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Abstract: In view of the uncertainty of model parameters, the influence of external disturbances and
sensor noise on the flight of coaxial rotor aircraft during autonomous flight, a robust backstepping
sliding mode control algorithm for the position and attitude feedback control system is studied to
solve the trajectory tracking problem of an aircraft in the case of unknown external interference. In
this study, a non-linear dynamic model based on a disturbed coaxial rotor aircraft was established
for an unknown flight. Then, a non-linear robust backstepping sliding mode controller was designed,
which was divided into two sub-controllers: the attitude controller and the position controller of
the coaxial rotor aircraft. In the controller, virtual control was introduced to construct the Lyapunov
function to ensure the stability of each subsystem. The effectiveness of the proposed controller was
verified through numerical simulation. Finally, the effectiveness of the backstepping sliding mode
control algorithm was verified by flight experiments.

Keywords: coaxial rotor aircraft; backstepping control; sliding mode control; robustness

1. Introduction

In recent years, with the development of embedded electronic technology and sensor
technology, the research and development of unmanned aerial vehicles (UAVs) has become
a hot topic. In the next few years, low-cost autonomous navigation UAV systems will
become a new tool for civil and military applications. Rotor UAVs have many advantages,
such as compact structure, small size, and hovering ability, and are widely used. They are
especially suitable for reconnaissance and attacks in sensitive and uncertain environments.
In medical rescues and natural disasters, it is sufficient to encounter difficult or dangerous
areas to use these in order to avoid casualties and property losses [1,2].

Compared with fixed-wing UAVs, rotor drones have the advantage of hovering at low
speeds when performing fixed-point, accurate, and detailed missions, and do not require
the establishment of dedicated runways or ejection frames, which are more convenient
than fixed-wing UAVs. However, compared with fixed-wing UAVs, the longer flight time
of the rotor UAVs is a disadvantage and cannot be observed remotely. During the flight,
the concealment is not good, and the target is easily exposed. After analyzing various
types of existing rotor unmanned aerial vehicle, it is proposed that the rotor unmanned
aerial vehicle is placed as projectile and quickly reaches the specified area through the
energy provided by the launch device. It is then transformed into a coaxial rotor aircraft
for reconnaissance, surveillance, interference, lighting, and attacks [3–5]. A flowchart of
this process is shown in Figure 1. Through the launcher, the projectile is carried to the
designated area, the parachute is used to decelerate, and the task is carried out in the
designated area.
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obtain the desired stable flight state, a better robustness can be obtained by designing the 
weighting matrix of the controller. However, this stability can only be guaranteed under 
the assumption that the model is completely known and requires the signal to be free of 
noise. This approach has been successfully implemented on several experimental plat-
forms. In reference [10] the tracking control for a small-scale helicopter was designed, the 
weighting between the state tracking performance and control power expenditure was 
analyzed, and the overall performance of the control design was evaluated based on the 
trajectory and control inputs. [11] evaluated the linear quadratic regulator (LQR) and clas-
sical controller synthesis techniques. The LQR provided a superior design for coupled 
dynamics attitude controllers, and preliminary flight test data confirmed the effectiveness 
of the control system design. A comparison between the PID method and the LQ method 
for quadrotor control is described in [12]. The LQG control method can accurately track 
control commands with good robustness for the influence of external disturbances and 
sensor measurement noise during UAV flight. In[13,14] describes the design procedure 
and experimental results of LQG control were applied to helicopters and quadrotors. In 
autonomous control, H ∞ control is the most commonly applied control structure. H ∞ 
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In an uncertain environment, the stable flight of a coaxial dual-rotor aircraft is an
indispensable part of various missions. Therefore, the control problem of rotorcraft has
aroused the interest of many researchers. Many control methods have been used in the
design of various aircraft control systems, including linear and non-linear control methods.
In the linear system theory, the control method is the single input single output (SISO)
feedback control method based on the linear approximation of the aircraft model. The
main control algorithms are cascade proportion integral differential (PID)control, quadratic
linear control (LQ), linear quadratic Gaussian (LQG) control, and H ∞ control. PID control
enables the stable controlled flight of different forms of UAVs, usually using a string-level
PID control approach, and has been successfully tested on several rotorcraft UAV platforms.
References [6,7] compared different control methods for helicopter autopilot design, mod-
elled the effective thrust moment for hovering and low-speed flight based on non-linear
dynamic equations, and verified the performance of the controller. Reference [8] proposed
a quaternion-based feedback control scheme for the exponential attitude stabilization of a
quadrotor vertical take-off and landing aerial robot known as a quadrotor. Reference [9]
proposed a control scheme based on PID control with the aim of obtaining a stable attitude
of a quadrotor aircraft. LQ is an optimal control method. To obtain the desired stable flight
state, a better robustness can be obtained by designing the weighting matrix of the con-
troller. However, this stability can only be guaranteed under the assumption that the model
is completely known and requires the signal to be free of noise. This approach has been
successfully implemented on several experimental platforms. In reference [10] the tracking
control for a small-scale helicopter was designed, the weighting between the state tracking
performance and control power expenditure was analyzed, and the overall performance of
the control design was evaluated based on the trajectory and control inputs. [11] evaluated
the linear quadratic regulator (LQR) and classical controller synthesis techniques. The LQR
provided a superior design for coupled dynamics attitude controllers, and preliminary
flight test data confirmed the effectiveness of the control system design. A comparison
between the PID method and the LQ method for quadrotor control is described in [12].
The LQG control method can accurately track control commands with good robustness for
the influence of external disturbances and sensor measurement noise during UAV flight.
In [13,14] describes the design procedure and experimental results of LQG control were
applied to helicopters and quadrotors. In autonomous control, H ∞ control is the most
commonly applied control structure. H ∞ considers the uncertainty of the model in the
design process and uses an analytical approach to design the controller, where the model
can meet the desired performance requirements under all conditions of uncertainty. This
approach has been successfully tested on a large number of aircraft platforms [15,16]. A
comparison of the LQG method and H ∞ method for helicopters is described in [17].

