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Abstract: We present a high-order consistent compressible flow solver, based on a hybridized
discontinuous Galerkin (HDG) discretization, for applications covering subsonic to hypersonic
flow. In the context of high-order discretization, this broad range of applications presents unique
difficulty, especially at the high-Mach number end. For instance, if a high-order discretization is to
efficiently resolve shock and shear layers, it is imperative to use adaptive methods. Furthermore,
high-Enthalpy flow requires non-trivial physical modeling. The aim of the present paper is to present
the key enabling technologies. We discuss efficient discretization methods, including anisotropic
metric-based adaptation, as well as the implementation of flexible modeling using object-oriented
programming and algorithmic differentiation. We present initial verification and validation test cases
focusing on external aerodynamics.

Keywords: Discontinuous Galerkin Methods; high-enthalpy flow; anisotropic adaptation; object-oriented
programming; algorithmic differentiation

1. Introduction

Compressible flow simulation has long been dominated by at most second order
consistent methods. Prime examples are finite volume schemes and stabilized finite element
schemes [1–8]. Higher order consistent methods promise superior resolution at reduced
number of degrees-of-freedom (DoF), provided the solution is (locally) smooth enough [9].
In compressible flow, however, flow features such as shock waves can compromise local
solution regularity. Moreover, besides shock waves, other strongly anisotropic features
are usually present. Examples include boundary and shear layers. To allow efficient
resolution of these features, while taking advantage of superior resolution on coarse
elements, whenever the flow is smooth, a good high-order methodology ought to be
adaptive, preferably using anisotropic adaptation. Furthermore, computations are often
carried out primarily with the aim to compute a few solution-dependent functionals very
accurately. Examples, such as force or heat transfer coefficients, readily come to mind. This
suggests goal-oriented adaptation, which may be implemented via adjoint methods [10].

For a while now, metric-based adaptation methods have been used in compressible
flow simulation [11–14]. A convenient formalism for such methods is the continuous mesh
framework [15,16]. However, the formulation for high-order discretization, using piecewise
polynomial approximation methods, has been relatively recent [17,18]. In previous work,
we proposed a high-order method using analytical optimization of the continuous mesh
model [18,19], including hp-adaptation [20] and goal-oriented adaptation [21,22]. The main
advantage is that the procedure is entirely free of parameters, using only a constraint given
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by the overall mesh-complexity. Demonstrating the fidelity of our high-order continuous
mesh method with respect to high-Mach number flow is the first aim of the present paper.

Secondly, for the wide range of applications and flow conditions envisioned here,
one has to consider a range of physical models. In our implementation we use the library
Mutation++ [23] to provide a flexible interface to thermodynamic closure equations and
transport coefficients. We present an efficient implementation framework, based on object-
oriented programming and class-based templates.

Finally, the flexible approach to modeling has implications for the overall solution
strategy applied to the nonlinear discretized equations. Compressible flow discretization
usually leads to stiff problems. This is even more pronounced for high-order discretization
methods on very anisotropic grids. Under these circumstances, fully coupled implicit
methods are attractive. For instance, Newton–Raphson methods offer asymptotic quadratic
convergence, provided a very accurate differentiation of the residual function is avail-
able. This is a complication when the goal is to support easy implementation of different
physical models, as it requires not only implementation of the physical model, but also its
differentiation with respect to the state. We use algorithmic differentiation to facilitate the
embedding of different physical models into our solver framework.

The idea of using higher order methods to simulate compressible flow is not new [24,25],
and indeed there are publicly available tools [26,27]. Moreover, there is recent work with
partially overlapping scope [28–30]. In particular, Nguyen et al. developed a high-order
HDG solver and used it to simulate hypersonic flow, using a single-species, perfect gas
model [30]. However, at the intersection of (1) high-order methods, (2) high-Mach-number
flow, (3) flexible, non-trivial physical modeling, (4) anisotropic adaptation, and (5) fast
solver convergence, there is a dearth of existing tools.

In summary, the purpose of this paper is to present a high-order HDG solver for
high-Mach-number flows addressing the above aspects. Our solver originates from the
work first presented in [31]. The overall implementation strategy is designed to support a
wide range of applications and flexible modeling, while keeping the solver components
(adaptation, implicit solution methods, etc.) intact without extensive programming efforts.
The paper is organized as follows: In Section 2, we briefly review the governing equations.
Next, in Sections 3 and 4, we discuss the discretization and adaptation methods used in
this work, while Section 5 discusses our implementation strategy. Finally, in Section 6 we
present numerical results.

2. Governing Equations

Our computational approach is designed to solve balance laws of the following type:

∂u
∂t

+
d

∑
i=1

∂ f i(u,∇u)
∂xi

= S(u,∇u). (1)

where ( f 1, . . . , f d) =: f is the flux vector, and S is a source term. In the present paper,
we focus on steady compressible flow problems. We consider models for a homogeneous
mixture of ideal gases with frozen chemistry, as well as models for a mixture in chemical
non-equilibrium.

For a gas composed of Ns molecular species, the state vector of conserved variables is
written as

u =

 ρ
ρv
E

, (2)

where ρ = (ρ1, . . . , ρNs)
T is the vector of species densities, and ρ = ∑Ns

i=1 ρi is the total
density. The bulk fluid velocity vector and total energy are denoted by v = (v1, . . . , vd)

T ,
and E, respectively. In the absence of chemical reactions (frozen flow), we may treat the gas
as a homogenous mixture. In this case, we may set Ns = 1, and only one mass equation
is solved. (The same is true for flows in local thermodynamic equilibrium (LTE), where
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chemical reactions are assumed to be fast enough, such that the equilibrium mixture is
locally achieved and provided that the elemental composition is frozen. However, we do
not consider LTE models in this work.)

