
aerospace

Article

State Monitoring Method for Tool Wear in Aerospace
Manufacturing Processes Based on a Convolutional Neural
Network (CNN)

Wei Dai 1,* , Kui Liang 1 and Bin Wang 2

����������
�������

Citation: Dai, W.; Liang, K.; Wang, B.

State Monitoring Method for Tool

Wear in Aerospace Manufacturing

Processes Based on a Convolutional

Neural Network (CNN). Aerospace

2021, 8, 335. https://doi.org/

10.3390/aerospace8110335

Academic Editor: Khamis Essa

Received: 19 August 2021

Accepted: 29 October 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China;
liang-kui@buaa.edu.cn

2 Beijing Spacecrafts Manufacturing Factory Co., Ltd., Beijing 100094, China; wb916@163.com
* Correspondence: dw@buaa.edu.cn; Tel.: +86-10-82338673

Abstract: In the aerospace manufacturing field, tool conditions are essential to ensure the production
quality for aerospace parts and reduce processing failures. Therefore, it is extremely necessary to
develop a suitable tool condition monitoring method. Thus, we propose a tool wear process state
monitoring method for aerospace manufacturing processes based on convolutional neural networks
to recognize intermediate abnormal states in multi-stage processes. There are two innovations and
advantages of the proposed approach: one is that the criteria for judging abnormal conditions are
extended, which is more useful for practical application. The other is that the proposed approach
solved the influence of feature-to-recognition stability. Firstly, the tool wear level was divided
into different state modes according to the probability density interval based on the kernel density
estimation (KDE), and the corresponding state modes were connected to obtain the point-to-point
control limit. Then, the state recognition model based on a convolutional neural network (CNN)
was developed, and the sensitivity of the monitoring window was considered in the model. Finally,
open-source datasets were used to verify the feasibility of the proposed method, and the results
demonstrated the applicability of the proposed method in practice for tool condition monitoring.

Keywords: condition monitoring; convolutional neural network; tool wear; fault diagnosis; statistical
process control

1. Introduction

In recent years, with the rapid improvement of social technology, mechanical parts
have gradually become more complex and sophisticated to meet the increasing needs of
advanced manufacturing industries, such as the aerospace industry, but this has brought
challenges to ensuring the reliability for existing monitoring methods [1]. For products
in the aerospace industry, if a key precision component fails, the resulting damage can
be unpredictable, not only causing loss of personnel and property, but even affecting
the development of the entire industry. Therefore, compared with other industries, the
aerospace industry has a stronger demand for high-quality parts [2,3]. The manufactur-
ing stage is extremely important to the aerospace industry. According to the statistics,
most of the early failures of aerospace components are caused by the surface defects of
mechanical components. These defects mainly come from the manufacturing process, such
as burrs, roughness, and shape errors [4]. The tool directly contacts the workpiece, and
tool wear increases the surface roughness of the workpiece and reduces the quality of the
workpiece [3,5]. Severe types of tool wear can cause chipping, cracking, and chattering,
which can damage the workpiece and machine tool, leading to serious processing faults;
thus, it is necessary to ensure the normal use of the part aerospace component [6–8].

The most primitive TCM method is that the operator estimates the process condi-
tion by the processing noise, chip shape, or cutting vibration differences. This method
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completely relies on the operator’s own experience, which is inefficient and difficult to
meet the requirements of complex processes [9,10]. In the manufacturing process, with
the development of related fields in the past few decades, many TCM methods have been
proposed and developed. For example, part of the work attempted to monitor abnormal
conditions based on physical models [11,12]. However, the physical model is often very
complicated. Another piece of research began with the popular image recognition idea
in recent years [13], which, by capturing tool images, analyzes tool-wear states based on
digital image processing [14]. However, the monitoring accuracy of this method is easily
affected by light and physical monitoring angles [15].