In autopilot design, although the above linear controller has robustness and closed-
loop stability, it is suitable for working under pre-selected equilibrium conditions. When
the aircraft deviates from the design operating conditions, the nonlinear coupling term
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degrades the performance of the aircraft. When an aircraft is subjected to unknown gusts,
linearization becomes difficult to achieve. To overcome some limitations and shortcomings
of the linear method, a non-linear flight control algorithm was developed and applied to
an aircraft platform.

Many non-linear control algorithms have been applied in various aircraft in the
autonomous control design of aircrafts. These include feedback linearization, dynamic
inversion, singular disturbance, sliding mode control, backstepping, and other related
adaptive nonlinear control algorithms. Feedback linearization is a conventional method
that converts a nonlinear system into a linear system. However, the effectiveness of feed-
back linearization is highly dependent on the accuracy of the nonlinear model. In [18]
the method was applied to an unmanned aircraft system. Dynamic inversion requires the
selection of output control variables to stabilize internal dynamics. The internal dynam-
ics were stabilized using a robust control term [19,20]. In [21], the design and stability
analysis of a hierarchical controller for UAVs using singular perturbation theory. It is
well known that the backstepping design method is widely used to control non-linear
systems [22–25]. However, when the model has uncertainties and external disturbances,
the algorithm cannot guarantee the stability of the closed-loop system. By adding the
sliding mode, the disturbance can be overcome, and the robustness of the controller can be
guaranteed [26–28].

In this study, a simplified six degrees of freedom (6–DOF) dynamic model of an
aircraft based on the Newton–Euler formula was established for the influence of external
disturbance and sensor noise on the aircraft during the autonomous flight of a coaxial
rotor aircraft. A robust backstepping sliding mode control algorithm was designed for
the position and attitude feedback control systems. In the control algorithm, the complex
system is decomposed into a series of cascade subsystems, and the virtual control variables
are added to construct some Lyapunov functions to ensure the stability of each subsystem.
In the last subsystem, a sliding mode term composed of error is added to make a robust
correction, and the actual control quantity is obtained. Finally, through the flight experiment
of a coaxial rotor aircraft, the effectiveness of the backstepping sliding mode control
algorithm was verified for the traditional algorithm.