We write f = f c − f v, where f c and f v, are the convective and diffusive flux, respec-
tively. Together with the source term S, they are given by

f c =

 ρvT

ρvvT + pId
(E + p)vT

, f v =

 −J
τ

vTτ − qT

, S =

 ω̇
0
0

. (3)

Here, p is the pressure. Moreover, τ = (τij)i,j=1,...,d is the viscous stress tensor,
q = (q1, . . . , qd)

T is the heat flux vector, J = (Jij)i=1,...Ns ,j=1,...,d is the species diffusion
flux, and ω̇ = (ω̇1, . . . , ω̇Ns)

T is the vector of reaction rates. Models for these quantities are
discussed below. For simple fluid models with frozen chemistry and negligible species
diffusion, Ns = 1, J = 0, and ω̇ = 0. If, furthermore, the flow is considered inviscid, τ = 0
and q = 0.

Closure Equations, Constitutive Models, and Transport Coefficients

We assume that the gas mixture is thermally perfect (although not necessarily calor-
ically perfect). This assumption is often made in high-enthalpy hypersonic applications
where the pressure is not too high [32]. Thus, each species satisfies the ideal gas law for the
partial pressure pi, and the mixture satisfies Dalton’s law,

p =
Ns

∑
i=1

pi =
Ns

∑
i=1

ρiRiT, (4)

where Ri is the specific gas constant of species i. Under the above assumptions, we have
Ri = cp,i − cv,i, where cv,i = cv,i(T) and cp,i = cp,i(T) are the specific heat capacities at
constant volume and pressure, respectively. The thermal energy and enthalpy of each
species are solely determined by the temperature [33]:

ei =
∫ T

T0

cv,i(T)dT + e0,i, hi =
∫ T

T0

cp,i(T)dT + h0,i. (5)

Under the present modeling assumptions, we obtain the bulk thermal energy and
enthalpy as weighted by the mixture composition:

e =
Ns

∑
i=1

Yiei, h =
Ns

∑
i=1

Yihi. (6)

Here, Yi = ρi/ρ is the mass fraction of species i. For frozen chemistry, we may use the
effective gas constant R, given by ∑Ns

i=1 YiRi, where Yi is assumed constant, to compute

p = ρRT. (7)

Simpler models, which may be used in external aerodynamics under subsonic or
moderately supersonic free stream conditions, regard the mixture as a both thermally and
calorically perfect gas. Under these assumptions we may write the equation of state as

p = (γ− 1)ρe = (γ− 1)
(

E− 1
2

ρv · v
)

, (8)

where γ is the (constant) ratio of specific heats.
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When considering Newtonian viscous flow, the stress tensor is given by

τ = µ(∇v + (∇v)T − 2
3
(∇ · v) Id),

where for simplicity, we set the bulk viscosity to zero. For moderate temperatures, one may
use Sutherland’s law [34] to compute the viscosity µ = µ(T) as

µ =
C1T3/2

C2 + T
, (9)

with C1 = 1.458 · 10−6 kg
ms
√

K
and C2 = 110.4 K for an air mixture. For higher temperatures,

the library Mutation++ may be used to compute the viscosity from the current local state.
As mentioned above, we distinguish between simple fluid models with frozen chem-

istry, characterized by constant mass fractions, and more general gas mixtures. For the
former, recall that only one mass equation is solved. For the latter, we model species
diffusion using Fick’s law with averaged species diffusion coefficients [35,36],

Ji = −ρDi∇Yi + Yi

Ns

∑
j=1

ρDj∇Yj. (10)

Thermal and baro-diffusion effects were neglected here. Please note that the second
term ensures zero net diffusion flux, when summed over all species. The averaged species
diffusion coefficients Di are obtained directly from Mutation++ from the binary diffusion
coefficients of the gas mixture. More accurate diffusion models, using multicomponent
diffusion coefficients, are available in Mutation++ , but have not been used here.

We model the heat flux using Fourier’s law and energy transfer due to species diffusion
(neglecting thermal diffusion induced by species diffusion) [36]:

q =
Ns

∑
i=1

hiJi − k∇T. (11)

Here, k is the mixture thermal conductivity. For simple fluid models with Yi = const.,
only the second term is present. At moderate flow conditions, we may assume a constant
Prandtl number, whence

k =
µcp

Pr
. (12)

For example, Pr = 0.72 for air. At higher temperatures, this is no longer a good ap-
proximation, and we again use the library Mutation++ to compute the thermal conductivity
k from the local state.

Finally, for flows in chemical non-equilibrium, the species source terms ω̇ must be
considered. These represent the creation and destruction of the species through chemical
reactions. Upon choosing a desired mixture model with a predefined set of Nr elemen-
tary reactions, Mutation++ models the reaction rates using the Law of Mass Action, and
provides the local net production rates for each species. The forward rate coefficients are
computed based on Arrhenius’ law. The forward and backward rate coefficients are linked
through the equilibrium constant, satisfying the second law of thermodynamics [37].

To summarize, Table 1 gives an overview of models used in the present work.
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Table 1. Overview of models used in the present paper. Please note that the first two models solve only one mass Equation
(with J = 0 and ω̇ = 0).

Model 1 Model 2 Model 3

Perfect Gas
High-Enthalpy

Frozen
High-Enthalpy

Non-Equilibrium

Number of equations d + 2 d + 2 Ns + d + 1
Equation of state Equation (8) Equation (7) Equation (4)

Viscosity Equation (9) Equation (9) or Mutation++ Mutation++
Thermal Conductivity Equation (12) Equation (12) or Mutation++ Mutation++

Species Diffusion - - Mutation++
Production Rates - - Mutation++

3. Numerical Discretization
3.1. Hybridized Discontinuous Galerkin Method

The governing equations presented in Section 2 are discretized using a hybridized
discontinuous Galerkin (HDG) method. We only give a brief summary here. A more
detailed overview of HDG schemes can be found elsewhere [38–40].

