij. (9)

Considering Equations (8) and (9), we see that local values of τij is dynamically
adjusted according to the strength of vortex stretching and the relative dominance of
strain Sij over rotation Rij. We can assign a value of the parameter Ck according to a
desired global rate of dissipation. An advantage is that the eddy viscosity, Equation (9),
learns the subgrid-scale energy dissipation rate from the statistics of velocity gradient
tensor. For example, an idealized vortex tube will exert a tensile stress on the surrounding
straining motion when it is stretched [2]. Consideration of Equation (9) as a subgrid model
is equivalent to transferring energy via work done against vortex stretching.
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3. Result
3.1. Setup of the Simulations

In this section, we illustrate the link between vortex stretching and energy cascade.
We consider a fully developed synthetic turbulence flow field, ui(x, 0), i = 1, 2, 3, which
has the energy spectrum

E(k) = α

(
k
k0

)4
(

1 +
k2

k2
0

)−17/6

e−2k2/k2
η .

Here, α is chosen to obtain a desired value of |u0| =
∫

Ω |u(x, t)| dx, or the initial energy
E(0) = (1/2)|u0|2. We have adjusted other parameters so that E(k) matches approximately
with the energy spectrum of the experimental data made available by Comte-Bellot and
Corrsin [44]. The simulations have been carried out in a domain of [0, 2π]× [0, 2π]× [0, 2π]
using periodic boundary conditions.

The computer code used for the present study was detailed by Alam and Fitzpatrick [20]).
In previous work, the code was verified with atmospheric boundary layer flow over an array
of wind turbines [21], as well as field measurements of atmospheric boundary layer flow over
the Askervein hill, UK [19]. In the present study, we have assessed the numerical error, where
the velocity uN

i (simulated with N3 cells) was filtered such that

ūi =
1
|V|

∫
V

uN
i dx.

Here, V is a box of dimension n∆x × n∆y× n∆z. Assuming ergodicity, we expect
that the quantity limN→∞ uN

i approaches a limit ūi if N/n is fixed [2,4]. The velocity
field simulated with 2563 cells was filtered in such a box with n = 2, and the result was
compared with what was simulated using 1283 cells. Note the cut-off wavenumber for
both the filtered and the simulated fields is 32, where the filter width ∆les of each simulation
is twice as large as the grid spacing. In Table 1, we compare the average values of Taylor
micro scale λ =

√
15νu2

rms/〈ε〉, Kolmogorov’s micro scale η = (ν3/〈ε〉)1/4, Taylor scale
Reynolds number Reλ = urmsλ/ν, and the viscous dissipation rate 〈ε〉. The error for
each of these parameters was within 1%, where the integral scale Reynolds number is
Re = 3.14× 106 for |u0| = 10 [m/s] andRe = |u0|2π/ν.

The Taylor microscale parameter λ represents the size of the eddies within the in-
ertial subrange, somewhere between the integral length scale and Kolmogorov’s mi-
cro scale η. The integral scale Reynolds number Re may also be related to the Taylor
scale Reynolds number as Rλ ∼

√
10Re/3 [2]. Thus, for Re = 3.14× 106, we expect

Rλ ∼
√

10Re/3 = 3.25× 103. The values of Reλ presented in Table 1 closely follow√
10Re/3. It is thus clear that the statistics discussed in this article are not influenced by

the numerical implementation error.

Table 1. A comparison for the values of λ, η,Reλ, and 〈ε〉 predicted from the LES data corresponding
to 4 subgrid models at a resolution of 1283 cells.

Model Remark λ η Reλ 〈ε〉

SGS-A Nicoud and Ducros [31] 0.1105 5.9719 × 10−4 8837 0.0629
SGS-B Yoshizawa [42] 0.0796 5.0677 × 10−4 6365 0.1231
SGS-C Deardorff [39] 0.1068 5.8718 × 10−4 8546 0.0673
SGS-D Meneveau et al. [5] 0.0880 5.3308 × 10−4 7043 0.0991

3.2. Skewness and Velocity Gradient Tensor

In LES of complex engineering and geophysical flows, the interplay of the strain
and vorticity fields is of great importance in the transfer of energy from large to small
scales [2,15]. The vorticity vector ω shows a preferred alignment with the intermediate



Aerospace 2021, 8, 375 7 of 19

eigenvector of the strain rate tensor. For this reason, vortex stretching vector and velocity
gradient skewness are among the central quantities thought responsible for the mean rate
of enstrophy production.