The remainder of this paper is organized as follows. The kinematic model of the
aircraft is described in Section 2. In Section 3, a backstepping sliding mode control algorithm
for attitude control and position control of a coaxial rotor aircraft is described. In Section 4,
the feasibility of the developed solution for a coaxial rotor aircraft is demonstrated by a
numerical simulation of the backstepping sliding mode control algorithm. In Section 5,
the effectiveness of the backstepping sliding mode control algorithm is verified by flight
experiments and compared with the traditional PID control algorithm. The conclusions
and future work are discussed in Section 6.

2. Kinetic Model

To derive the mechanical model of the system, the Newton–Euler motion equation
is used to establish the coaxial rotor aircraft model with two reference systems: the body
coordinate system and the navigation coordinate system [29]. The body coordinate system
is represented by {O, xb, yb, zb}. The directions of the three axes point to the front and right
ground, and the coordinate origin coincides with the centroid of the aircraft. The navigation
coordinate system {O, xn, yn, zn} is used to describe the position and attitude information
of the aircraft. p =

[
x y z

]T and v =
[

vx vy vz
]T are the position and speed in

the navigation coordinates, respectively. Φ =
[

φ θ ψ
]T is the Euler angle of the roll,

pitch, and yaw. ω =
[

ωx ωy ωz
]T is the angular velocity of the relevant angle. The

rotation matrix Cn
b is the rotation matrix between the navigation coordinate system and the
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body coordinate system. The expression is defined by Equation (1). The coordinate system
and model block diagram are shown in Figure 2.

Cn
b =

 cθcψ cψsφsθ − cφsψ cψsφsθ + cφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − cψsφ

−sθ cθsφ cφcθ

 (1)

where c(*) = cos(*) and s(*) = sin(*). Cn
b is an orthogonal matrix,

(
Cn

b
)−1

= (Cn
b )

T and
det(Cn

b ) = 1 is invertible.
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According to the kinematics equation of position translation, the velocity of a rigid
body corresponds to the time derivative of the center of gravity in the navigation coordinate
system. The expression is defined by Equation (2).

.
p = Cn

b v (2)

Matrix Cj is the relation between the Euler angle Φ and angular velocity ω as defined
in Equation (3).

Cj =

 1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 (3)

The rotational kinematics equation relates the time derivative of the roll angle φ, the
pitch angle θ and the yaw angle ψ to the instantaneous angular velocity ω. The denominator
of some elements in matrix Cj is cθ . In this case, cθ = 0 will lead to singularity problems,
which should be avoided. The expression is defined by Equation (4).

.
Φ = Cjω (4)

In Equations (5) and (6), the coaxial rotor aircraft platform is regarded as a rigid body,
and the 6DoF dynamics are described by the following Newton–Euler equation:

m
.
v = F + mg−mω× v (5)

J
.

ω = M−ω× jω (6)

where F =
[

Fx Fy Fz
]T , Fx, Fy, Fz are the projections of F on the x, y, z axes of the body

coordinate system, M =
[

Mx My Mz
]T , Mx, My, Mz are the projections of M on the
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x, y, z axes of the body coordinate system. m is the total mass of the coaxial rotor, J is the
rotational inertia of the coaxial rotor aircraft in Equation (7).

J =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (7)

The coaxial rotor aircraft is designed to be symmetrical in both the longitudinal and
transverse directions, so Ixy, Iyz, Iyz are very small and can be assumed to be zero and the
force of the coaxial rotor aircraft mainly affects the gravity in the navigation coordinate
system, the lift generated by the rotor blade, the waving force generated by the rotor control
mechanism and the air resistance generated by the fuselage. The gravity acting on the
z-axis of the navigation coordinate system is Fmg in Equation (8).

Fmg = (Cn
b )

T

 0
0

mg

 =

 0
0

mgcφcθ

 (8)

where g is the acceleration of gravity. The lift generated by the rotor is:

TU = kTUωU

 0
0
1

 (9)

TL = kTLω2
UCb

r

 0
0
1

 (10)

The lift coefficient of kTU , kTL upper and lower rotor, angular velocity of ωU , ωL upper
and lower rotor, and lift generated by TU upper blades.

Cb
r =

 cα −sαsβ −cαsβ

0 cα −sα

sβ sαcβ cαcβ

 (11)

where α, β are the flapping angles of the swashplate of the lower rotor, the transformation
matrix from the Cb

r body to the swashplate of the lower rotor, and the lift and flapping
force produced by the lower rotor are TL in Equation (12).