Let Ω be the computational domain. For a given a triangulation Th = {κ}, and
setting m = Ns + d + 1 for the number of equations to be solved, we define the approxima-
tion spaces

Vh := {w ∈ (L2(Ω))m : w|κ ∈ (Pp(κ))m, ∀κ ∈ Th} (13)

Σh := {ζ ∈ (L2(Ω))m×d : ζ|κ ∈ (Pp(κ))m×d, ∀κ ∈ Th} (14)

Λh := {ν ∈ (L2(E0
h ))

m : ν|e ∈ (Pp(e))m, ∀e ∈ E0
h}. (15)

Here E0
h denotes the set of interior edges, and Pp denotes the space of polynomials

with total degree at most p. Upon defining Xh := Σh ×Vh ×Λh, the HDG discretization of
the steady-state version of the balance law (1) is given as the variational problem

xh ∈ Xh : Nh(xh, y) = 0, ∀y ∈ Xh. (16)

Defining elementwise integration,∫
Th

· dx := ∑
κ∈Th

∫
κ
· dx,

∫
∂T 0

h

· ds := ∑
κ∈Th

∫
∂κ\E∂

h

· ds,

where E ∂
h are the boundary edges, and setting xh = (σh, uh, λh), y = (ζ, w, ν), we can write

Nh(xh, y) =
∫
Th

σh : ζ dx +
∫
Th

(uh ⊗∇) : ζ dx−
∫

∂T 0
h

λh ⊗ n : ζ ds−
∫
E∂

h

ûb ⊗ n : ζ ds

−
∫
Th

f (uh, σh) : ∇w dx +
∫

∂T 0
h

f̂ (σh, uh, λh; n) ·w ds +
∫
E∂

h

f̂
b
(σh, uh; n) ·w ds

−
∫
Th

S(uh, σh) ·w dx +
∫
E0

h

[[ f̂ (σh, uh, λh; n)]] · ν ds. (17)

The numerical flux function is written as f̂ = f̂ c − f̂ v, where f̂ c and f̂ v are standard
convective and viscous numerical fluxes, respectively. In the present work we use the Lax-
Friedichs flux for the former, and the LDG flux for the latter. More precisely, let elements
κ+ and κ− be separated by edge e ∈ E0

h , Then we define the numerical fluxes such that

f̂ c ≡ f̂
±
c := f (λh) · n± − αc

(
λh − u±h

)
on e (18)

f̂ v ≡ f̂
±
v := f (λh, σ±h ) · n

± − αv
(
λh − u±h

)
on e (19)
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Here n± denotes the outward pointing normal on ∂κ±, and u±h , σ±h are the limits of the
respective functions approaching the iterface from κ±. (Please note that λh is single-valued
by definition.) The jump of the total flux on e then reads [[ f̂ ]] = f̂

+
n+ + f̂

−
n−. Again,

it ought to be noted that the numerical flux functions are not by definition conservative.
Instead, the last term in (17) enforces conservation as a constraint [39–41]. Finally, the

boundary fluxes ûb and f̂
b
(uh, σh; n) are assumed to be consistent with the boundary

conditions [42].
To avoid oscillations near discontinuities, the discretization can be augmented with a

shock-capturing term. At present, we use a classic method based on artificial viscosity [43,44].
We define

NSC
h (xh, y) :=

∫
Th

ε(uh)σh : ∇w dx . (20)

The artificial diffusion coefficient is computed as a function of the solution uh, such that

ε(uh)|κ :=
ε0(hκ/pκ)2−β

|κ|

∫
κ

m

∑
i=1
|∇ · f c(uh)| dx, ∀κ ∈ Th. (21)

Here hκ is the diameter of κ, and pκ is the polynomial degree of approximation. The
parameters ε0 and β can be used to tune the shock-capturing term. In the present work,
we set β = 0. The term (20) can be added to the semilinear form (17) to provide nonlinear
stabilization. This approach is somewhat generic in the sense that it is not especially tuned
to the physical model under consideration. It has proven successful for transonic and
supersonic external aerodynamics. Below we show that the range of application extends to
moderately hypersonic flow conditions, not exceeding M∞ ≈ 8. For higher Mach numbers
more carefully tuned shock capturing may become necessary [30].

Equation (16) is solved using a Newton–Raphson method. Writing xn+1
h = xn

h + δxn
h ,

the linearized global system is given in block-matrix form as A B R
C D S
L M N

 δQ
δW
δΛ

 =

 F
G
H

, (22)

where the vector [δQ, δW, δΛ]T contains the expansion coefficients of δxn
h = (δσh, δuh ,

δλh) with respect to the chosen basis. The matrix on the left represents the Jacobian matrix
of Nh(xh, y) as a function of these coefficients. In particular, the nonlinear contributions
from flux functions, numerical flux functions, and boundary fluxes are often cumbersome
to compute. Moreover, these elements change upon implementation of a new physical
model. It is here that the algorithmic differentiation mentioned in the introduction is very
useful. We come back to this issue in Section 5 below.

Taking the Schur complement, one obtains the hybridized system(
N −

[
L M

][ A B
C D

]−1[ R
S

])
δΛ = H −

[
L M

][ A B
C D

]−1[ F
G

]
. (23)

System (23) is solved at each Newton iteration using an iterative linear solver. This
system is clearly algebraically equivalent to (22). Moreover, the structure of the HDG
discretization makes its assembly economically feasible, as the sub-matrix to be inverted
is block-diagonal. The system is globally coupled only in the degrees-of-freedom cor-
responding to λh. This remains true when the shock-capturing term (20) is added. In
contrast, standard DG schemes, written in primal form (possibly upon locally eliminating
the degrees-of-freedom Q, which can be done for all standard DG schmes [45]), lead to
larger linear systems. This is increasingly so for higher polynomial degree p [44]. Indeed,
HDG schemes were found to be competitive in terms of efficiency with continuous Galerkin
schemes using static condensation [46].
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3.2. Adjoint Equations

Let J(u,∇u) be a solution-dependent functional, and let Jh(xh) be a consistent ap-
proximation, such that for x = (u,∇u, u|E0

h
), Jh(x) = J(u,∇u). Adjoint methods can be

used to provide a map to relate variations in the functional to the discrete residual. An
approximation is given by the discrete adjoint method, where

Jh(xh)− J(u,∇u) ≈ Nh(xh, zh), (24)

provided that zh ∈ X̂h ⊃ Xh satisfies, for a fixed solution xh ∈ Xh of the primal problem,

N′h[xh](y, zh) = J′[xh](y), ∀y ∈ X̂h. (25)

Please note that taking the adjoint solution from a superset X̂h ⊃ Xh is necessary to
avoid an identically zero right-hand side in (24). The adjoint-based error estimate can be
used to drive a goal-oriented adaptation process [47].