The second and the third invariants, respectively, QG = −(1/2)GijGij and
RG = (1/3)GijGjkGki, of the velocity gradient tensor Gij in incompressible flow take the
form [45]:

QG = −1
2
SijSij +

1
4

ωiωi, RG = −1
3

(
SijSikSki +

3
4

ωiωjSij

)
. (10)

The second invariant QG accounts for the relative importance of dissipation rate over
enstrophy. The third invariant RG accounts for an overall effects of strain skewness and
enstrophy production rate. These two invariants can be expressed in the form of divergence:

QG = −1
2

∂

∂xj

[
ui

∂uj

∂xj

]
, RG =

1
3

∂

∂xi

[
∂ui
∂xj

∂uj

∂xk
uk −

1
2

ui
∂uk
∂xj

∂uj

∂xk

]
. (11)

Based on these quantities, the volume average of each of the invariants vanishes if
the quantities inside the square bracket [·] vanish on the boundary or a periodic boundary
condition is assumed. Now, consider the Betchov relation, 〈QG〉 = 0, which states that the
production of enstrophy will enhance the overall dissipation rate [46]. The mean enstrophy
〈ωiωi〉 and the mean rate of enstrophy production 〈ωiωjSij〉 can be written in terms of the
principal strain rates:

〈ωiωi〉 = 2〈λ2
1 + λ2

2 + λ2
3〉, 〈ωiωjSij〉 = −

4
3
〈λ3

1 + λ3
2 + λ3

3〉,

where λi’s are eigenvalues of the strain tensor. Following Betchov [29], we get for
isotropic turbulence〈(

∂u1

∂x1

)2
〉

=
2

15
〈λ2

1 + λ2
2 + λ2

3〉,
〈(

∂u1

∂x1

)3
〉

=
8

105
〈λ3

1 + λ3
2 + λ3

3〉.

The above quantities provide a link between the mean rate of enstrophy produc-
tion by vortex stretching, 〈ωiωjSij〉 and the skewness factor of the velocity gradient, i.e.,

S0 =

〈(
∂u1
∂x1

)3
〉

/
〈(

∂u1
∂x1

)2
〉3/2

. More specifically,

S0 = −
6
√

15〈ωiωjSij〉
7〈ωiωi〉3/2

may vary in time unless the enstrophy production by vortex stretching reaches some
equilibrium. A negative value of skewness tells us that the net effect of the strain field is
to create enstrophy. In other words, average enstrophy production by vortex stretching,
〈ωiωjSij〉, is positive.

Figure 1 compares the variation of S0 as a function of the dimensionless time t/T,
where T = |u0|/L. The LES data for two of the models, SGS-A and SGS-C, indicate that
the skewness evolves to an equilibrium value of nearly −0.4 for t/T > 0.1. According
to Davidson [2], a value of S0 ≈ −0.4± 0.1 was observed in laboratory measurements of
isotropic turbulence. The result provides two important messages. First, an approximate
balance between the production of enstrophy and viscous dissipation is characterized by
the velocity gradient tensor (for a further discussion, see [31]). Second, the net effect of
vortex stretching is to transfer the kinetic energy that is associated with the production of
enstrophy, indicating a natural tendency that creates smaller scales. In other words, the
existence of vortices on all possible scales, e.g., [47], indicates that the enstrophy production
by vortex stretching corresponds to the energy transfer from large to small scales [2].
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Figure 1. A comparison of the time history of the velocity gradient skewness S0 among four sub-
grid models.

