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Abstract: Resonant response of turbomachinery blades can lead to high cycle fatigue (HCF) if the
vibration amplitudes are significant. Therefore, the dangerousness assessment of the resonance
crossing is important. It requires accurate predictions of the aerodynamic excitation, damping, and
response, which will consume immense computational costs. The novel aspect of this study is the
development of an efficient approach, which incorporates the time transformation (TT) method to
predict the aerodynamic excitations and the harmonic forced response method to obtain the response
levels. The efficiency and accuracy of this method were evaluated by comparing with traditional
methods for the resonance crossing excited by upstream wake in a 1.5 multistage compressor. For the
aerodynamic excitation, discrepancies of ±2% at the mean pressure and ±25% at the harmonic
pressure in most areas expect for the blade root were observed, but the calculation time required by
the TT method was only 5% of that by the time-marching method. Moreover, response levels with
the same aerodynamic forces were compared between the harmonic forced-response and transient
dynamic methods. Small differences in the displacement and stress variables were observed; the
relative deviation was smaller than 2% with only 1% computing time compared with the transient
method, indicating the high accuracy and efficiency of the efficient approach.

Keywords: resonant response; time transformation method; harmonic forced response method;
CFD simulations; wake excitation

1. Introduction

Forced vibration is an important aero-elastic phenomenon in turbomachines caused
by aerodynamic or mechanical excitations, which can lead to high cycle fatigue (HCF)
damage. It can be divided into two types according to the excitation sources [1]. One is the
classical forced vibration with the excitation from the wake and potential disturbances of
the adjacent blade rows. The excitation frequencies, which are the blade passing frequency
(BPF) and its harmonics, are relatively high and thus excite vibrations of higher order
modes [2,3]. The other is caused by a loss of symmetry, such as the inlet distortion or
non-uniform temperature field [4,5]. The excitation frequencies are usually lower and
called low engine order (LEO) excitations.

In the forced response analysis, a Campbell diagram is commonly used to identify
possible resonance crossings so as to avoid aero-engines working at these points as much
as possible. Unfortunately, it is impossible to remove all resonance crossings, and conse-
quently the assessment of the response levels is important. The numerical approaches to
predict the response levels are mainly strong coupling and weak coupling approaches [6].
The latter is widely used in the engineering design due to its lower computational effort.
In this approach, the aerodynamic forces and structure vibration are computed separately
without considering the impact of vibration on the flow field.
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For the weak coupling approach, the determination of aerodynamic forces is the core.
It is generally achieved by CFD simulations of the transient flow. Traditional methods
usually need multi-blade models or even the whole annulus to ensure the equal pitch
of adjacent blade rows, which is computationally demanding and difficult to operate in
practice. In order to reduce the computational effort, various methods have been developed
over the past few years. These methods attempt to solve the unsteady flow by only one or a
few blade passages based on the frequency-integration and time-integration approaches [7].
Due to the different assumptions, each method has its advantages and disadvantages.

The representative frequency-integration methods are the nonlinear harmonic (NLH)
method [8] and the harmonic balance (HB) method [9]. The basic principle of these
methods is to transfer the governing equations and boundary conditions from the time to
frequency domain through the Fourier series. However, when the flow has strong nonlinear
characteristics, these methods will incur large errors due to the linearization assumption.

For the time-integration methods, they consist of the time-shifted methods and the
scaling methods. The former is mainly the Fourier transformation (FT) method, which is
based on the time shift and phase shift [10], and it is improved by introducing the Fourier
series decomposition at the rotor/stator and periodic interfaces [11,12]. This makes the
significant data compression and efficiency improvement with two blade passages modeled
per row, but it usually needs more calculation periods to reach convergence [13].

In terms of the scaling methods, it mainly includes the following three methods:
the geometry scaling (GS) method [14], the profile transformation (PT) method [15], and the
time transformation (TT) method [16]. The first one requires an adjustment of the blade
numbers to reduce the blade passages in the modeling. The PT method scales the flow
profiles at the rotor/stator interface (stretches or compresses) to meet the pitch requirement.
However, due to the variation of blade numbers and the scaling treatment of the interface
profile, the predictions of the BPF are both inaccurate in the above two methods.