We proved in a previous publication that, with appropriate treatment of boundary
conditions, the HDG discretization (17) is adjoint consistent [42,48]. It remains asymptoti-
cally adjoint consistent when the shock capturing term (20) is added. In other words, the
discrete adjoint equations automatically give a consistent discretization of the adjoint PDE
with appropriate boundary conditions. This is true for admissible functionals of the form

J(u,∇u) =
∫

∂Ω
β⊗ n : f (u,∇u) ds, (26)

where β is any L2 function. For instance, at an adiabatic wall one has, by the definition of
the fluxes and the boundary conditions,

f (u,∇u) · n = ( f c(u)− f v(u,∇u)) · n =

 0
pn
0

−
 0

τn
0

. (27)

Thus, compatible functionals include force coefficients. For non-adiabatic walls, heat
transfer coefficients may also be used [42].

4. Adaptation

Metric-based methods have emerged as an interesting paradigm for mesh adapta-
tion. The idea is to encode a desirable mesh in a tensor-valued mapping, yielding a
one-parameter family of s.p.d. matrices, (M(x))x∈Ω, where Ω ⊂ Rd is some computa-
tional domain. A metric-conforming mesh is a triangulation whose elements are (nearly)
equilateral under the Riemannian metric induced byM. This mapping is the continuous
mesh [15]. In this section, we summarize our continuous mesh optimization, which we
used in the computational studies below. More details can be found in [18–22].

4.1. Encoding a Mesh via Metric Tensors

Let Th := {κ} be a triangulation of Ω. For any non-degenerate simplex element, there
is a unique symmetric positive definite matrix

M =

(
m11 m12
m12 m22

)
(28)

such that,
||ei||2M = eT

i Mei = C, i = 1, 2, 3, (29)

where ei is an edge of the triangle, given as a vector of arbitrary orientation. In other words,
the mesh element is equilateral in the norm || · ||M induced by the metric M, i.e.,

||x||M :=
√

xTMx.
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We say the element is unit with respect to M. A straightforward geometric interpreta-
tion is shown in Figure 1: The mesh element is inscribed into the unit circle ||x||M = 1 (i.e.,
an ellipse).

θ
h1

h2

θ
h1

h2

Figure 1. The unit circle of M defines an ellipse of semi-axes h2
1 = λ−1

1 , and h2
2 = λ−1

2 , where
0 < λ1 ≤ λ2 are the eigenvalues of M. The geometry of a unit triangle κ is fixed by (29). The
configuration shown corresponds to C = 3: The unit element is inscribed into the unit circle.
Changing C will change the area |κ|, but not aspect ratio or orientation.

It will prove useful to characterize the metric by its eigenstructure, i.e., M = QTΛQ,
where

Q =

(
cos θ sin θ
− sin θ cos θ

)
Λ = diag(λ1, λ2) (30)

Thus, M may be represented by the tuple (d, ζ, θ), where the angle θ defines the
orientation of the eigenvectors in (30), and

ζ :=

√
λ1

λ2
, d :=

√
λ1λ2 (31)

are the aspect ratio and mesh density, respectively. The latter definition is motivated by the
relation

d =
α

|κ| (32)

where the constant α depends only on the constant C in (29).
Given an element-wise metric, one may, using a suitable interpolation, generate

a metric field (M(x))x∈Ω, defined for any x ∈ Ω. Metric-based mesh generators can
generate a discrete mesh, composed of elements which are unit with respect to a metric
field, usually interpreted in a least-squares sense, such that one approximates the solution
to the minimization problem

T ?
h = arg minTh ∑

e∈Th

∣∣∣||e||2M − C
∣∣∣.

The length of a segment e := x2 − x1 under the metric (M(x))x∈Ω is now interpreted
in a Riemannian sense, using the parametrization

||e||M =
∫ 1

0

√
eTM(x1 + se)e ds, (33)

and a suitable quadrature rule. The mesh so produced can be viewed as a discrete approxi-
mation of a continuous mesh (M(x))x∈Ω. Of course, the idea is to generate a new mesh
not from the metric field corresponding to the current mesh (in this case not much would
change), but from an optimized metricM?, which is obtained using the solution estimate
on the current mesh.
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4.2. Optimizing the Continuous Mesh

The optimization is defined as the minimization of an interpolation error into the
piecewise polynomial approximation space (13). The local error model is essentially that of
a Taylor series,

|ex,p(y)| =
1

(p + 1)!
|u(p+1)(x; ξ)||y− x|p+1, ∀y ∈ Ω, ξ =

y− x
|y− x| ,

where the directional derivative is defined, using the usual multiindex notation for
α = (a1, . . . , ad),

u(k)(x; ξ) := ∑
|α|=k

Dαu(x)ξα, ξ ∈ R2, |ξ| = 1.