Most popular research is based on data-driven methods [16,17], which usually com-
pare health index changes under normal and fault conditions for monitoring [18,19]. Fault
monitoring is generally implemented based on fault detection indicators exceeding a
certain threshold. Under the guidance of this idea, many studies have been established
based on the idea of statistical process control (SPC) [20–22]. Additionally, control charts
play an important role for SPC, which can judge whether the machining process is under
controlled and improve the quality level to obtain a more satisfactory product quality [23].
The earliest control chart is the Shewhart control chart, but it is not sensitive to small
quality parameters [24]. In order to solve its drawbacks, researchers have developed the
CUSUM (cumulative sum control) and EWMA (exponential weighted moving averages)
chart [25–29]. However, these control charts are still only post-analysis control methods;
most of the established control limits consider, to a lesser extent, the stage characteristic
of the process, which cause shortcomings for timeliness and cannot accurately judge or
respond to abnormal conditions immediately [30]. For the tool wear process, it has a
relatively obvious stage. The traditional monitoring method is more complicated and
needs to be processed in stages to ensure better results. In addition, the recognition effect
often depends on the quality of the extracted features for data-driven method, so the
recognition effect is unstable [31,32]. Therefore, in order to make up the shortcomings
of the above methods, a new tool wear process state monitoring method based on CNN
(convolutional neural network) is proposed [15,33]. Firstly, the tool wear level was divided
into different state modes according to the probability density interval based on the kernel
density estimation (KDE), and the corresponding state modes were connected to obtain the
point-to-point control limit. Then, the state recognition model based on a convolutional
neural network (CNN) was developed, and the sensitivity of the monitoring window was
considered in the model. Compared with the traditional approach, the proposed approach
in this paper has two main points of innovation and advantages.

(1) In this study, the control limits were transformed into a multi-level control limit that
related to points. Compared with traditional approach, the proposed approach had better
time-varying characteristics and was more suitable for multi-stage process monitoring.
Additionally, it enriched the discrimination method of SPC.

(2) The built state recognition method was based on the CNN, which did not have
a feature selection step. Compared with traditional data-driven method, the problem of
dependence of features was overcome, and the sensitivity of the monitoring window was
considered in the proposed model.

The rest of the article is arranged as follows: Section 2 introduces the basic theory and
methodology of the proposed approach in detail. The research ideas and algorithm flow
are introduced in Section 3. Section 4 discusses the validation of the proposed method with
the PHM2010 datasets. The experimental results are discussed in Section 5. Finally, we
present the conclusions of our work in Section 6.

2. Theory and Methodology
2.1. Kernel Density Estimation

In actual engineering applications, the collected data are often random, and their
probability density is also in an unknown state, so the specific distribution form cannot be
determined. In order to obtain the data distribution, we often fit the distribution according
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to the characteristics and properties of the data themselves. For the non-parametric estima-
tion method, the most basic method is a histogram. However, the density function is not
smooth and is greatly affected by sub-interval width for histograms [33], so in order to solve
the shortcoming of the histogram, a method of kernel density estimation was proposed. As
a non-parametric estimation method, kernel density estimation (KDE) is suitable for the
absence of a priori distribution of data [34,35]. It can reflect the distribution of characteristic
parameters under different fault states and different fault types. The independent and
identically distributed F with n sample points (x1, x2, x3, . . . , xn) has the probability density
function as f. The density estimation formula can be calculated as follows [36,37]:

f̂ (x) =
1
n

n

∑
i=1

Kh(x− xi) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(1)

Among them, h is the bandwidth, and h > 0, K is a non-negative function called the
kernel function.

It can be seen from the formula that the most important thing is to determine K and h
for KDE. The Gaussian kernel function is widely used, and the effect is good. Its can be
calculated by Formula (2):

K(x) =
1√
2π

exp
(
−1

2
x2
)

(2)

The choice of bandwidth depends to a large extent on subjective judgment, and the
choice of h can be achieved by using the minimized L2 hazard function (mean integrated
squared error). The definition of this function is:

MISE(h) = E
∫

( f̂ (x)− f (x))2dx (3)

For the Gaussian kernel function used to estimate the kernel density, the result of h
can be obtained by Formula (4).

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−
1
5 (4)

2.2. Convolutional Neural Network

As shown in Figure 1, three types of layers were used for the CNN, which were
a convolutional layer, a pooling layer, and a fully connected layer. Therefore, a typical
CNN structure can be divided into two parts: the convolutional layer and the pooling
layer, which are used as feature extractors to implement feature extraction, and the fully
connected layer is used as a classifier to implement pattern classification [38,39].
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the purpose of effectively reducing the risk of over-fitting and reducing the calculation 
cost. The calculation process can be expressed as follows: 

( )1
1, 1, 2, ,I

j jx p x j D′ −= = …  (9) 

Figure 1. The algorithm structure diagram of Convolutional Neural Network (CNN). Input signal D1, followed by
convolution and pooling, and then outputs N can be obtained from the fully connected layer.
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The weights and biases of the convolutional layer are organized into a series of
convolution kernels (filters). The feature maps of the previous layer and the convolution
kernel perform convolution operations and generate corresponding output feature maps.
Among them, the convolution kernel will traverse the entire input feature maps with a
fixed step size. Through this process, the parameters of the network are reduced, and
the over-fitting phenomenon can be avoided. The weight adjustment algorithm of LMS
learning rules is as follows:

x′j = f

(
D1−1

∑
i=1

xI−1
i ∗ω′ij + b′j

)
, j = 1, 2, . . . , D1 (5)

where * represents the convolution operation, I represent the serial number of the current
network layer, D is the number of feature maps, ω is the convolution kernel, x is the feature
map, b is the bias matrix, and f is the activation function. The size of the feature map will
change after passing through the convolutional layer. The size of the output feature map of
the first convolutional layer is R and C, which can be obtained by Formula (6). R represents
height, and C represents width.

