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Abstract: Aircraft insulation separates the thermally comfortable cabin interior environment from
the extremely cold outside conditions. However, the fabrication and installation of the insulation in
the aircraft is a labor-intensive task. Tailored, rigid particle foam parts could be a solution to speed
up the installation process. The presented study investigates the feasibility of such a concept from a
hygrothermal point of view. Due to the temperature difference between the cold air trapped between
aircraft skin and insulation on one side and the warm cabin air on the other side, a buoyancy-induced
pressure difference forms. This effect drives the warmer air through leakages in the insulation
system towards the cold skin. Here, moisture contained in the air condenses on the cold surfaces,
increasing the risk for uncontrolled dripping (“rain in the plane”) when it melts. Therefore, this study
compares the condensate build-up of different installations of a rigid particle foam frame insulation
with the classical glass fiber capstrip. Tests are hosted in the Fraunhofer Lining and Insulation Test
Environment chamber. It is shown that careful installation of the particle foam frame insulation
provides similar level of moisture protection as the current state of the art insulation, and that the
condensate amount does not depend on the amount of airflow directly behind the sidewall.

Keywords: aircraft insulation; leakage; moisture; ice; frost

1. Introduction

The typical aircraft cabin operative temperature is in the range of 18.3 to 26.7 ◦C (65 to
80 ◦F) [1], whereas the external temperature is around −56.5 ◦C [2]. This temperature
difference can be maintained due to the presence of thermal insulation in the aircraft,
leading to a sufficiently warm sidewall surface. In [1], it is specified that the sidewall
surface temperature shall not differ more than 5.6 K (10 ◦F) from the cabin temperature to
maintain passenger thermal comfort.

The main material for insulating an aircraft is glass fiber [3] wrapped by a cover
film (e.g., [4]). Besides the thermal protection, the insulation system provides acoustic
dampening of the aircraft noise, and most importantly for certification aspects, it protects
passengers in the case of fire and therefore undergoes thorough testing [5]. These tests cover
the flame propagation, heat and smoke release and burn through resistance. An insulation
material may only be installed onboard the aircraft if all four tests are successfully passed.

The insulation has the form of blankets and covers the frames and fields (Figure 1).
These blankets are flexible and compressible and thus can be wrapped around the aircraft
structure The insulation concept used within this publication is deduced from [6] and
extended where needed (Figure 1). Within this publication, the “cavity” denotes the air
gap between skin and the outboard side of the primary insulation blanket, and “gap”
denotes the air gap between the primary insulation blanket and the sidewall and secondary
insulation. Both air volumes are of undefined shape as they depend on the blanket
deformations, structural obstacles, etc.
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Figure 1. Pieces of the aircraft insulation.

Whereas field blankets are comparably easy to install, the capstrip covering the frame
requires more manual work. [6] demands that the capstrip should be fixed either with
so called through frame fasteners or with brackets at least every 14” (35.5 cm, Figure 2).
With this installation, the flexible capstrip blanket is adequately pushed against the field
blanket to provide sufficient burnthrough resistance without leaving large, unprotected air
gaps. Thus, a high amount of manual work is required to install this piece of insulation on
the frame. With the use of a rigid particle foam capstrip, this installation effort is reduced
because it clamps on the frame and does not require the fasteners.
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Wikimedia Commons.

In addition to the thermal protection, the insulation has a function of airflow and
moisture barrier in the aircraft. The major source of moisture in the aircraft cabin is the
water vapor emitted by passengers. In [7], a literature review was conducted on cabin
air quality measurements and it was concluded that the average cabin relative humidity
level amounts to 16% with a minimum of 0.9%. In a subject study, [8] found that the
perception of dryness significantly increases after 90 min at low humidity levels of 10%.
In [9], measurements were performed on domestic short-haul flights and found relative
humidity levels in the cabin between 17.9% and 27%, which are typically reached after
15 min of flight. Based on the CO2 balance, the resulting fresh airflow rate was back-
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computed and a parametric study was conducted showing that a reduction in the fresh
airflow rate would contribute to a higher and more comfortable cabin moisture content. [10]
conducted a subject study with variable fresh airflow rates between 1.1 and 5.2 L/s per
passenger in a cabin mock-up and found resulting relative humidity levels in the cabin
between 13% and 33%.