The optimal metric is obtained by a two-step formal optimization procedure. First,
following [17], one obtains local values for the optimal aspect ratio and orientation, (ζ?, θ?)
leading to a bound on the interpolation error, valid for a triangle centered at x = xκ , and
having locally optimal anisotropy (ζ?(xκ), θ?(xκ)):

||eint
xK ,p||

q
Lq(κ)

≤ ed(xκ)
qd−1(xκ), (34)

where

ed(x) :=
(

2π

q(p + 1) + 2

) 1
q

Ā(x)d(x)−
p+1

2 , (35)

and Ā =
√

Amax A⊥. Here Amax is the maximum directional derivative

Amax =
1

(p + 1)!
max
|ξ|=1

∣∣∣u(p+1)(x; ξ)
∣∣∣

while A⊥ is the derivative in direction orthogonal to that defining Amax.
Please note that the mesh density d is still unspecified. Imagine now a triangulation

composed of elements with arbitrary size distribution, but each having locally optimal
anisotropy. Then, starting from (34), one has asymptotically,

||eint
xK ,p||

q
Lq(Ω)

≤ ∑
κ∈Th

ed(xK)
qd−1(xK) ∝ ∑

κ∈Th

ed(xK)
q|κ| →

∫
Ω

ed(x)q dx, (h→ 0). (36)

The function x 7→ ed(x) is termed the continuous interpolation error. This leads to a
constraint minimization problem∫

Ω
eq

d(x) dx → min s.th.
∫

Ω
d(x) dx = N . (37)

Here N is the mesh complexity, which is related to the number of mesh elements via the
constant α in (32). One may apply straightforward calculus of variations to solve for the
density distribution d?. Finally, one obtains

d?(x) = CĀ(x)
2q

(p+1)q+2 , (38)

where
C =

N∫
Ω

Ā
2q

(p+1)q+2 dx
. (39)

The optimization presented here is thus with respect to the error model, measured
in any Lq norm. The approach may be extended to goal-oriented adaptation. In the most
straightforward formulation, the resulting methodology is very similar to L1-optimization,
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using the formulation presented here, but with additional weights coming from an adjoint
solution. We omit discussion here, and refer to our earlier work [22]. See also related work
in [21,49].

5. Implementation and Code Structure

Our solver framework has a modular code structure (Figure 2). We give a brief
overview only insofar as it facilitates discussing the implementation of new physical
models. A more detailed documentation is given in [31].

Unified
Framework

(UF)

Physical
Model

Discreti-
zation

Nonlinear
Solver

Linear
Solver

Adaptation

Figure 2. Graphical Illustration of the solver structure: Each Module is made available as a class or
external library.

The code is written in C++, using the Finite Element library Netgen/NGsolve [50,51].
Each module shown in Figure 2 is made available as a class, or as an external library.
An example of the latter is the linear solver, which is made available through the PETSc
library [52]. The most important example of the former is the physical modeling. Each
model is required to implement certain functions modeling Equation (1) (convective flux,
diffusive flux, boundary conditions, etc.). Listing 1 shows the class definition. The template
parameters D and COMP refer to the physical dimension and number of state vector
components, respectively.

Listing 1. Definition of a Model.

template <int D, int COMP>
class MyModel {
. . .
};

For the present work, this data structure has been enlarged to allow more flexible
physical modeling, by decoupling the definition of the fluxes in the model and the closure
equations used to evaluate them. We follow the Strategy pattern as defined by Gamma
et al. [53] to set up a uniform interface between the general models describing the conser-
vation laws, and families of different algorithms that implement the closure equations. A
specific implementation is then linked to a model through a template parameter CLOS, as
shown in Listing 2.

Listing 2. Model definition including new interface.

template <int D, int COMP, class CLOS>
class MyModel {
. . .
};.

Physical models, such as the compressible Euler equations, can thus use different
thermodynamic and transport models through well-defined interfaces. For example, the



Aerospace 2021, 8, 322 11 of 24

perfect gas model, as well as the model for thermally perfect gases at higher temperatures
discussed in Section 2, use the same model class, but have different closure classes as
template parameters. The latter includes an interface to the library Mutation++ .

As an example, consider the convective flux. Convective flux evaluation is a required
public function within the model class. For the Euler or Navier–Stokes equations, the
implementation using the new thermodynamic interface given in Listing 3.

Listing 3. Function to evaluate the convective flux for the compressible Euler or Navier–Stokes
equations.

template <typename SCAL>
static void EvalConvFlux(Vec<COMP, SCAL> & state,

SpatialParams<D> & sparam,
Mat<COMP, D, SCAL> & res) {

SCAL p;
Vec<D, SCAL> U;
CLOS::EvalPrim(state, U, p);

res = state * Trans(U);
res.Rows(1, D+1) += p * Id<D>();
res.Row(D+1) += p * U;

}

Please note that the thermodynamics is contained in the evaluation of the primitive
variables, which is thus relegated to the new module. The structure sparam contains
several mesh variables, such as the node location of the current flux evaluation. This
allows implementation of fluxes that depend on the physical coordinates, although it
is not needed for the Euler equations. Please note that the template parameter SCAL
allows function evaluation using standard data types, as well as custom made algorithmic
differentiation data types. We come back to this in Section 5.

All model-dependent functions are made available through such public functions.
From the solver, which is itself a class, these functions can be queried. Listing 4 illustrates
this for evaluation of convective and diffusive fluxes. These calls are used in the volume
quadrature when assembling the residual or the Jacobian of the discretization (17).

Listing 4. Calling Model Functions from the Solver Kernel.

if (Model::Convection)
Model::EvalConvFlux(w, sparam, fc);

if (Model::Diffusion)
Model::EvalDiffFlux(w, q, sparam, fv);

f = fc -fv;

The model itself is a template parameter to the main solver class (Listing 5). The
code can thus be compiled to solve different physical models using the same solver ker-
nel. Implementing new models usually requires implementation of a new (or modified)
model class.

Notice that the solver also takes the same template parameters D and COMP as
the model. The discretization is written for arbitrary values of these parameters. For
instance, the compressible Navier–Stokes equations are implemented only once. Two- or
three-dimensional flow can be selected by compiling with D = 2, or D = 3, respectively.
Moreover, models with arbitrary number of components are easily implemented.



Aerospace 2021, 8, 322 12 of 24

Listing 5. The solver class.

template <int D, int COMP, class Model>
class UnifyingFramework : public NumProc {
. . .
};

Recall that our code is built on the library Netgen / NGSolve. In Listing 5, the inherited
class NumProc is indeed a class defined in NGSolve , and may be used to register our solver
as an object inside the NGSolve framework. The code is then compiled as a dynamic library
which may be loaded by the NGSolve executable at runtime.