R× C1 = [(R−1 − r)/s + 1]× [(CI−1 − c)/s + 1] (6)

In the formula, r represents the height of the convolution kernel, c represents the
width of the convolution kernel, and s represents the movement step length of the con-
volution kernel. After the convolution operation, the activation function will perform a
nonlinear operation on its output. Commonly activation functions include Sigmoid and
ReLU (Rectified Linear Unit). The two activation functions are, respectively, given by the
following formulas:

f (x)Sigmoid =
1

1 + e−x (7)

f (x)ReLU = max(0, x) (8)

The pooling layer is used to reduce the dimensionality (down sampling) of the feature
maps of the previous layer in order to quickly reduce the dimension. This achieves the
purpose of effectively reducing the risk of over-fitting and reducing the calculation cost.
The calculation process can be expressed as follows:

x′j = p
(

xI−1
j

)
, j = 1, 2, . . . , D1 (9)

In the formula, I represent the current network layer number, D represents the number
of down-sampling graphs, x represents the feature graph, and p represents the down-
sampling function [40]. Like the convolutional layer, the size of the feature map will also
change after passing through the pooling layer. The calculation formula is as follows.

R× C1 = (R−1/u)× (CI−1/u) (10)

The last is the fully connected layer. The fully connected layer expands and splices the
elements in all the feature map matrices of the last layer of the network, and inputs them
to the first fully connected layer. The number of neurons in this layer is M. The calculation
formula is as follows.

M = R−1 × CI−1 × DI−1 (11)

The neurons in the fully connected layers are completely connected to all the neurons
in the previous layer, which can be expressed by Formula (12):

O = f (ω0 · f0 + b0) (12)

Among them, f 0 is the eigenvector, ω0 is the weight matrix, and b0 is the bias vector.
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The last layer is the output layer in CNN, which contains N neurons representing
the number of pattern categories to be recognized. Usually, the activation function of the
output layer is the Softmax function. Finally, in the training phase, the backpropagation
algorithm is used to optimize the weights and biases in the CNN to minimize the cost. The
loss functions are usually E1 (Mean Squared Loss Function) and E2 (Cross-entropy Loss
Function), respectively. The calculation methods are as follows:

f (x1)Sofmax =
ex

N
∑

j=1
exi

(13)

E1 =
N

∑
k=1

(qn
k − yn

k )
2 (14)

E2 = − 1
N

N

∑
k=1

qn
k log yn

k (15)

qn
k represents the predicted value of the k-th dimension of the n-th sample, and yn

k
represents the actual value of the k-th dimension of the n-th sample.

3. Proposed Approach Framework

The framework of the proposed approach is shown in Figure 2. As shown in Figure 2,
the state monitoring method can be divided into three parts, which are the sample data
collection, establishing the control limits, and the state monitoring. Some conventional
data processing methods were implemented in first part. The core of the algorithm is in the
second and third parts, which will be introduced in detail in the following sections.
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3.1. Construction of Point-to-Point Control Limit

As previously mentioned, the data-driven method is based on the monitoring index
to distinguish normal and fault conditions. Thus, the idea based on SPC was introduced
into this research. Additionally, the point-to-point control limit was established, and the
point-to-point control limit mentioned here referred to the point-related control limit, which
was obtained from a certain fixed processing process with a fixed sampling point to set the
control limit. This control limit has better time-varying characteristics and is more sensitive
in distinguishing abnormal states compared with the traditional approach. Further, in
order to better evaluate the state of sampling point, the multi-level control limits were
considered in the proposed approach by subdividing the identified level to better meet the
actual needs.