TL = kTLω2
L

 −cαsβ

−sα

cαcβ

 (12)

Total lift T is defined as Equation (13).

T = TU + TL =

 −kTLω2
Lcαsβ

−kTLω2
Lsα

kTUωU + kTLω2
Lcαcβ

 (13)

When the coaxial rotor aircraft is flying in the air, owing to air resistance, its fuselage
will withstand resistance Ff x, Ff y, Ff z. This resistance is related to the velocity and surface
area of the coaxial rotor aircraft. The fuselage is defined by Equation (14).

Ff =

 Ff x
Ff y
Ff z

 =

 − ρ
2 Sxvx ·max(vi, |vx|)
− ρ

2 Syvy ·max
(
vi,
∣∣vy
∣∣)

− ρ
2 Szvz ·max(vi, |vz|)

 (14)
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where Sx, Sy, Sz are the resistance areas along the body coordinate system, and the lower
rotor produces the air-induced velocity. The total force of the coaxial rotor aircraft is:

F = T + Fmg + Ff (15)

The torque of the action of the coaxial rotor aircraft is composed of the resistance
torque produced by the upper and lower rotors and the flapping torque produced by the
lower rotor swashplate mechanism.

The distance from the centroid G to the lower rotor is d, and the total torque is:

M =

 Mx
My
Mz

 =

 −dkTLω2
Lsα

−dkTLω2
Lcαsβ

kMUω2
U − kMLω2

L

 (16)

where kMU kMU air resistance moment coefficient.
Considering the structural characteristics and actual working conditions of the coaxial

rotor aircraft, the following reasonable model simplification can be carried out: (1) When
the coaxial rotor aircraft is flying at low speed, the pitch angle and roll angle maintain a
small angle change, that is, the pitch angle and roll angle change in the range of [−20◦, 20◦].
It can be considered that the Euler angle velocity is equal to the angular velocity in the body
coordinate system. (2) The air friction and friction torque, gyroscopic effect, angular velocity
coupling, and external environment disturbance are considered as the total uncertainties of
the system. Therefore, the model can be simplified as Equations (17)–(20).

.
p = v (17)

.
Φ = ω (18)

.
v =

1
m

T + g + ∆F (19)

.
ω =

1
J

M + ∆D (20)

∆F and ∆D represent the total uncertainty of the system force and torque, including
the unmodeled dynamics and total external disturbance, which satisfies the boundedness,
namely ‖∆F‖ < L1, ‖∆D‖ < L2.

The coaxial rotor aircraft is described as a nonlinear system, controlled by four control
inputs ωU and ωL, upper and lower rotor speeds, εx, εy along the rolling axis and pitching
axis of the swashplate mechanism flapping angle control. The control input model can be
simplified as Equations (21)–(24).

ω2
U =

kMLTz − kTL Mz

kTUkML + kTLkMU
(21)

ω2
L =

kMUTz − kTU Mz

kTLkMU + kTUkML
(22)

εx = − Mx

dkTLω2
L

(23)

εy = −
My

dkTLω2
L

(24)

3. Design of Robust Backstepping Sliding Mode Control Algorithm

In this section, a robust backstepping sliding mode controller is designed for the
position and attitude feedback control system to solve the trajectory-tracking problem
of an aircraft under unknown external disturbances. The design process of the robust
backstepping sliding mode control algorithm involves decomposing a complex system into
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a series of cascade subsystems. In each subsystem, virtual control is added to construct a
partial Lyapunov function to ensure the stability of each subsystem. In the last subsystem,
the sliding term composed of the error is added to the robust correction to obtain the actual
control. Therefore, starting from the lowest-order subsystem, the virtual control variables
that meet the requirements are gradually designed to obtain the final real control law,
which greatly simplifies the design of the control algorithm. A control block diagram is
shown in Figure 3.
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3.1. Attitude Control Method

The first goal is to design a robust backstepping sliding mode control algorithm for
attitude control. The attitude angle Φ and angular velocityω of the control algorithm track
the desired attitude angle Φdes =

[
φdes θdes ψdes

]T ) and the desired angular velocity

Φdes =
[
φdes θdes ψdes

]T under the action of external disturbance ∆D. The attitude
angle tracking error δ1 is

δ1 = Φ−Φdes (25)

Then, the attitude angle tracking error derivative
.
δ1

.
δ1 =

.
Φ−

.
Φdes = ω−

.
Φdes (26)

Define the Lyapunov function [30]:

VΦ1 =
1
2
δ2

1 (27)

Defineω = δ2 +
.