Most of the emitted moisture vents out by the cabin ventilation system. Nevertheless,
some moisture can accumulate by two major paths: through molecular diffusion into the
blanket, driven by the water vapor pressure gradient between the warm inbound and the
cold outbound blanket sides, and by convective transport of air towards cold structures. In
order to prevent moisture from diffusing into the insulation blanket and being trapped, the
cover film should have a sufficient moisture resistance. Reference [11] measured a 420 kg
weight increase in the insulation blankets in an A310 during a D-check. The dependence of
water uptake from the cover film’s moisture diffusion resistance is experimentally proven
in [12], where a 75% reduction in accumulated water in the blanket could be achieved
by using a cover film with the moisture diffusion equivalent length sd = 5.3 m instead of
sd = 0.66 m. An sd-value of 1 m corresponds to the moisture diffusion resistance of a 1 m
thick layer of stagnant air.

Due to the temperature difference between the warm cabin and crown section and
the cold exterior skin, a stack pressure forms [13,14], resulting in a pressure difference
and consequently an airflow towards the skin cavity in the upper section of the aircraft
envelope. Reference [13] estimates the magnitude of the driving stack pressure to around
4 Pa and shows the correlation between of the sizes of leakages in the insulation layer and
the resulting air ingress. Reference [15] developed a simplified test setup representing a
field section of the cabin sidewall and investigated the frost buildup with and without
insulation blanket installed. It was found that the installation of an insulation blanket
reduces the frost by a factor of 40, compared with guiding the airflow across the uncovered
skin. Hence, a careful installation of the insulation blankets helps reducing the airflow
to cold structure. Even though passengers often perceive the air as dry, its dew point in
cruise is at about −10 ◦C and thus above typical fuselage temperatures in cruise. As a
result, frost will form on the cold structure outboard the insulation. On ground, most of
this ice drains after melting by a suited installation of the insulation blankets similar to roof
shingles. However, some water may flow in an uncontrolled way and ultimately drip into
the cabin [16] (“rain in the plane”). Reference [11] reviews data from a survey conducted
by [16] on the B757 fleet and concludes an average daily amount of water condensation of
91 g per field (area between two frames).

Hence, the careful installation of the insulation blankets is crucial to reduce moisture-
related issues in the aircraft. As this installation requires a high amount of manual work-
force in the production line, new concepts with at least equal functional performance are
of interest. The research presented in this paper conducts an experimental investigation
into what extent a rigid particle foam insulation on the frame provides the same level of
protection against air ingress and thus frost formation as the conventional capstrip.

2. Materials and Methods

The tests of the particle foam insulation are carried out in the Lining and Insulation
Test Environment (LITE) chamber of the Fraunhofer IBP in Holzkirchen, Germany. The
chamber is constructed for the experimental investigation of aircraft insulation systems. It
consists of an aluminum fuselage with five frames thus resulting in four fields. The floor
area is 2.89 × 1.74 m, and it is 1.86 m high (Figure 3). The chamber walls are insulated to
limit thermal losses. In an airliner, the chamber section would accommodate approximately
nine economy passengers.
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Figure 3. LITE chamber.

2.1. Airflow Patttern

Figure 4 depicts the ventilation system of the LITE chamber. In order to condition the
exterior fuselage, a cocoon is built leaving an approximately 5 cm wide air gap. This gap
is flushed with conditioned air in order to represent cold exterior conditions or hot day
on ground. An air conditioning system providing heating, cooling and humidity control
ventilates the chamber to represent the cabin climatic conditions. In the real aircraft, the
cabin extraction would flow through the dado panel resulting in a pressure drop between
the cabin and the gap behind the sidewall. As a result, some air may overflow behind the
sidewall through leakages, for example behind the stowage bins. This air flows downwards
through the gap between primary and secondary insulation and some air may leak into the
cavity behind the primary insulation. This leakage is actively generated using an exhaust
fan in the LITE chamber. An opening on the suction side of the HVAC system ducting
compensates the excess of air removed by the extraction fan behind the dado panel.