The schematic diagram of the multi-level point-to-point control limit is shown in
Figure 3. The state of the sampling point K was monitored by the n-level control limit.
The different control levels represent the degree of deviation of the state at that point. The
method of obtaining the multi-level control limits was by KDE, which was mentioned in
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Section 2.1. The Gaussian function was adopted as the kernel function, and the bandwidth
hM can be obtained based on MISE, which is shown as follows:

hM = min

{
E
[∫ +∞

−∞

(
f̂ (x)− f (x)

)]2
dx

}
(16)

Then the kernel density diagram of sampling point K can be obtained. As shown in
Figure 4, the abscissa is the statistic value, and the ordinate is the probability density. Then,
the multi-level control limit can be obtained by dividing probability at certain intervals.
The state between the control limits can be set as different wear modes. The real-time of
the modes can be classified by the algorithm to realize state monitoring.
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3.2. Condition Monitoring Method Based on CNN Algorithm

After the control limit is completed, in order to monitor the real-time cutting process,
it is necessary to judge whether the current tool wear state is under the control limit range
or not. Therefore, this research proposes a condition monitoring method based on a CNN
algorithm. In this method, all data are calculated in an observation window and then input
into a CNN model to obtain the current cutting state.
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3.2.1. Optimal Sampling Window Determination

In real-time state recognition, previous research has shown that the recognition accu-
racy based on signal data is affected by the amount of data processed in a single timeframe,
which is to say the recognition rate under different windows [41]. Therefore, it is neces-
sary to test the recognition ability of the classification model under different observation
windows and obtain the best window (or sensitive window). The process of window
recognition test is shown in Figure 5. For tool wear process signal L, the window size was
set as W, and the window moving step was set as S. Firstly, we initialized the window
size as W = W1 and then split the original signal under the window of W1, and the CNN
algorithm was used to identify and obtain the result. Then, we increased the window size
Wi = W1 + K, (K is the increase in window size), and the same method was used to test
again until Wi reached the maximum value (the maximum value cannot be greater than the
data size L). For example, if a sample signal L with 1000 data points was recognized, and
the window moving step S = 1, then when Wi = 10, the classification model will recognize
the sample 991 times. When Wi = 20, it will be identified 981 times, until Wi reaches the
maximum value. After the CNN algorithm was tested under observation windows of all
sizes, we counted the proportion of the identified states to obtain the recognition rate Ri
and selected the observation window W, which corresponded to the highest recognition
rate as the best window.
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3.2.2. Mobile Sliding Window for State Recognition

After the optimal identification window size W was determined, we carried out the
real-time tool state monitoring by a sliding window and combined it with the multi-level
control limit proposed in Section 3.1. The process is shown in Figure 6.

For the real-time signal of the tool wear process, the data points L was used as the
input feature vector. During the monitoring process, the sliding window size was S. As
shown in Figure 6, the signal was divided into a sample queue with window size W
and was identified by the CNN algorithm. The tool wear condition can be calculated
by the CNN classification model. Assuming that there are n levels of control limits, the
identified probability for each level can be obtained to make up the probability vector.
Finally, the identification result with the highest probability level can be obtained as the
output. According to the above method, it can be compared with the multi-level control
limit mentioned in Section 3.1 to obtain the current tool wear state.
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3.2.3. The Wear State Recognition Model with CNN

After the wear state recognition model, the core part is the CNN, which is used to
judge the current condition of tool wear. In the traditional method, the feature extraction
step is very important to affect the recognition accuracy for the classifier. However, it not
only increased the workload and complexity of quality control, but the extracted features
cannot be guaranteed to be optimal, which affected the stable performance of data-based
condition monitoring methods [42]. The advantage of 1D-CNN (one-dimensional CNN)
is that it can realize end-to-end recognition and diagnosis. The model input is raw data,
and the output is the specific wear state. For CNN model, feature extraction, selection,
and optimization are all conducted through alternating convolutional and pooling layers,
and the idea of backpropagation is considered in the model. The algorithm optimizes
and adjusts the weights and biases of CNN to minimize the loss function value, and then
realizes adaptive feature extraction. This not only saved calculation costs, but is also more
suitable in dealing with complex work. Additionally, the structure of 1D-CNN is slightly
different from that of ordinary CNN. The feature map in its structure is not a matrix but
a vector, which makes 1D-CNN more sensitive to time series samples such as vibration
signals. The structure of the 1D-CNN used for condition recognition is shown in Figure 7.