Φdes − cΦδ1, where cΦ is a normal number and δ2 is a virtual control

δ2 = ω−
.

Φdes + cΦδ1 (28)

Then
.
δ1 = ω−

.
Φdes = δ2 − cΦδ1, and

.
VΦ1 = δ2

.
δ2 = δ2(ω−

.
Φdes) = −cΦδ

2
1 + δ1δ2 (29)

Define switching functions:

sΦ = kΦδ1 + δ2 = kΦδ1 +
.
δ1 + cΦe1 = (kΦ + cΦ)δ1 +

.
δ1 (30)
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Since kΦ + cΦ > 0, it is obvious that if sΦ = 0, then δ1 = 0, δ2 = 0 and
.

VΦ1 ≤ 0.
Therefore, the following design is required to define the Lyapunov function:

VΦ2 = VΦ1 +
1
2

s2
Φ (31)

Then
.

VΦ2 =
.

VΦ1 + sΦs2
Φ = −cΦδ

2
1 + δ1δ2 + sΦ

(
kΦ

.
δ1 +

.
δ2

)
= −cΦδ

2
1 + δ1δ2 + sΦ

[
kΦ(δ2 − cΦδ1) +

.
ω−

.
Φdes + cΦ

.
δ1

]
= −cΦδ

2
1 + δ1δ2 + sΦ

[
kΦ(δ2 − cΦδ1) +

1
J M + ∆D−

.
Φdes + uΦ1 + cΦ

.
δ1

] (32)

The design controller is:

uΦ1 = −sΦ(δ2 − cΦδ1)−
1
J

M−L2sgn(sΦ) +
..
Φdes − cΦ

.
δ1 − hΦ[sΦ + βΦsgn(sΦ)] (33)

where, hΦ and βΦ are positive constant.
Substituting the design controller into the expression of

.
V2, we can obtain:

.
VΦ2 =

.
VΦ1 + sΦs2

Φ = −cΦδ
2
1 + δ1δ2 − hΦs2

Φ − hΦβΦ
∣∣sp
∣∣+ ∆DsΦ −L2sΦ

≤ −cΦδ
2
1 + δ1δ2 − hΦs2

Φ − hΦβΦ|sΦ|
(34)

Taking

QΦ =

[
cΦ + hΦk2

Φ hΦkΦ − 1
2

hΦkΦ − 1
2 hΦ

]
(35)

due to

δTQΦδ =
[
δ1 δ2

][ cΦ + hΦk2
Φ hΦkΦ − 1

2
hΦkΦ − 1

2 hΦ

][
δ1 δ2

]T
= cΦδ

2
1 − δ1δ2 + hΦk2

Φδ
2
1 + 2hΦkΦδ1δ2 + hΦδ

2
2 = cΦδ

2
1 − δ1δ2 + hΦk2

Φ

(36)

where δT =
[
δ1 δ2

]
. If QΦ is guaranteed to be a positive definite matrix, there is:

.
VΦ2 ≤ −δTQΦδ− hΦβΦ|sΦ| ≤ 0 (37)

due to:

|QΦ| = hΦ

(
cΦhΦ + hΦk2

Φ

)
−
(

hΦkΦ −
1
2

)2
= hΦ(kΦ + cΦ)−

1
4

(38)

By taking the values of hΦ, cΦ and kΦ, we can make |QΦ| > 0 to ensure that QΦ is a
positive definite matrix, so that

.
VΦ2 ≤ 0.According to the principle of Lasalle invariance,

when
.

VΦ2 ≡ 0 is taken, then δ ≡ 0, sΦ ≡ 0, δ→ 0, sΦ → 0 , thus, δ1 → 0, δ2 → 0 , then
Φ→ Φdes,ω→

.
Φ des .