Algorithmic Differentiation

The solver is intended to function in a research environment, where modeling of
different physical phenomena is frequent. The overall code structure is designed to facilitate
code maintenance, as well as the implementation of new models and numerical methods.
The modular structure described in the previous section follows this rationale. However, as
we argued in the introduction, flexibility must extend to differentiation of physical models.
An accurate differentiation of the residual function not only enables fast convergence of a
Newton solver (Section 3.1), but also allows direct use of the system Jacobian in a discrete
adjoint context. We therefore opted for an approach using algorithmic differentiation.

Algorithmic differentiation is implemented via a class-based data structure. The
AutoDiff class, made available by the NGSolve library, carries both values and derivatives.
Within the class definition, methods are defined to overload standard operations and
functions. Figure 3 illustrates the concept, using multiplication as an example.

Figure 3. Conceptual example of operator overloading in the AutoDiff class. Multiplication is
redefined to update the derivatives as well as the value. This is done for all operations used by
the models.

Individual routines contributing to the computation of the residual, such as the flux
functions shown in Listing 3, are templated and can thus take AutoDiff arguments.

However, interfaces to undifferentiated external libraries are problematic. The most
straightforward solution, if manual differentiation is not deemed economically feasible, is to
use (local) finite-difference approximation. On the other hand, alternatives may be available.
In particular, for some quantities computed by the library Mutation++ , thermodynamic
calculus may be used to fill the data structure locally with exact derivatives. As an example,
consider the computation of temperature. Using the templated flux interface in Listing 3,
the elements of the state vector are passed as AutoDiff types. The temperature is obtained
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(as a double) directly from Mutation++ as a function of the local state. The starting point
for computing the derivatives is the relation for the internal energy,

ρe =
Ns

∑
i

ρiei(T) = E− ρv · v
2

, (40)

and noting dei = cv,idT. A straightforward computation yields

∂T
∂ρj

=
(v · v)/2− ej(T)

∑Ns
i ρicv,i

,
∂T
∂ρv

=
−v

∑Ns
i ρicv,i

,
∂T
∂E

=
1

∑Ns
i ρicv,i

. (41)

One may thus instantiate the temperature as an AutoDiff by directly storing ∇uT
computed in this way. For frozen flow, the computation simplifies somewhat, as derivatives
with respect to the individual species densities are not needed. Instead, temperature
derivatives (with respect to the state) can be assigned easily using

e =
E
ρ
− 1

2
v · v, (42)

which gives the mixture internal energy as an AutoDiff (i.e., carries the derivatives), and
using the mixture specific heat via de = cvdT. The mixture specific heat can be obtained
directly from Mutation++ .

In either case, other variables using the temperature analytically are now automati-
cally differentiated. In other words, they can be directly computed as an AutoDiff type
without further manual input. Examples are the pressure using (4), or the viscosity using
Sutherlands law (if applicable). In fact, if additionally the thermal conductivity is computed
using a constant Prandtl number approximation, the frozen flow model has exact flux
derivatives. If instead the transport coefficients are obtained directly from Mutation++ ,
local difference approximations are currently used to produce derivatives for the AutoDiff
type. Mutation++ can compute the derivatives of the species production rates with re-
spect to species densities. This is used in the present work. At present, the derivatives
of the species production rates with respect to the temperature are computed using finite
difference approximations.

6. Results

We present numerical results using the modeling approach, discretization, and adap-
tation discussed in preceding Sections. Focus is on verification of the implementation, the
interplay between the physical modeling, shock capturing, and the convergence of the
Newton solver. The interface to the PETSc library makes is possible to use a variety of
linear solvers. However, a study of linear solvers or preconditioning is not our aim. We
therefore computed all results shown here with the same rather general setup, using a
GMRES(m) method to solve the linear systems (where m = 120), along with an ILU(k)
preconditioner and levels of fill 3 ≤ k ≤ 15. Using the same setting for all cases allows a
direct comparison between different modeling approaches, and to assess influence of the
modeling and adaptive procedure on solver performance.

6.1. Verification of Thermodynamics Implementation

Initial verification of the new thermodynamics interface may be provided by consid-
ering moderate flow conditions, where the previously implemented perfect gas model
ought to be valid. The new models should then yield very similar results. Subsequently,
we consider a case at higher temperature, where the caloriaclly perface gas assumption
ceases to be valid, and finite rate chemistry becomes important.

We shall frequently compare Models 1–3 in Table 1. In the case of the frozen flow high-
enthalpy model (Model 2 in Table 1), we generally use Mutation++ to compute the transport
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coefficients. For all results shown below the NASA 9-coefficient polynomial database has
been used with Mutation++ (see [23] and references therein for database options).

6.1.1. Laminar Flow Around a Cylinder

We choose the Reynolds number small enough so that a steady flow develops. Free
stream conditions are given by atmospheric pressure (p∞ = 1 atm) and moderate tempera-
ture (T∞ = 298.15) K. For the cylinder, adiabatic no-slip wall boundary conditions are used.
In this setup, all models should yield very similar results. We used a low free stream Mach
number M∞ = 0.1 to stay near the incompressible regime. As a secondary effect, using low
Mach numbers puts additional strain on the solver, as it increases stiffness. (At present, no
preconditioning for low Mach numbers is used.) Figure 4 shows the results in terms of the
drag coefficient.

Adapted grids, using the method of Section 4, were created for each of these Reynolds
numbers using the perfect gas model. All results for a given Reynolds number were then
computed on the same grid. Solver results are compared to an empirical correlation for
incompressible flow [54]. It can be seen that the new thermodynamics modules reproduce
the results of the previously implemented model.

Figure 4. Drag as a function of Reynolds number for laminar flow around a cylinder. Results are
computed on triangular adapted grids with ca. 1200 elements. From left to right, Models 1–3 in
Table 1 are shown. Model 2 uses Mutation++ to compute the transport coefficients. Model 3 uses a
5-species air model.