From Figure 7, we can find that it consists of two alternating convolutional layers, two
pooling layers, and a fully connected layer. According to the function in the CNN model
described in Section 2.2, alternate convolutional layers, and pooling layers complete feature
extraction, and then the fully connected layer implements state classification. Under the
size of each window W, we input signal data R1, then identified it as a certain category for
the N-level control limit and then output it.
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4. Experiment Verification
4.1. Experimental Setup

In order to prove the effectiveness of our contribution, the experimental data were
measured from a high-speed milling process, which were obtained from the “International
PHM Data Challenge Competition in 2010” database [43]. Based on this database, the
performance of the proposed method was verified. In the experiment, a high-speed CNC
machine (Röders Tech RFM760) with a spindle speed of up to 10,400 rpm was used for the
milling operation in the experiment. The experimental structure is shown in Figure 8, and
the tool-related parameter information is shown in Table 1.

The experimental installation is shown in Figure 9. A Kistler quartz three-component
platform dynamometer was mounted between the workpiece and machining table to
measure the cutting forces charges. Three Kistler piezo accelerometers were installed on
the workpiece to measure the vibration of the workpiece in the X, Y, and Z directions
during the milling process. An acoustic emission (AE) sensor was installed on the side of
the workpiece to monitor the high-frequency acoustic emission signal during the milling
process. The voltage signals were captured by an NI DAQ PCI 1200 board with a 50 kHz
frequency. After one horizontal cutting line along the y-axis direction (1st), the cutter
then retracted to another starting point with a cutting depth of 0.2 mm in the z-axis (2nd)
direction. In each process, the cutter was used to cut the workpiece slope in succession to
achieve a complete slope surface. After each processing, a Leica MZ 12 microscope was
used to measure the corresponding side surface wear of the cutter. And the proposed
approach is coded in MATLAB 2017b, and runs on a server with a 2.40 GHz processor and
64 GB RAM.
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Table 1. PHM2010 competition experiment parameter list.

Parameter Value Parameter Value

Machine model Roders Tech RFM 760 Radial depth of cut 0.125 mm
Workpiece material Nickel-based superalloy 718 axial cutting depth 0.2 mm

Tool 3-tooth ball nose milling cutter Number of sensors 3
Spindle speed 10,400 RPM Number of sensing channels 7

Feed rate 1555 mm/min Sampling frequency 50 kHz

4.2. Verification of Method Validity
4.2.1. Data Preprocessing and Control Limit Determination

In this paper, the monitoring method of the process was based on point-to-point
control limits, but it put forward higher requirements of applicability for the real-time data.
The original data contained noise and other irrelevant information, which would interfere
with our analysis results, so it was necessary to preprocess the data in the PHM2010
datasets. The wavelet denoising method was used in this research [44]. The denoising
effect of the wavelet is related to the wavelet basis function, the threshold selection, and the
number of decomposition layers. The sinusoidal signal of the Gaussian white noise with a
signal-to-noise ratio of 0.1 was used to test. Part of the test results are shown in Figure 10.
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After comparing with the original signal, we found that the 5-layer haar wavelet with a
heuristic threshold achieved the best results.
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Three experimental subsets of the PHM2010 datasets were selected in our research
with the record files C1, C4 and C6, and each file contained 315 data samples; the wear
values of three edges were collected for each sample. One edge was picked as an example,
then the original tool wear values were used to construct the initial control limit, and the
existence of random errors was considered to enhance the sample richness (w = w + r).
Then, the KDE (described in Section 3.1) was used to obtain the distribution of tool wear.
As the purpose of this research was to explain the method, the control limit was set to five
levels, which were relatively simple and recorded as (L1, L2, L3, L4, L5). The wear state
was divided into six types denoted as M1 to M6 by the five-level control limit. The final
obtained control limit is shown in Figure 11, which was in a pipe shape, and the green area
was the first-level control limit range M1, which indicated that the processing was well
controlled. Other colored areas are the different warning control limits ranging from M2 to
M5, which gave different early warning references as a reminder. If the level control limit
was out of tolerance, the M6 area was reached, which is in an alarm range. At this time,
manual inspection can be performed. Of course, more levels of control limits can be set
according to actual needs. In Figure 11, the 100th point is divided in more detail to show
each level of the control limit. After the multi-level point control limit is completed, the
tool state identification process can be implemented.
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4.2.2. Training and Testing of the CNN Model

For the proposed model, firstly, the data samples of C1 in C1 that belong to the M1
state were used to confirm the sampling window and to determine the best sampling
window (or sensitive window). The result is shown in Figure 12.
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The process in Figure 5 was used to obtain the sensitive window size. The test window
size was set in a range from 1 to 12,000, and the window sliding step was S = 1. The original
signal size was divided into Wi with a sliding step 1, then the CNN algorithm method was
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used to identify, and the results of the CNN algorithm classification were counted. Since
the test sample belonged to M1, the small window had a better timeliness ability. From
Figure 11, it can be found that around 1000–1200 and 2000–2500 had the best recognition
accuracy rates, and the window size was appropriate. Considering that the convenience of
the subsequent algorithm and small windows had better timeliness than large windows,
the optimal window size was selected as 1024.