3.2. Position Control Method

Similarly, a robust backstepping sliding mode control algorithm for position control is
designed. In this control algorithm, position p and velocity v track the expected position
pdes =

[
xdes ydes zdes

]T and the expected velocity vdes =
[

vxdes vydes vzdes
]T

under the action of external disturbance ∆F. Position control tracking error e1 is as follows:

e1 = p− pdes (39)
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then the attitude angle tracking error derivative
.
e1

.
e1 =

.
p− .

pdes = v− .
pdes (40)

Define the Lyapunov function:

Vp1 =
1
2

e2
1 (41)

Define v = e2 +
.
pdes − cpe1, where cp is a positive constant and e2 is a virtual control,

e2 = v− .
pdes + cpe1 (42)

then
.
e1 = v− .

pdes = e2 − cpe1 and

.
Vp1 = e1

.
e1 = e1

(
v− .

pdes
)
= −cpe2

1 + e1e2 (43)

Define switching functions:
sp = kpe1 + e2 (44)

where kp > 0, since
.
e1 = e2 − cpe1, then

sp = kpe1 + e2 = kpe1 +
.
e1 + cpe1 =

(
kp + cp

)
e1 +

.
e1 (45)

Because kp + cp > 0, it is obvious that if sp = 0, then e1 = 0, e2 = 0, and
.

Vp1 ≤ 0.
Therefore, the next design is required.

Vp2 = Vp1 +
1
2

s2
p (46)

Then
.

Vp2 =
.

Vp1 + sps2
p = −cpe2

1 + e1e2 + sp
(
kp

.
e1 +

.
e2
)

= −cpe2
1 + e1e2 + sp

[
kp(e2 − cpe1

)
+

.
v− ..

pdes + cp
.
e1]

= −cpe2
1 + e1e2 + sp

[
kp(e2 − cpe1

)
+ 1

m T + g + ∆F− ..
pdes + up1 + cp

.
e1]

(47)

the design controller is:

up1 = −kp(e2 − cpe1)−
1
m

T− g−L1sgn
(
sp
)
+

..
pdes − cp

.
e1 − hp

[
sp + βpsgn

(
sp
) ]

(48)

where, hp and βp are positive constant. Substituting the design controller into the expres-

sion of
.

Vp2, we can obtain:

.
Vp2 =

.
Vp1 + sps2

p = −cpe2
1 + e1e2 − hps2

p − hpβp
∣∣sp
∣∣+ ∆Fsp − Fsp

≤ −cpe2
1 + e1e2 − hps2

p − hpβp
∣∣sp
∣∣ (49)

Taking

Qp =

[
cp + hpk2

p hpkp − 1
2

hpkp − 1
2 hp

]
(50)

due to

eTQpe =
[

e1 e2
][ cp + hpk2

p hpkp − 1
2

hpkp − 1
2 hp

][
e1 e2

]T
= cpe2

1 − e1e2 + hpk2
pe2

1 + 2hpkpe1e2 + hpe2
2 = cpe2

1 − e1e2 + hpk2
p

(51)
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where eT =
[

e1 e2
]
. If Qp is guaranteed to be a positive definite matrix, there is

.
Vp2 ≤ −eTQpe− hpβp

∣∣sp
∣∣ ≤ 0 (52)

due to ∣∣∣Qp

∣∣∣ = hp

(
cphp + hpk2

p

)
−
(

hpkp −
1
2

)2
= hp

(
kp + cp

)
− 1

4
(53)

By taking the values of hp, cp and kp, we can make
∣∣∣Qp

∣∣∣ > 0 to ensure that Qp is

a positive definite matrix, so that
.

Vp2 ≤ 0. According to the principle of Lasalle invari-

ance, when
.

Vp2 ≡ 0 is taken, then e ≡ 0, sp ≡ 0, sp → 0 , thus, e1 → 0 , e2 → 0 , then
p→ pdes, v→ .

p des .