3.3. Second Moment of the Velocity Field

It is widely accepted that the temporal evolution of the resolved turbulence kinetic
energy, E(t) = (1/2)〈u · u〉 follows Kolmogorov’s decay law E(t) ∼ (t− t0)

−10/7 [2,4].
Figure 2a compares the decay of the resolved energy among four models. The resolved

energy E(t) is the sum of filtered energy and subgrid-scale TKE, where the subgrid-scale
TKE, ksgs = (1/2)Trace(uiuj − ūiūj) is the contribution from subgrid models. Figure 2b
compares ksgs among four subgrid models. It is interesting to observe that the vortex
stretching-based model (SGS-A) has captured a relatively large amount of TKE, ksgs.
Figure 2c compares the energy spectrum E(k) with respect to four subgrid models. The
distribution of energy in Fourier space, E(k), follows Kolmogorov’s power law k−5/3.

(a)

Figure 2. Cont.
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(b)

(c)

Figure 2. Comparisons of the second moment of the velocity field among 4 subgrid models.
(a) E(t)/E(0) and t−10/7. (b) ksgs and t−10/7. (c) E(k) at t/T = 3 and k−5/3.

Viscous Dissipation

Using Betchov’s result [2,29] on the second invariant of the velocity gradient tensor,
i.e., 〈QG〉 = 0, the viscous dissipation rate ε = 2νSijSij is correlated with mean enstrophy
such that 〈ε〉 ≡ 2ν〈SijSij〉 = ν〈ωiωi〉. We have calculated the resolved energy flux ΠFD

by applying a finite difference method on the time series of resolved energy E(t). The
energy flux modeled in LES is Π ≈ −τijSij. The correlation between 〈ΠFD〉 = dE/dt and
〈Π〉 = 〈τijSij〉, as well as that between viscous dissipation and ν〈ω2〉 are shown in Figure 3.

In LES, modeled rate of energy transfer from large to small scales, −τijSij, is always
positive for eddy viscosity models considered in this study. In other words, the rate of loss
of resolved turbulence kinetic energy, dE/dt, is expected to be correlated with the transfer
of energy in decaying turbulence. Figure 3 compares the rate of dissipation and the transfer
of energy by turbulence. Such a correlation has been observed in the velocity field collected
from four cases of LES considered in this article. A close agreement between dE/dt and
〈τijSij〉 in Figure 3 indicates that vortex stretching does not oppose the energy dissipation
for the present test case.
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Figure 3. A plot of the time series of the rate of change of the resolved energy, dE/dt (block . . . ), the
energy flux 〈τijSij〉 (black−−−), the viscous dissipation rate ε (red−−−), and the mean enstrophy
〈ω2〉 (black ——).

3.4. Statistics, Vortices, Stretches, and Whirls of Turbulence
3.4.1. Dynamics of Filtered Velocity Gradients

The (RG ,QG) diagram in Figure 4a indicates that a fluid region with QG > 0 consists
of isolated whirled eddies intermittently dispersed with coherent activity of high vorticity.
These eddies are stretched (compressed) if RG < 0 (RG > 0) [45]. The Kelvin–Helmholtz
theorem implies that the vorticity ω(t) of a vortex tube of length L(t) increases as it
stretches; i.e., conservation of circulation is equivalent to, i.e., ω(t)/ω(0) = L(t)/L(0).
Figure 4b displays approximately 20% positive deviation of QG colored with RG where the
turbulence field has been obtained by LES at a resolution of 2563 grid points and Reynolds
number Re = 3.14× 106. It indicates that large-magnitude vorticity mostly occurs in
tubes (RG < 0), which are intermittently dispersed with coherent regions of high vorticity
(ω(t) =

√
4QG + 2TrS2). Vortex tubes are surrounded by high strain rate (in empty region

QG < 0). It is well known that vortex tubes appear like ‘spaghetti on a plate’—details of
which are not resolved in LES because the number of grid points 2563 considered in the
simulation is relatively small with respect toRe = 3.14× 106.

The velocity gradient tensor illuminates the local topology of the flow resolved at
the length scale ∆les. The equation of the velocity gradient tensor is derived by taking the
gradient of Equation (2),

DGij

Dt
= −

(
GikGkj −

1
3
GmnGnmδij

)
−
(

∂2P̄
∂xi∂xj

− 1
3
∇2P̄δij

)
+ ν

∂2Gij

∂xj∂xj
−

∂2τij

∂xj∂xj
(12)

where we have assumed that ∇2P̄ = 2QG . Terms on the right-hand side of Equation (12),
except the two within the first pair of round brackets, represent the interaction with the
velocity gradients of other surrounding fluid particles. The most important feature of the
dynamics of the velocity gradient tensor is given by

D
Dt

(
1
2
GijGij

)
=

1
4

ωiSijωj − SijSjkSki.