For the proposed approach, the CNN algorithm was the core part of the entire model.
Due to the data size limitation, the larger network would make it easier to over-fit, so when
the network becomesf larger and deeper, it would not improve the effect. Additionally, if
the number of network layers and the parameters in the layer are different, the number
of training samples and the training time required are also different, and its robustness
and generalization ability will be affected. In order to obtain the best network structure,
the control variable method was adopted in this research; many experiments have also
implemented this to determine the number of network layers, convolution kernels, pool
size, and activation functions. Finally, the network structure parameters of CNN were
designed as shown in Table 2.

Table 2. The network structure parameters of CNN model.

Network Layer Key Parameter Output Shape Activation Function

Conv1D Kernel size = 16, stride = 1 1024 × 16 ReLU
Maxpooling1D Pool size = 2, stride = 1 512 × 16

Conv1D Kernel size = 32, stride = 1 512 × 32 ReLU
Maxpooling1D Pool size = 2, stride = 1 256 × 32

Flatten 8192
Dense 6

Softmax Softmax

Then, the subsets of the PHM2010 dataset (which are C1 and C4) were regard as the
training set and C6 as the test set to test the recognition ability of the proposed method.
The force signal in the X-axis direction was selected for experimentation. The original time
series signal was processed by wavelets and we input it into the CNN model. Then, we
transformed it into a figure through convolution and pooling for recognition, as shown in
Figure 13.

Finally, we conducted statistics and analysis on the results of the CNN recognition.
The accuracy and loss rate of the model in the training set C1, C4, and test set C6 are shown
in Figure 14, respectively. It can be seen from Figure 14 that, as the number of trainings
increased, the accuracy of the training set and the test set continued to increase, and the
loss value continued to decrease.
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Then, the recognition effect was given in the form of a confusion matrix, which is
shown in Figure 15. It can be seen from Figure 15 that the model had good recognition
performance in both the training set and test set. Due to less grading of control limits, the
comprehensive recognition accuracy of the model was very high. This shows that there
was no problem for the proposed model in identifying more types, and there was space
for distinguishing more sates under multi-level control limits. In addition, the average
response time of the model was 0.0661 s. These results reflect good monitoring performance
of the model.
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In addition, other classification algorithms were used in this research, such as the
support vector machine (SVM), ANN, K-Nearest Neighbor (KNN), and Decision Tree
(Tree), to compare with the CNN as recognizers in the proposed approach. For SVM,
the parameters that need to be adjusted mainly include the penalty coefficient C and the
kernel function coefficient G. In this research, the feature dimension is much lower than the
sample size, so this research uses Gaussian kernel function. The grid search method is used
to perform the global optimization of SVM parameters and to specify the value range of C
and G, at the same time, specify the parameter step size and then arrange and combine the
possible values of C and G to generate the parameter “net of C and G′′. grid”. Then select a
combination of C and G parameters for SVM training each time, and use cross-validation
to evaluate the performance of the model, traverse all parameter combinations, and select
the optimal parameter combination of C and G with the average recognition accuracy as
the evaluation index. Through grid search, among the hyperparameters, C = 10 and G = 0.1
have the highest scores. This is our final parameter candidate. For ANN, first use PCA for
dimensionality reduction, and then start with a smaller value. If under-fitting, then slowly
add more layers and neurons, if over-fitting, reduce the number of layers and neurons. At
the same time, batch normalization, dropout, and regularization are introduced to reduce
overfitting. Finally, the number of layers is set to 3, the number of inputs is 3, the number
of hidden neurons is 12, and the output category is 6. The selection of parameters in KNN
is also determined by the grid search method. The final nearest neighbor value K is set to 7,
the distance metric is set to Manhattan distance, and the decision rule is set to the majority
voting method. For decision trees, the Gini coefficient is used to evaluate impurity, and the
random method is set to find the best segmentation node.

The comprehensive performance results of each algorithm can be obtained and shown
in Table 3. The corresponding response time is recorded by the tic/toc time counter in
MATLAB. It can be seen from Table 3 that KNN is taking more time than the SVM, which
is not usually the case. We guess that the potential reasons mainly include two points, one
is that the number of samples and feature dimensions may have different effects on the
two algorithms. Second is that the SVM only needs to determine the side of the boundary
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for new observation data, but each observation data must be compared with other data
items for KNN, which will produce a huge calculation cost. Furthermore, it can be seen
from Table 3 that the CNN recognizer had the highest recognition accuracy. Although
the average response time was slightly longer than other recognizers, it was completely
sufficient for practical applications.