Aerospace 2021, 8, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 3. LITE chamber. 

2.1. Airflow Patttern 

Figure 4 depicts the ventilation system of the LITE chamber. In order to condition the 

exterior fuselage, a cocoon is built leaving an approximately 5 cm wide air gap. This gap 

is flushed with conditioned air in order to represent cold exterior conditions or hot day 

on ground. An air conditioning system providing heating, cooling and humidity control 

ventilates the chamber to represent the cabin climatic conditions. In the real aircraft, the 

cabin extraction would flow through the dado panel resulting in a pressure drop between 

the cabin and the gap behind the sidewall. As a result, some air may overflow behind the 

sidewall through leakages, for example behind the stowage bins. This air flows down-

wards through the gap between primary and secondary insulation and some air may leak 

into the cavity behind the primary insulation. This leakage is actively generated using an 

exhaust fan in the LITE chamber. An opening on the suction side of the HVAC system 

ducting compensates the excess of air removed by the extraction fan behind the dado 

panel. 

 

Figure 4. Ventilation system of the LITE chamber. Figure 4. Ventilation system of the LITE chamber.



Aerospace 2021, 8, 359 5 of 17

2.2. Sensor Distribution

Figure 5 shows the skin sensor distribution for the test conduct. Surface temperatures
of the fuselage are measured in four heights in all four fields. Two frames are equipped with
surface temperature sensors and air temperature sensors to determine the air temperature in
the cavity between frame and insulation. To measure temperatures, four-wire PT100 sensors
are used with an accuracy of 0.1 K @ 20 ◦C according to DIN EN 60751 class A [17]. The
pressure difference between cavity and cabin is measured in four positions using Fischer
DE23 sensors (FISCHER Mess- und Regeltechnik GmbH, 32107 Bad Salzuflen, Germany)
with an accuracy of 1% in the range ±25 Pa.
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Figure 5. Sensor distribution on the skin.

Figure 6 shows the sensor distribution on the primary insulation. The temperature and
humidity (Rotronic HygroClip HC2-C05 sensor with an accuracy of ±1.5% RH, rotronic
messgeräte GmbH, 76275 Ettlingen, Germany) in the gap are measured, as well as the
pressure difference between cabin and gap. The left pressure difference at 600 mm height
is used as reference pressure for the control of the extraction fan behind the dado panel.
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Figure 6. Sensor distribution on primary field blanket insulation.

The surface temperature of the sidewall is monitored using infrared cameras taking
one picture every minute (type Optris PI 640, post processing with software Optris PI
connect, Optris GmbH, 13127 Berlin, Germany).

2.3. Specimen Installation

For the experimental testing program, the fuselage section is split into two subsections.
On the left section, the frames are covered by the particle foam insulation, whereas on the
right side, the conventional capstrip with through-frame fasteners is used. The primary
field insulation blankets are of the same type on all sections. Through this installation,
three major types of leakages emerge (Figure 7):

• Between the particle foam frame insulation and the field blanket.
• Between the capstrip and the field blanket.
• On the upper and lower edges of the field blankets.

Gaps in the middle frame connecting the second and third field are thoroughly sealed
to avoid lateral flows behind the primary insulation.

The particle foam insulation is manufactured from EPERAN PP MH24 [18], an ex-
panded polypropylene material. The density of the particle foam insulation is 60 kg/m3

and its thermal conductivity is 0.043 W/(m·K). All other insulation blankets are made
of classical glass fiber insulation wrapped in foil, as used in the aircraft, with a thermal
conductivity of 0.03 to 0.04 W/(m·K) and a density between 6.7 to 24 kg/m3 [3]. Thus,
the thermal conductivities of particle foam and state of the art insulation are comparable,
whereas densities noticeably differ.
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Figure 7. Particle foam insulation and capstrip installed in the LITE test chamber.