Clearly, the local rate of production of the velocity gradient depends on the alignment
between the vorticity and the eigenvector of strain rate tensor, ωiSijωj = ω2λi(ei · eω)2.
Here, ei and eω are strain rate eigenvectors and vorticity unit vectors, respectively. Based
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on Betchov’s relations [29], the average amount of strain self-amplification is three times
the vortex stretching; i.e., (3/4)〈ωiSijωj〉 = −〈SijSjkSki〉. Hence

D
Dt
〈GijGij〉 = 2〈ωiSijωj〉.

Thus, Equation (12) indicates that the energy cascade is governed by vortex stretching,
which also depends on strain self-amplification (see also [15]).

(a) (b)

Figure 4. (a) A schematic illustration of the invariant map (RG , QG ), which illustrates that the
vorticity dominates over the rate of strain in the region D > 0 for D ≡ (27/4)(RG )2 + (QG )3 [34].
(b) Isosurface plot of 20% positive deviation of QG , which is colored by RG for a turbulent flow
simulated on 2563 grid points using the vortex stretching-based model SGS-A, Equation (9).

3.4.2. Statistics

A compact and relatively convenient way to analyze the influence of the filtered
velocity gradient tensor is the following five-dimensional dynamical systems of the invari-
ants [2,14,32]:

dQG

dt
= −3RG

dRG

dt
=

2
3
(QG)2

dQS

dt
= −2RS − RG

dRS

dt
=

2
3

QGQS +
1
4
V2

dV2

dt
= −16

3
(RS − RG)QG .

(13)

Here, QS = −(1/2)SijSij, RS = −(1/3)SijSjkSki, and the magnitude of the vortex
stretching vector is V = |Sω|. It can also be seen that the first two of the system of equations
are decoupled from the remaining three equations. Clearly, QG increases if RG < 0, and
vice versa. Notably, it is a high-dimensional dynamical system, e.g., with 5× 2563 degrees
of freedom if 2563 cells are considered in the computation.

The histograms of RG and QG are shown in Figures 5 and 6. In studying the statistical
theory, the kurtosis of a probability distribution usually measures the level of intermittency
of an event. Distributions with large kurtosis exhibit tail data exceeding the tails of the
normal distribution. For each of the four subgrid models tested, the histograms are
distributed with high values of kurtosis. Observed kurtosis factors of RG and QG are larger
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than 3, which implies a non-Gaussian leptokurtic distribution regardless of the choice of
the subgrid model. Each model indicates the existence of extreme events making the bulk
of the data in a skinny vertical range. From the histograms of RG , the relatively large
kurtosis (56–60) implies that the energy flux in two of the models, i.e., SGS-A and SGS-B,
is relatively more intermittent and governed by vortex stretching. On the other hand, the
histograms ofRG form the other two models, i.e., SGS-C and SGS-D, indicate a relatively
Gaussian, yet leptokurtic, distribution of the energy flux.

(a)

(b) Kurtosis = 60 (c) Kurtosis = 56

(d) Kurtosis = 20 (e) Kurtosis = 23

Figure 5. (a) A schematic illustration of mesokurtic (Kurtosis = 3), leptokurtic (kurtosis > 3) and
platykurtic (kurtosis < 3) distribution. (b–e) A comparison of the probability density function ofRG –
the third invariant of the velocity gradient tensor G – among the subgrid models SGS-A (b), SGS-B
(c), SGS-C (d), and SGS-D (e) (see Table 1).

The overall flow topology and the resulting statistics manifested in Figures 5 and 6
imply that there exist predominant spotty regions. Such local regions are characterized by
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strong vortices, as well as large amplitude fluctuations of the total strain. The non-Gaussian
behavior with relatively large kurtosis depicted in Figure 5b,c implies that turbulent flows
predicted with SGS-A and SGS-B are relatively more spotty compared to SGS-C and SGS-D.
In other words, a high probability of large velocity derivatives—associated with the local
mechanism of predominant vortex stretching—dies out through the globally averaged
dynamics considered in SGS-C and SGS-D.