Table 3. The test results of multiple classification algorithms for comparison.

Recognizer Recognition Accuracy Average Response Time

CNN 97.2% 0.0661 s
SVM 96.5% 0.0382 s
ANN 95.1% 0.0748 s
KNN 94.7% 0.0537 s
Tree 95.3% 0.0279 s

4.2.2.1. Actual Case Verification

In order to further verify the effectiveness of the method under multiple operating
conditions, we carried out actual tool wear tests to verify. There are a lot of data that can
be obtained in the machine tool system. This test considers that the tool wear is relatively
related to the cutting force signal, so the cutting force is used to monitor the tool wear
states. During the cutting process, the feed rate is set to 2000 mm/min. The cutting depth
is 1 mm, and the data sampling frequency is 50 KHz. A square workpiece with a side
length of 10 cm is cut. In this experiment, the surface roughness average value Ra is used
to characterize the processing quality of the workpiece. After the cutting is completed, the
roughness of the cut surface is measured, and the average of each surface is measured four
times. At the same time, in order to describe the wear degradation process of the tool, the
tool wear is measured with a Dino-Lite microscope each time. The processing environment
as well as the measurement of surface roughness and tool wear is shown in Figure 16. The
spindle speed is respectively 4000 r/min, 6000 r/min, 8000 r/min, and 20 data sets are
collected under each group of different working conditions. As the tool wears, the cutting
quality will continue to deteriorate. Two operating strategies are set in this experiment.
Under each working condition, 10 sets of tools are not replaced after reach M5, and the
remaining ten sets are detected as M5 with new tool to cut the workpiece.

Use the same method described in Section 3 to establish the control limits under
4000 r/min, 6000 r/min, and 8000 r/min. For each working condition, the data sets were
divided into the training set and the test set with the ratio of 7:3, and then perform the
algorithm training and testing. The results are shown in Table 4. Comparing the recognition
effect under the three working conditions, it can be found that the obtained results show
that the recognition effect is not affected by the working conditions.
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Table 4. The performance of condition monitoring model under different working conditions.

Test Conditions Recognition Accuracy of
Training Sets

Recognition Accuracy of
Training Sets

4000 r/min 100% 99.5%
6000 r/min 99.9% 99.5%
8000 r/min 99.9% 99.6%

After measuring the surface roughness of the workpiece and the current tool wear, it is
found that the tool has been obviously worn after the proposed method is used to identify
the tool state to M5, as shown in Figure 17. Then the roughness measuring instrument
is used to check the surface roughness of the workpiece, as shown in Figure 18, it can be
found that the tool wear at this time caused the increase of the surface roughness of the
workpiece. Taking the identification M5 as the alert point, it can be seen form Figure 18 that
the surface roughness after the alert point basically exceeds 2 µm, which is quite different
from before the alert point. At the same time, comparing with another set of experiments,
comparing the different trend of roughness after the tool is not changed and the tool is
replaced with new tool after being identified as M5, it can be found that the proposed
method monitors the tool wear to ensure that the tool is in good states under different
working conditions. The proposed approach can effectively improve the processing quality.
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5. Discussion

One of the major innovations and advantages of the proposed approach is that the
criteria for judging abnormal conditions based on the control limit method are extended.
The original Shewhart control limit mainly analyzes one sampling point, while the entire
process is considered for the point-related control limit established in the proposed ap-
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proach, which expands the scope of application of control limits. For example, one of the
judgment standards for the traditional control limit is to judge the next state trend based
on the state of several consecutive points, which is shown in Figure 19 (a→ b→ c). As the
point-related control limit is considered according to the entire process, it can establish a
state transition path (K1 → K2 → K3), which can reflect more comprehensive information.
It can even use the transition relationship from the difference path to infer the specific
cause for abnormality when the sample is sufficient.
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In addition, another advantage for the proposed approach is that the condition moni-
toring model solved the influence of feature selection and feature extraction, which can
influence the stability of the recognition stability. After the data are extracted into different
features, the information it contains is incomplete, and the sensitive features obtained by
correlation analysis are easily changed, as shown in Figure 20. Therefore, the method of
inputting different features and performing state monitoring can easily lead to misidentifi-
cation, which will affect the performance of the model stability. The proposed approach
is an end-to-end identification method, and the input is direct raw data, which avoids
this problem.