The primary insulation layer is covered with sidewall lining panels (Figure 8). On
the rear side, state of the art secondary insulation is fixed. This insulation consists of
glass fiber blankets wrapped in foil. The window openings in the sidewall are plugged
with Styrofoam bluff bodies to align with the field blanket and seal the opening against
air ingress.
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Figure 8. Fixation of sidewall in front of the primary insulation.

The sidewall is supported on its lower edge by a U-bar mounted on top of the
reconstructed dado panel (black lower panel in Figure 8). On the upper edge, it is prolonged
with a self-constructed structure and pressed against the frame using stamps attached
to threaded bars that are fixed on the ceiling. The top structure leaves an overflow path
between cabin air and the gap between primary and secondary insulation. In the aircraft,
such a gap is not visible to the passenger but is present behind the stowage bin.

2.4. Test Matrix

The testing program is designed to answer two major questions from a hygrothermal
point of view:

• Does the installation sequence of the insulation parts influence the condensate?
• Can the material thickness be reduced to save weight?

The first question addresses the sensitivity of condensate buildup towards optimiza-
tions in the installation process. In order to address this, the installation sequence of the
insulation pieces is altered (Figure 9). In a first test, the frame insulation is first installed
and then the field blankets are put between the frames. Thus, a somewhat undefined gap
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prevails between frame insulation and blanket. As this procedure requires less careful
manual work, it is considered the low quality, uncareful installation. In the second test, the
field blankets are first installed, and it is made sure the blankets’ edges are clamped by the
particle foam insulation. This is considered to be a careful and high-quality installation.
Both tests are conducted using a frame insulation of 20 mm thickness.
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Figure 9. Comparison of the low-quality installation (top) with the high-quality installation (bottom).

In order to investigate the potential to reduce material, a third test is performed using
10 mm thick frame insulation carefully installed to clamp the field insulation.

2.5. Test Conduct

The boundary conditions summarized in Table 1 are applied. Cabin humidity is
exaggerated in order to receive a clearer frost buildup distinction between the test cases.

Table 1. Test boundary conditions.

Boundary Condition Value

Exterior fuselage temperature −30 ◦C
Cabin ventilation flow rate 368 kg/h

Cabin temperature 24 ◦C
Cabin humidity 30%

Pressure difference across sidewall 4 Pa
Exposure duration 7 h

After the exposure, the sidewall and the insulation are removed. The condensate
buildup is photographed, and the quantity is assessed by weight difference after scratching
frost into a bag and wiping melted water from the structure with a sponge (Figure 10).
The inherent uncertainty of this method is that not all moisture can be collected because
some water may be unreachable in corners, and drips off when melting or evaporates. In
order to reduce the impact of such uncertainty, the exposure time was selected as several
hours, and the cabin moisture was increased to obtain a noticeable amount of condensate.
The uncertainty of the weight difference between the dry and wet sponges and bags is
considered negligible because a sufficiently accurate scale was used. Overall, the weighted
water mass thus presents a lower limit measurement, but covers the major amount.
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3. Results

Tests are started at 9:30 in the morning. 1 to 1.5 h later (11:00), the skin surface
temperature, cabin temperature and flow rates, differential pressures, etc., show stable
conditions. For the following analysis, temperatures are averaged between 13:30 and
14:30 in order to ease comparisons between the tests. The exposure finishes at 16:30 with
switching off the ventilation and cooling system, dismounting the sidewall and collecting
frost and water from the skin.

3.1. Cabin Boundary Conditions

For all three tests, the boundary conditions in the cabin are similar within 1.5 K and
lead to comparable results as depicted in Table 2. Thermal stratification remains below
0.5 K and is thus negligible.