4. Simulation Analysis

In this study, the performance of the proposed control algorithm is illustrated through
a numerical simulation. Considering the mathematical model given in (17)–(20), the basic
parameters of a coaxial rotor aircraft are listed in Table 1, and the initial conditions of all
states are zero, p = v = Φ = ω = 0. The attitude robust backstepping sliding mode
controller defined by (33) and the position robust backstepping sliding mode controller
defined by Equation (48) was used. Taking L1 = 1, L2 = 1, the control parameters are
presented in Table 2. The desired trajectory was selected as follows:

pdes =

 (t + 0.5) sin(0.5t)
(t + 2) cos(0.5t)

t + 0.5

 (54)

Aerodynamic force and moment ∆F, ∆D are selected as:

∆F =

 sin(0.1t)
sin(0.1t)
sin(0.1t)

 ∆D =

 0.2 sin(0.1t)
0.2 sin(0.1t)
0.2 sin(0.1t)

 (55)

Table 1. Model parameters of coaxial rotor aircraft.

Parameter Value Unit

g 9.81 m/s2

m 2 kg
d 80 m

Ixx 8.21× 10−3 kg m2

Iyy 8.21× 10−3 kg m2

Izz 8.21× 10−3 kg m2

kTU 5.12× 10−4 N/rad2s2

kTL 4.63× 10−4 N/rad2s2

kMU 6.34× 10−6 Nm/rad2s2

kML 8.36× 10−6 Nm/rad2s2

Table 2. Control parameters.

cp hp kp cΦ hΦ kΦ

10 20 15 5 10 10

The desired attitude angle and desired position were set to zero. To explore the
effectiveness of the proposed control algorithm, the following two cases were considered,
and each simulation lasted for 30 s.
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4.1. Numerical Simulation under Aerodynamic Interference

In the case of external aerodynamic interference, the position and attitude-tracking
control of a coaxial rotor aircraft are numerically simulated. Figure 4a shows the three-
dimensional trajectory tracking of a coaxial rotor aircraft. In position control, backstepping
sliding mode control uses a symbolic function to handle the uncertainty problem and shows
good robustness, exhibiting good tracking performance with little uncertainty and almost
no chattering. Figure 4b shows the tracking of the desired position and the actual position
of the coaxial rotor aircraft. Figure 4c shows the tracking of the desired attitude angle and
the actual attitude angle of the coaxial rotor aircraft. In attitude control, the backstepping
sliding mode exhibits a stable response that perfectly tracks the control command as the
vehicle attitude is adjusted in the initial phase to produce a sharp change, and it shows a
good effect under a sharp change in the control command. Figure 4d shows the output
control of the coaxial rotor aircraft, and its control is continuous, which is suitable for
application to an actual model. As shown in the figure, when the external aerodynamic
disturbance is added, the proposed control algorithm can track the target trajectory well,
indicating that the robustness and stability of the proposed control method are guaranteed.
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Figure 4. Numerical simulation under aerodynamic interference. (a) Three-dimensional trajectory tracking; (b) expected
and actual position responses; (c) expected and actual attitude response diagrams; (d) the virtual control input.
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4.2. Numerical Simulation under Sensor Interference

In this case, the disturbance of uncertain trajectory tracking is mainly derived from
the feedback signal of the sensor noise communication channel of the coaxial rotor aircraft.
The white Gaussian noise signal of the position sensor with a variance of 0.01 and the
white Gaussian noise signal of the attitude sensor with a variance of 0.0001 were added to
simulate the disturbance of the system. When the parameter design of the system satisfies
the stability conditions given in (33) and (48), although there is sensing noise, the proposed
control algorithm can successfully track the desired position and attitude, and the scheme
is robust. Figure 5a shows the three-dimensional trajectory tracking of a coaxial rotor
aircraft. Figure 5b shows the tracking of the desired position and the actual position of the
coaxial rotor aircraft. Figure 5c shows that the real attitude can be tracked, although the
attitude fluctuates under the Gaussian white noise signal. Although there is chattering in
position control and attitude control, backstepping sliding mode control can successfully
track control commands with external perturbations, proving a strong tracking capability.
Figure 5d shows that the instability of the control signal affects the flight state.
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Figure 5. Analysis chart with disturbance. (a) Three-dimensional trajectory tracking; (b) expected and actual position
responses; (c) expected and actual attitude response diagrams; (d) virtual control input.
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5. Experimental Tests

To verify the feasibility and practicability of the robust backstepping sliding mode
control algorithm proposed in this study, it is necessary to apply this algorithm to a
prototype machine for experimental testing. The traditional flight control algorithm used in
this study is cascade PID, which is divided into inner loop and outer loop PID for feedback
control of position, speed and attitude. The adjusted main control gains are P in the outer
loop and P, I and D in the inner loop. The PID parameters are obtained through bench and
flight tests. Figure 6 shows the principle prototype of a coaxial rotor aircraft. The attitude
of the aircraft is very stable during flight according to the flight test data compared with
the cascade PID control of the traditional flight control algorithm.