The non-equilibrium multispecies model can be used with a variety of mixture models.
In Figure 4, we show results using a five-species air model. For the given flow conditions,
only two species (O2 and N2) are significant. When computing the same case with a corre-
sponding 2-species model, the solver yields identical results, up to the decimal accuracy
used for output (Table 2). The solver is able to keep the non-significant species at machine-
zero without problems during the flow evolution process. (We initialize the flow field with
free-stream conditions.)

Table 2. Cylinder Test case. Results for the drag coefficient using 2-Species and 5-Species air models.

Re 2-Species Air 5-Species Air

30 1.75088641 1.75088641
45 1.48528380 1.48528380
60 1.32895637 1.32895637

Furthermore, of interest is the convergence of the Newton solver. Figure 5 shows the
convergence curves for three representative cases and different models.

Generally, we measure the residual of the globally coupled degrees of freedom by
taking the l2 norm of the right-hand-side of Equation (23). It can be seen that the conver-
gence is indeed very similar for all models. The low Reynolds numbers of this test case
emphasize the viscous terms. These contain the transport coefficients which are potentially
approximated by finite-differences. (The differentiation of Sutherland’s law is analytic.)
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Figure 5. Convergence in terms of Newton iterations for laminar flow around a cylinder.

6.1.2. Post-Shock Relaxation

We consider a simulation of flow relaxation to chemical equilibrium behind a strong
normal shock. Table 3 shows the pre- and post-shock conditions of the flow.

Across the shock, the chemistry is assumed to be frozen. Thus, the immediate post-
shock species composition is identical to the pre-shock composition. This composition,
together with the post-shock flow conditions, are assumed as inflow conditions for our
computation. Not that this inflow state is far from equilibrium. The flow relaxes toward
chemical equilibrium, as it proceeds downstream the shock. Similar cases have previously
been used by several researchers [36,55–57]. We use a five-component, single-temperature
inviscid air model with Mutation++ (Model 3 in Table 1). We compare our results to an
independently verified 1D code, produced at the von Karman Institut for Fluid Dynamics,
which also uses Mutation++ [58].

Table 3. Pre- and post-shock conditions for the shock relaxation test case.

T [K] p [Pa] u [m/s]

Pre-shock 300 100 4000
Post-shock 6539 16,101 542

To simulate this one-dimensional case, a thin slab of 1.5 m× 0.002 m with a graded
mesh of approximately 1500 triangles was created, concentrating elements at the domain
inlet. At the left and right boundaries, inlet and outlet conditions are used, respectively,
imposing the mass fractions, temperature and velocity, respectively, the pressure. Slip-wall
boundary conditions in transverse direction were used.

Figures 6 and 7 show the results of the simulation.

Figure 6. Cont.
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Figure 6. Post-shock relaxation case, species fractions for different polynomial degrees p. (Left
Column): p = 0. (Right Column): p = 2.

There is excellent agreement between the output of the reacting Euler model imple-
mented in the HDG framework, and that of the 1D VKI code.
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Figure 7. Post-shock relaxation. Various bulk flow quantities (p = 2).

6.2. High–Mach–Number Flow

We are particularly interested in the interplay between the metric-based adaptation,
shock capturing, and modeling. We shall consider flows in the supersonic to moderately
hypersonic regime. Shock capturing terms are available for the frozen flow models, i.e.,
Models 1 and 2 in Table 1, which will be used in this section. (As we stated in Section 3.1,
our shock-capturing method is able to reliably resolve shocks up to around M∞ ≈ 8.) We
consider external aerodynamics, and to avoid additional complications from the ensuing
high Reynolds numbers, inviscid flow.

6.2.1. Diamond Profile

In this section, we solve inviscid supersonic to hypersonic flow around a diamond-
shaped profile. The geometry of the profile is defined by a wedge angle of 10◦, and a
chord length of c = 1. Free-stream Mach numbers ranging from M∞ = 2 to M∞ = 8 were
used, along with adiabatic slip-wall boundary conditions at the airfoil. Figure 8 shows
two representative Mach number contour plots.

Figure 8. Diamond Airfoil Test Case. Contour plots of Mach number using the perfect gas model.
(Left): M∞ = 4, adapted mesh with 43, 751 triangles (p = 2). (Right): M∞ = 8, adapted mesh with
46, 366 triangles (p = 2).

Results are computed on adapted meshes. Figure 9 shows the initial mesh used for all
cases in this section, as well as a representative mesh produced by the adaptation sequence.
The complexity constraint in Equation (37) is increased by 20% in each adaptation cycle.
This produces successively finer meshes, each of which with optimized distribution of
degrees-of-freedom (cf. Section 4).
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Figure 9. Diamond Airfoil Test Case. (Left): Initial mesh with 268 elements. (Right): Mesh adapted
on L2-norm, perfect gas model (12, 272 elements, M∞ = 4).

For the perfect gas model, the exact solution for the drag coefficient can be computed
from the shock-jump relations and Prandtl-Meyer expansion around the tip of the airfoil.
The left plot in Figure 10 shows a comparison between the exact values and the solution
computed on adapted grids.

Figure 10. Diamond Airfoil, computation of drag coefficient. (Left): Comparison with exact values,
perfect gas model. Solution on adapted grids with ca. 20, 000 elements. (Middle/Right): perfect
gas/high-enthalpy frozen flow model. Convergence, M∞ = 8 using L2-based Mesh optimization.
The solid red line is the reference value. The dashed red line indicates values within 1% of the
reference value.

The high-temperature models admit calorically imperfect gases. For this model the
perfect-gas solution for the drag is not exact. Nevertheless, deviations are relatively small,
and the perfect gas solution has been used as a reference value for all models. Figure 10
shows the convergence of the drag coefficient as a function of the number of mesh elements.
Both the perfect gas model and the high-temperature model produce a solution within
1% of the drag value on relatively coarse meshes. Empirically, it has been found that the
convergence as a function of DoF is fairly insensitive to the amount by which they are
increased. The regeneration of the mesh, based on the metric, results not only in increase
of DoF, but also in redistribution. As a consequence, a higher fraction of the added DoF
(and even the existing DoF) can be placed in critical regions, and thus be leveraged more
effectively.