Table 2. Cabin boundary conditions.

Cabin Boundary
Conditions 20 mm, Uncareful 20 mm, Careful 10 mm, Careful

Temperature in ◦C 22.2 23.0 23.7
Absolute humidity in g/m3 6.3 6.4 6.7

3.2. Sidewall Surface Temperature

Figure 11 shows the IR signature of the frame insulations on the lower sidewall surface.
It can be seen that the section on top of the particle foam frame insulation is warmer than the
section on top of the state-of-the-art capstrip. The reason is that the capstrip is compressed
by the sidewall, whereas the particle foam insulation remains rigid. The thicker (20 mm)
particle foam insulation results in higher surface temperature than the thinner one (10 mm).
Even through the effect is visible, its magnitude is not considered to have an impact on the
passenger comfort due to the relatively local confinement.

3.3. Skin Temperatures

For all tests, skin temperatures between −21.5 and −30.1 ◦C are measured with an
average value of −27.2 ◦C. This corresponds to a saturation water vapor fraction of 0.5 to
1.0 g/m3. Thus, the difference between the cabin humidity and this residual humidity
contained in air after contact with the cold skin determines the frost buildup potential.

Figure 12 shows the measured inboard skin surface temperatures. The pulldown
after activation of the cocoon cooling is performed within approximately 1 to 1.5 h. For
the remaining 5.5 to 6 h of the test, the temperatures remain rather constant. A real
aircraft in operation probably would have faster pulldown because the external heat
transfer coefficient during flight is higher due to the elevated cruising speed of the aircraft.
Furthermore, typical air temperatures at flight altitudes are lower than the cocoon cooling
provides. The duration of the temperature stabilized phase, and thus a constant frost
buildup rate would depend on the length of the flight, ranging from only few minutes for
short-haul flights to several hours for long-haul flights.
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3.4. Frame Temperatures

Two frame surface temperature profiles are measured:

• Frame 2 with particle foam insulation.
• Frame 4 with state-of-the-art capstrip.

Figure 13 shows the temperature profiles for both frames. The following main obser-
vations are noted, and a possible explanation is provided:

• Seemingly, some effect affects the lowest positions’ (0.1 m) temperature on Frame 4.
Possibly, there is a heat bridge warming the lower frame section or air exchange is
inhibited in the lower section, leading to dominant heat flow through the capstrip.

• For the uncareful installation (blue line), Frame 2 is approximately 8 K warmer in the
upper half than Frame 4. At 0.6 m height, both show similar measurements, in the
lower section, Frame 2 is considerably colder. Due to the uncareful installation, more
air ingresses from gap to cavity by buoyancy in the upper part, leading to a higher
frame temperature. This air falls downwards in the cavity along the cold structure
and thus leads to convective cooling of the lower frame part.

• For the careful installation with 20 mm thickness, Frame 2 shows a similar temper-
ature as Frame 4. Further downwards, Frame 2 shows approximately 5 K higher
temperatures than Frame 4.

• Using a 10 mm thick frame insulation leads to a higher frame temperature compared
with the other concepts and compared with the capstrip. The thinner insulation results
in a higher frame temperature.
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3.5. Gap pressure and Flow Rate

Figure 14 compares the measured extraction flow rate of the gap extraction (between
primary insulation and sidewall), and the measured pressure differences between cabin
and gap. A negative pressure reflects that pressure is lower in the gap than in the cabin.
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The air extraction system behind the sidewall accurately maintains a 4 Pa pressure
difference at the reference sensor (0.6 m height in Field 1).

The pressure difference in Field 2 at 1.6 m height shows a lower magnitude as the
measurement is closer to the overflow opening above the sidewall. For example, the
window structure obstacle has not yet been encountered at this point. The differential
pressure magnitude increases with increasing extraction flow rate.

In Field 3 the same position as Field 1 is investigated but for the capstrip arrangement.
For the highest extraction flow rate, the differential pressure magnitude noticeably increases
to more than 8 Pa.