Aerospace 2021, 8, x FOR PEER REVIEW 21 of 23 
 

 

 
Figure 20. The change in features for a data-based method. 

6. Conclusions 
To solve the problem of tool wear state monitoring for aerospace manufacturing pro-

cesses, we have proposed a tool condition monitoring method based on a Convolutional 
Neural Network (CNN). Firstly, the tool wear level was divided into different state modes 
according to the probability density interval based on the kernel density estimation (KDE). 
The corresponding state modes were connected to obtain the point-to-point control limit. 
Then, a state recognition model based on a CNN was developed, and the sensitivity of the 
monitoring window was considered in the model. Finally, the PHM2010 dataset and ac-
tual case were used for feasibility verification of the proposed method. The experimental 
results proved the applicability of the proposed method for tool state monitoring. Com-
pared with the traditional condition monitoring method, the idea of statistical process 
control was combined in the model to construct a multi-level point-to-point control limit, 
and, as in the discussion, the criteria for judging abnormal conditions were extended com-
pared with the traditional SPC. In addition, the influence of feature-to-recognition stabil-
ity was overcome by the proposed model, whereas the traditional data-based condition 
monitoring methods rely heavily on the selection of appropriate sensitive features. Of 
course, the currently proposed approach still has certain limitations, as different models 
need to be trained to achieve better monitoring results for different working conditions, 
but this problem is also unavoidable in data-driven methods. To solve this problem, it is 
necessary to conduct further research on the proposed model. However, the proposed 
method already can effectively monitor the tools’ condition, and when the status of the 
tool is recognized, the different corresponding measures (such as tool failure or tool re-
placement) can be taken according to different recognition states to always keep the tool 
in the best condition and reduce defective parts. 

The proposed method can effectively monitor tool wear states under specific work-
ing conditions, and according to data verification, the method proposed in this paper has 
a higher recognition accuracy. Compared with other industries, aerospace has higher re-
quirements for the accuracy of parts. The proposed method can more effectively meet the 
manufacturing needs of the aerospace field. As shown in the case, the surface roughness 
of parts can be effectively controlled by monitoring tools condition through proposed 
method. Therefore, the proposed method is of great value for ensuring the manufacturing 
quality of aerospace parts during the production process. 

Author Contributions: W.D. contributed significantly to the analysis, review, and editing of the 
manuscript. K.L. contributed to the conception and methodology and wrote the original draft of the 

Figure 20. The change in features for a data-based method.



Aerospace 2021, 8, 335 20 of 22

6. Conclusions

To solve the problem of tool wear state monitoring for aerospace manufacturing
processes, we have proposed a tool condition monitoring method based on a Convolutional
Neural Network (CNN). Firstly, the tool wear level was divided into different state modes
according to the probability density interval based on the kernel density estimation (KDE).
The corresponding state modes were connected to obtain the point-to-point control limit.
Then, a state recognition model based on a CNN was developed, and the sensitivity of the
monitoring window was considered in the model. Finally, the PHM2010 dataset and actual
case were used for feasibility verification of the proposed method. The experimental results
proved the applicability of the proposed method for tool state monitoring. Compared with
the traditional condition monitoring method, the idea of statistical process control was
combined in the model to construct a multi-level point-to-point control limit, and, as in the
discussion, the criteria for judging abnormal conditions were extended compared with the
traditional SPC. In addition, the influence of feature-to-recognition stability was overcome
by the proposed model, whereas the traditional data-based condition monitoring methods
rely heavily on the selection of appropriate sensitive features. Of course, the currently
proposed approach still has certain limitations, as different models need to be trained to
achieve better monitoring results for different working conditions, but this problem is also
unavoidable in data-driven methods. To solve this problem, it is necessary to conduct
further research on the proposed model. However, the proposed method already can
effectively monitor the tools’ condition, and when the status of the tool is recognized, the
different corresponding measures (such as tool failure or tool replacement) can be taken
according to different recognition states to always keep the tool in the best condition and
reduce defective parts.

The proposed method can effectively monitor tool wear states under specific working
conditions, and according to data verification, the method proposed in this paper has
a higher recognition accuracy. Compared with other industries, aerospace has higher
requirements for the accuracy of parts. The proposed method can more effectively meet the
manufacturing needs of the aerospace field. As shown in the case, the surface roughness of
parts can be effectively controlled by monitoring tools condition through proposed method.
Therefore, the proposed method is of great value for ensuring the manufacturing quality of
aerospace parts during the production process.
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