Aerospace 2021, 8, x FOR PEER REVIEW 13 of 17 
 

 

  
(a) 

 
(b) 

  
(c) 

Figure 6. Principal prototype and flight test. (a) Principal prototype; (b) flight experiment; (c) flight trajectory. 

Figure 7 shows the position change of the coaxial twin-rotor aircraft during the flight 
experiment. The aircraft position curve obtained by the robust backstepping sliding mode 
control algorithm is significantly better than that obtained using the traditional control 

Figure 6. Principal prototype and flight test. (a) Principal prototype; (b) flight experiment; (c) flight trajectory.



Aerospace 2021, 8, 337 14 of 17

Figure 7 shows the position change of the coaxial twin-rotor aircraft during the flight
experiment. The aircraft position curve obtained by the robust backstepping sliding mode
control algorithm is significantly better than that obtained using the traditional control
algorithm. Under the robust backstepping sliding mode control, the position fluctuation of
X, Y, Z, and aircraft in all directions is less than ±0.8 m. In this process, the flight accuracy
of the aircraft is high, and fixed-point hovering can be realized. In the experimental test,
the vibration of the coaxial rotor aircraft body is inevitable, mainly owing to the vibration
of the aircraft motor, blade flapping, and gear transmission. It is acceptable to control the
vibration of the body within a certain range.
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The change in the attitude angle of the traditional control algorithm and the robust
backstepping sliding mode control algorithm are shown in Figure 8. Under robust back-
stepping sliding mode control, the roll angle and pitch angle of the aircraft were controlled
within±3◦. Under the traditional control algorithm, the roll angle and pitch angle fluctuate
significantly. The fluctuation frequency and amplitude of the roll angle and pitch angle
under the robust backstepping sliding mode control algorithm are significantly smoother
than those under the traditional control algorithm. Under the traditional control algorithm,
the yaw angle changes significantly and frequently. Under the robust backstepping sliding
mode control algorithm, the variation process of the yaw angle is continuous and stable.
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Figure 8. Traditional versus RBSMC attitude.

6. Conclusions

In this paper, a robust non-linear control strategy for a coaxial rotor aircraft with
uncertainty is proposed. The control algorithm combines the robust backstepping sliding
mode control algorithm in the feedback control structure to effectively guarantee the
trajectory tracking ability of the desired position and attitude. Through Lyapunov stability
analysis, the stability and performance of the control system of a coaxial twin-rotor aircraft
were studied. Aiming at the influence of parameter uncertainty, external disturbance and
sensor noise on the flight of a coaxial rotor UAV model, a simplified 6-DOF dynamic
model of an aircraft based on the Newton–Euler formula is established. A position and
attitude feedback control system based on a robust backstepping sliding mode control
algorithm was designed. The stability and performance of the control system of a coaxial
rotor aircraft were studied using a Lyapunov stability analysis. According to the numerical
simulation results under aerodynamic interference and sensor interference, the robust
backstepping sliding mode control algorithm can effectively control the coaxial dual-rotor
aircraft, even under severe uncertainty conditions. Finally, the feasibility and effectiveness
of the backstepping sliding mode control algorithm for a coaxial rotor aircraft are verified
by comparing the flight test data with the traditional cascade PID flight control algorithm.

The aim of future research is to improve the stability of the flight systems. The
coaxial rotor aircraft in this study was independently developed by the team, and the
mechanical system vibration was uncertain due to motor vibration, transmission vibration,
and aircraft blade flapping. At the same time, the BSMC method has the characteristic
of discontinuous switching, which causes chattering in the system. Therefore, smooth
filtering of the control signal can be considered, and the disturbance observer can be used
to estimate and compensate for the external uncertainty.
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