Field 4 again shows relatively low-pressure magnitude as it is close to the overflow
opening.

Measurement reveals that the thickness and installation quality of the frame and
field insulation have an impact on the air overflowing from cabin to the gap between
primary and secondary insulation. This behavior is explainable by considering the shape of
this gap.

The uncareful installation reflects that first the frame insulation and then the field
blanket are installed. Thus, the blanket is not subjected to any specific compression and
can buckle behind the sidewall (cf. Figure 9). As a result, the available space for air to
overflow becomes smaller, leading to a higher flow resistance and thus lower flow rate
when applying the same differential pressure.

The careful installation reflects that first, the field blanket is installed, and then the
frame insulation clamps and compresses the edges. As a result, a gap between sidewall
and primary insulation emerges that provides a lower flow resistance and thus higher flow
rate when applying the same differential pressure.

The same is valid for the 10 mm frame insulation, but the gap becomes narrower
than for the 20 mm insulation thickness, and thus flow resistance increases and flow
rate decreases.

The gap flow rate amounts to 26 to 46% of the chamber supply airflow rate (368 kg/h).
This leakage is a shortcut, and thus negatively affects the cabin ventilation effectiveness.
As a result, the demand for the energetically expensive bleed air would increase to meet
regulatory requirements [1]. Therefore, for a future integration of such insulation system,
the use of horizontal flow blockers between sidewall and primary insulation as, e.g.,
suggested by [14] should be foreseen. Furthermore, [14] suggests using dry air injection for
envelope overpressurization with regard to the cabin. This would inhibit the frost buildup
from air leakages to the cold structure and reduce airflow shortcuts, leading to higher cabin
ventilation effectiveness.
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Even though not tested here, it is considered that the gap flow in aircrafts is lower
because the compressibility of the insulation blankets and the capstrip would lead to a
smaller and less defined gap than the rigid particle foam insulation does.

3.6. Gap Air Temperatures

Figure 15 shows the measured air temperatures in the gap between field blanket and
sidewall. Overall, it can be concluded that the gap air temperature is close to the cabin
air temperature. The reason is that the larger fraction of air flowing behind the sidewall
originates from the cabin. The only exception is in the “10 mm, careful” measurement
in Field 1. The exact reason for this deviation is not known; it might be a local leakage
providing cold air from the cavity close to the sensor.
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Figure 15. Measured gap air temperatures.

The extraction air is shown to be colder than the gap air. This air consists of a mixture
of the gap air and air that passed the cavity, and thus became noticeably colder.

3.7. Differential Pressure between Gap and Skin Cavity and Condensate on the Skin

Figure 16 shows the differential pressure measured between the gap and the skin
cavity. This pressure is mainly buoyancy induced and results in an airflow between the
two air volumes. In this plot, a positive pressure depicts a gradient from skin cavity to the
gap behind the sidewall, whereas a negative pressure results in an ingress of air to the cold
structure. Again, pressure is measured in the four fields alternating a low (0.6 m) and high
(1.6 m) measurement position. Figure 17 shows a picture of the frost formation pattern
directly after removing the insulation on top of Field 1.
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A clear correlation between higher pressure differences and the amount of condensate is
not obvious. The reason could be that larger leakage paths result in higher flow rate at lower
pressure, whereas well-sealed insulations are able to sustain a higher differential pressure.

On the other hand, the quality of installation is reflected by the amount of condensate.
The uncareful installation leads to a larger leakage path between the frame insulation and
the field blanket, resulting in a close to doubled amount of condensate compared with
the clamped installation, where the major leakage paths is expected to be on the top and
bottom edge of the field blanket (cf. Figure 7). Handling shows that the 10 mm thick frame
insulation is less rigid and tends to show higher torsion. Hence, its sealing potential is
seemingly lower.

On frame 3, located between Field 2 and Field 3, the particle foam frame insulation
is applied. As a result, the Field 3 measurement is a mixture of a particle foam frame
insulation on the left and the conventional capstrip on the right. Hence, some influence of
the specimen is found here, too.