(a) Kurtosis = 8 (b) Kurtosis = 8

(c) Kurtosis = 8 (d) Kurtosis = 6

Figure 6. A comparison of the probability density function ofQG, the second invariant of the velocity
gradient tensor G with respect to subgrid models SGS-A (a), SGS-B (b), SGS-C (c), and SGS-D (d)
(see Table 1).

3.4.3. Energy Flux, Vortex Stretching, and Strain Skewness

In Figure 7, the joint PDF of RG and QG shows that the bulk of the instantaneous
velocity field is primarily in two quadrants: RG < 0, QG > 0 and RG > 0, QG < 0. In the
literature, the (RG , QG ) map was thoroughly scrutinized by many researchers suggesting
that there is a sharp division between the vortex dominated region QG > −3 3

√
(RG)2/4

and strain-dominated region QG < −3 3
√
(RG)2/4.

The (RG , QG ) map in Figure 7 shows a strong negative correlation, i.e., QGRG < 0. The
(RG , QG ) map also provides some quantitative measure of the energy flux from large to
small scales, Equation (7), i.e., Π = ck∆2[RG + (1/3)ωiωjSij] and 〈Π〉 = ck∆2〈ωiωjSij〉.
The (RG , QG ) map among four subgrid models supports a good correlation between the
energy cascade and vortex stretching, and that the two most common topological states of
the flow are vortex stretching ωiωjSij > 0 and unstable sheet λ1λ2λ3 < 0 [32,34]. It is worth
mentioning that histograms ofRG and QG provide quantitative information regarding the
vortex stretching mechanism, whereas the (RG , QG ) map provides the predominant role of
vortex tubes and sheets.
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In Figure 8, the (RS , QS ) invariant map compares the contribution of subgrid-scale
stresses to the energy cascade. The invariant, QS = −(1/4)ε/ν, represents the viscous
dissipation ε [32]. Large eddies with a negative values of QS contribute to dissipation. The
invariant RS is a special form of the invariant RG relative to the strain-dominated region
QG < −3 3

√
(RG)2/4 of the (RG , QG ) map. For an incompressible flow, the eigenvalues

of strain tensor S satisfy λ1 ≥ λ2 ≥ λ3 and λ1 + λ2 + λ3 = 0. Thus, we can write
RS = −λ1λ2λ3. Similar to Equation (12), we have the following evolution equation

D
Dt

(
1
2
SijSij

)
= −SijSjkSki −

1
4

ωiωjSij − Sij
∂2P

∂xi∂xj
+ νSij∇2Sij. (14)

(a) SGS-A (b) SGS-B

(c) SGS-C (d) SGS-D

Figure 7. A comparison of the joint probability density function of two invariants QG and RG of
the velocity gradient tensor G with respect to subgrid models SGS-A (a), SGS-B (b), SGS-C (c), and
SGS-D (d) (see Table 1).

The (RS , QS ) invariant map in Figure 8 along with Equation (14) provides a quantita-
tive measure of how the rate of change of QS = −(1/2)SijSij depends on
RS = −(1/3)SijSjkSki, as well as on the rate of enstrophy production by vortex stretching,
ωiωjSij. The main message from Equation (14) and Figure 8 is that positive values of RS

or λ1λ2λ3 < 0 correspond to production of SijSij by the strain self-amplification process.
Thus,RS > 0 also implies that sheet-like structures are associated with viscous dissipation
with λ1, λ2 > 0, and λ3 < 0. On the other hand, destruction of SijSij may correspond only
marginally to tube-like structures due to λ1 > 0 and λ2, λ3 < 0 [15].