As we discussed in Section 3.1, we use a generic shock-capturing term. Up to the Mach
numbers discussed here, shocks are captured cleanly. Moreover, the adaptation process,
which is able to isolate shocks on anisotropic elements, is an important ingredient in the
overall shock-capturing approach. In fact, up to moderate Mach numbers, the adaptation
and the diffusion injected by the numerical fluxes sufficiently stabilize the solution, and
converged solutions can be obtained without nonlinear stabilization provided by the shock
capturing term. A representative result is shown in Figure 11.
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Figure 11. Diamond airfoil (M∞ = 4), perfect gas model. Line plot of non-dimensional pressure at
y = 0.1. (Left): No shock capturing. (Right): Shock capturing using Equation (20).

For higher Mach number, the oscillations produced at discontinuities become signifi-
cant enough to impede the convergence process, and the shock capturing term must be
used to obtain fully converged steady-state solutions.

Convergence of force coefficients can be dramatically improved with goal-oriented
adaptation. For this purpose, we used the methods of Section 4 with the adjoint-based
modification discussed in [22]. Figure 12 shows a representative mesh produced when
adapting on the drag coefficient.

Figure 12. (Left): Diamond airfoil M∞ = 4, p = 2, perfect gas model. Drag-adapted mesh with ca.
6187 triangles. Compare to Figure 9. (Right): Magnified view.

Clearly, the shock is not resolved beyond the near field. In contrast, as we showed in
Figure 9, norm-based optimization will resolve the entire shock into the farfield, irrespective
of whether or not this is necessary for accurate computation of the drag. The goal-oriented
approach can thus potentially save a large number of degrees of freedom. Indeed, Figure 13
demonstrates that adjoint-based adaptation leads to much better convergence in the tar-
get quantity.

Finally, Figure 14 shows the convergence of the nonlinear solver on adapted grids.
These curves are representative for the convergence on all the adapted meshes. Ex-

ceptions to the pattern of reliable convergence begin to emerge for M∞ = 8, where a
few runs on intermediate adapted meshes did not fully converge. (For M∞ = 4 all runs
converged to machine zero.) The rightmost plot in Figure 14 shows an example, where the
residual convergence stalls after a reduction of about three orders of magnitude. For even
higher Mach numbers, as we mentioned in Section 3.1, the currently implemented generic
shock-capturing procedure is not expected to be the best choice.
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Figure 13. Diamond Airfoil, drag convergence. (High-temperature model, M∞ = 8, p = 2). The
right figure shows a magnified view. The solid red line is the reference value. The dashed red line
indicates values within 1% of the reference value.

Figure 14. Solver Convergence on adapted mesh for Diamond Wing Test Case, goal-oriented adapta-
tion on drag. (Left): M = 4. (Middle) M = 8. (Right): M = 8. Example of stalled convergence.

6.2.2. NACA 0012

Consider supersonic to hypersonic inviscid flow around the NACA0012 airfoil. This
case is somewhat more challenging, as it includes a stronger normal shock along the
stagnation line, and a curved shock, bending into the farfield. Again, we use goal-oriented
adaptation, based on the drag coefficient. Figures 15 and 16 show adapted meshes.

Figure 15. Drag-adapted mesh for NACA0012 Airfoil test case (6756 elements, M∞ = 3, p = 2). The
right figure shows a magnified view.

Shock are again resolved only as far as necessary for the computation of the drag
coefficient. For free stream conditions M∞ = 5, Figure 17 shows a plot of Mach number
and pressure along the stagnation line, using the solution obtained from the high-enthalpy
frozen flow model (Model 2 in Table 1). It is clearly visible that the shock is well-captured.



Aerospace 2021, 8, 322 21 of 24

Figure 16. Drag-adapted mesh for NACA0012 Airfoil test case (6711 elements, M∞ = 5, p = 2.). The
right figure shows a magnified view.

Figure 17. HDG, p = 2. Mach number (left) and pressure p/p∞ (right) along the stagnation line.

7. Conclusions and Outlook

We presented design and initial verification of a high-order, HDG-based solver for
high-speed flows, and, more broadly, flows requiring non-trivial physical modeling. We
used object-oriented programming, and algorithmic differentiation (AD), to encapsulate
different aspects of the modeling. Fluxes, source terms, and boundary conditions are
implemented inside a model class, which is made available to the solver as a template
parameter. These functions are differentiated automatically using the AD data structure.
Closure equations and transport coefficients are implemented in a separate class, made
available to the model, again as a template parameter. This hierarchical approach allows
fairly flexible, non-intrusive implementation of physical models, and will thus serve as
a stepping stone for future endeavors. For example, work is underway to implement
modeling for flows in local thermodynamic equilibrium (LTE), as well as plasma flows.
In addition, the shock capturing mechanism needs to be extended to multispecies non-
equilibrium models and higher Mach numbers.

Moreover, future work will focus on more extensive validation campaigns regarding
species diffusion and, in particular, heat flux into surfaces. In this context, extensions
are planned to deal with gas-surface interaction on catalytic surfaces. This requires more
complex boundary conditions than those considered in the present paper. Nevertheless,
the same data structure can be used.

Efficient simulation of compressible flows using high-order methods requires adap-
tation. The metric-based approach was shown to be a very promising approach for high-
speed flow. Moreover, the AD data structure in conjunction with adjoint-consistent dis-
cretization enables one to use a discrete adjoint approach for new physical models without
implementation overhead. The adjoint-based approach leads to superior results, provided
a suitable target of the computation can be identified. In the present paper, drag has been
used. However, heat flux, in conjunction with non-adiabatic walls, is also a viable target,
and will be considered in future work.
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