Comparing the amount of condensate with the leakage rate into the gap (Figure 14 vs.
Figure 16) shows that a higher flow rate in the gap inboard the primary insulation does not
necessarily result in a higher amount of condensate on the structure. In order to analyze this
effect, the flow rate exchanged between the gap and the skin cavity are estimated. For this,
the amount of frost is divided by the potential for frost formation (difference between cabin
moisture content and skin saturation moisture content) and the exposure duration of 7 h.

.
Vestimated = ρair·

mcondensate
(xcabin − xsat,skin)·7h

(1)

This estimation leads to the flow rate estimation per field shown in Figure 18. In
sum, the total airflow to the cavities varies between 10.6 to 19.9 kg/h. This is an order
of magnitude smaller than the airflow through the gap behind the sidewall. Hence, the
independence of frost buildup from the airflow in the gap becomes comprehensive as only
a small fraction of air contributes to condensate formation.
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4. Discussion

This research investigates the effect of a particle foam insulation and its installation
procedure on the hygrothermal conditions behind the cabin sidewall. The experimental
study is conducted in a representative test chamber. Nevertheless, some simplifications
compared with the real flight are made. First, the typical cabin cruise pressure is 750 hPa
whereas the lab ambient air pressure is approximately 940 hPa (the lab is at 694 m elevation).
In a comparison performed by [13], pressure differences are estimated approximately 20%
lower in cruise than in ground pressure conditions. On the other hand, typical cruise
exterior conditions are −56.5 ◦C [2], whereas the LITE chamber achieves around −30 ◦C.
Furthermore, the chamber considers a rather undisturbed section of the fuselage, without
the presence of, e.g., doors or riser ducts. Additionally, the crown section is not present,
potentially reducing the buoyancy effect due to lower elevation. Nevertheless, the chamber
tests provide a thorough insight into the driving effects of the airflows behind the sidewall.

Comparing the measured amount of condensate on the frames proves to be in the
order of magnitude of the value of 91 g postulated by [11,16]. Measured stack pressure is
merely within the estimated 0 to 4.5 Pa of [13].

Therefore, the experiments are considered providing a valuable step to the under-
standing of the major effects driving the hygrothermal behavior of the sidewall section, and
persistent conclusions can be drawn from it. The experiments prove that novel insulation
systems can be assessed in this type of chamber.

5. Conclusions

This paper compares three tests with different installation procedures and differ-
ent material thicknesses of a particle foam frame insulation replacing the state-of-the-art
capstrip. These tests are a step forward, and with them, the Lining and Insulation Test
Environment has proven very useful in addressing the problem of condensate. The con-
ducted experiments give a valuable insight into the hygrothermal process behind the cabin
sidewall and allow the following major conclusions:

• The quality of the insulation installation is the key parameter to reduce condensate on
the cold exterior skin. It is proven that clamping the field blanket below the particle
foam frame insulation results in only half the amount of condensate than a loose joint
of both insulation pieces.

• With a 20 mm thick particle foam frame insulation, the same amount of protection
against condensate on the structure is achieved as with the conventional capstrip, but
less parts are needed for installation.

• The particle foam insulation leads to slightly higher local sidewall surface temper-
atures than the capstrip. However, due to the confinement of this area, no comfort
relevant effect is expected from this.

• The leakage of air into the gap between sidewall and primary insulation is one order
of magnitude larger than the leakage of air towards the skin cavity. Therefore, the
amount of condensate formation is independent from this leakage.

• Even through the gap behind the sidewall is of undefined shape, measures affecting
its size (e.g., thicker frame insulation) influence the amount of air leakage into the
gap. This can have an impact on cabin ventilation, as this presents a shortcut of cabin
air and thus requires higher bleed air offtake to meet ventilation requirements [1].
A flow blocker located between the sidewall and primary insulation could reduce
this shortcut.

Figure 19 summarizes these findings in brief.
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