In accordance with [48] and other investigations, strain itself is induced by vorticity
because there is no other way of production of enstrophy other than straining of weak vorticity.
This mechanism is called self-amplification of velocity gradient tensor. In order to link this
mechanism to the energy cascade, we focus on the statistics of the rate of vortex stretching
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Σω =
ωiωjSij

|ω|

and the second invariant of the rotation-rate tensor QR. The statistics of these quantities
appear directly in the vorticity equation

D 1
2 |ω|2

Dt
= ωiωjSij + νωi∇2ωi. (15)

(a) SGS-A (b) SGS-B

(c) SGS-C (d) SGS-D

Figure 8. A comparison of the joint probability density function of two invariantsRS and QS of the
strain rate tensor S with respect to subgrid models SGS-A (a), SGS-B (b), SGS-C (c), and SGS-D (d).

Figure 9 shows some common features of the self-amplification of velocity derivatives.
More specifically, the joint PDFs of the rate of vortex stretching Σω with QR show that the
highest values of the enstrophy are associated with positive but low values of Σω. High
rates of vortex stretching and compression correlate with low values of enstrophy. The
tilt towards positive values of Σω implies that vortex tubes are being more stretched than
compressed. Additionally, most of the volume in the fluid is occupied by relatively ‘weak’
vorticity, whereas strong vortices filling only a small fraction of the space. This feature is the
most important ingredient for turbulence modeling, which is also depicted in Figure 5b,c.
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(a) SGS-A (b) SGS-B

(c) SGS-C (d) SGS-D

Figure 9. The joint probability density of second invariants Σω and Qω (i.e., QR) of two tensors S
andR, respectively, where the results are compared among 4 subgrid models: SGS-A (a), SGS-B (b),
SGS-C (c), and SGS-D (d).

4. Conclusions and Future Direction

In this article, we have analyzed the effects of four eddy-viscosity models on the sta-
tistical properties of energy transfer between resolved and subgrid scales in homogeneous
isotropic turbulence. We have considered the classical approach, where dynamic variation
of the energy flux is retrieved from the magnitude of strain rates. We have compared
the statistical quantities from the classical method with that in which the energy flux is
retrieved from the vortex stretching mechanism. Our mathematical and statistical analyses
show that vortex stretching is the main mechanism driving the local energy cascade in
isotropic turbulence. Local growth of both the strain and the rotation rates is directly influ-
enced by the stretching of vorticity. The strain field is self-amplified if an isolated region of
locally rotating fluid is stretched. Such a self-amplification of the strain contributes directly
to the growth of absolute strain instead of enstrophy. Our numerical results imply that
together vortex stretching rate and the effects of vortex stretching to an imbalance between
strain and rotation rates govern the local rate of energy cascade.

Over the past half a century, the performance of subgrid models in LES has been
thoroughly scrutinized by considering the contribution of strain self-amplification into
the energy-flux. It has been 25 years since Meneveau [16] introduced primary statistical
characteristics of subgrid models, which are often considered either in the formulation or
the evaluation of subgrid models. This article compares statistics of the velocity gradient
tensor in isotropic turbulence, which were computed using four subgrid models. We
show that the statistics predicted by the Lagrangian dynamic model (SGS-D), where the
model constant is dynamically calculated, are similar to the statistics predicted with the
TKE-based dynamic model (SGS-C) in which fixed values of the model constants are
assigned. We propose forming a subgrid-scale model of the energy flux, which is based on
the vortex stretching mechanism. We have observed that the Kurtosis of the third invariant
of the velocity gradient tensor is about three times as large if the subgrid model directly
(e.g., SGS-A) or dynamically (e.g., SGS-B) captures the vortex stretching mechanism.



Aerospace 2021, 8, 375 17 of 19

Two-point statistics, such as velocity increments and structure functions, are widely
used in the study of turbulent flows [2,4]. In the present study, the filtered velocity gradients
encompass the information contained in two-point statistics. The analysis of two-point
statistics via velocity gradients suggests that vortex stretching rate correlates with the
energy dissipation rate, particularly in the present investigation.

In future work, we are interested in considering the effects of different filtering strate-
gies while vortex stretching is employed to retrieve the statistical properties of the energy
flux in wall-bounded and thermally driven anisotropic turbulence. It may be interesting
to investigate the wavelet-based filtering approach (e.g., our previous work [49]) with
the vortex stretching approach presented in this article. A fully developed atmospheric
boundary layer over an array of utility-scale wind turbine would help to assess efficiency
of the subgrid model while considering an appropriate wall-modeling technique. This
work is currently underway.
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