The TT method is an attractive method, which is developed based on the PT method
and the time-inclining method [17]. In addition to the circumferential profile scaling at
the interface, time correction is also applied at the rotor/stator interface. Thus, it not only
retains the advantages of the PT method, but it also can accurately predict the disturbance
frequency. Compared with the FT method, this method can quickly predict the unsteady
flow field, but it is not suitable to all pitch ratios. Fortunately, the pitch ratio of most
compressor and turbine blades is within the scope of this method (0.75–1.4). Moreover,
two or more blade passages per row can be modeled to meet the requirement.

The TT method was validated on several test cases [12,18–20]. However, the discussion
of this method in the open literature was more concerned about the total performance
parameters (mass flow, efficiency, and total pressure ratio) and time-averaged variables.
Few comparisons of pressure disturbance at the blade surface were reported, which are
important to the forced response analysis. In this article, the results of pressure disturbance
by the TT method and the traditional method (time-marching method) are compared in
detail, and the relative error of TT method is clarified.

After the determination of the aerodynamic excitation, another important task for
the weak coupling approach is to calculate the structure vibration. In general, transient
dynamic analysis is used to determine the dynamic response of a structure under the
time-dependent loads. The equations of the motion are solved as a set of static equilibrium
equations by the Newmark time-integration method at different instantaneous times to cal-
culate the dynamic response [21]. It enables consideration of all types of nonlinearities but
with intensive computational effort. In this study, a new method was proposed to predict
the response levels, and it is called the harmonic forced-response method. It converts the
aerodynamic excitation from the time domain to the frequency domain, which significantly
improves the computational efficiency. Compared with the traditional method (transient
dynamic method), the accuracy and computational efficiency of this method are clarified.

The purpose of this study was twofold: (i) to ensure the applicability and accuracy of
the TT method in the prediction of the unsteady flow and (ii) to investigate the accuracy
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and efficiency of the new method—the harmonic forced response method. The article is
organized as follows. In the first part, theoretical equations regarding the prediction of
aerodynamic excitation, damping, and response are discussed. Then, the test case and reso-
nance crossing excited by the upstream wake are presented. In Section 4, the predictions of
aerodynamic excitations are investigated using the time-marching (TM) method with the
full-annulus model and the TT method with a reduced model to evaluate the effectiveness
and accuracy of the TT method. In addition, the aerodynamic damping is presented and
regarded as the input of the response analysis. At the end, blade vibration stresses from
the harmonic method and the transient dynamic method are compared based on the same
excitation to validate the accuracy of the efficient harmonic method.

2. Investigation Methodology

For the prediction of the response levels, a weak coupling approach was applied. It
involves CFD simulations to determine the aerodynamic excitation and damping, as well
as the FE structural simulations to determine the response levels. The CFD computations
were conducted using ANSYS CFX and the structural analyses with the ANSYS mechanical
solver. The flow chart of the investigation methodology is depicted in Figure 1.

Figure 1. Flow chart of the investigation methodology.

The first step was to create an FE model, which was utilized to predict the natural
frequencies and mode shapes by means of modal analysis. Based on the modal results,
a Campbell diagram can be depicted to determine the possible resonance crossings and
subsequent investigated conditions. Next, two CFD simulations, the aerodynamic excita-
tion and damping, were required to carry out at the investigated condition based on the
CFD models. Then, the predicted excitation and damping were applied to the FE model for
the forced response analysis, which provides the information of the vibration amplitude
and stress levels. Details about the prediction of the aerodynamic excitation, damping,
and response levels are provided in the following part.

2.1. Prediction of the Aerodynamic Excitation

For the transient flow simulation, there are two crucial challenges. One is the treatment
of the unequal pitch between blade rows. It can be solved by the full wheel model, but
the computational effort is unacceptable for most designers. The second is the pitch-wise
periodic boundary condition, which is important for the application of the reduced model.
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For the unequal pitch challenge, the rotor/stator interface treatment in the TT method is
the same as PT method, which stretches or compresses the flow profiles at the interface via
flux scaling. However, this leads to a frequency error proportional to the pitch ratio. In the
TT method, it is handled by transforming the time coordinates into the transformed time,
which also solves the second challenge in an effective phase-shifted form. Details about the
treatment are introduced as follows.

The unsteady, two-dimensional Euler equations are used to present the principle of
the TT method. The Euler equation in vector form is shown as Equations (1) and (2).

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0 (1)

U =


ρ

ρu
ρv
ρE

 F =


ρu

ρu2 + p
ρuv
ρuE

 G =


ρv

ρuv
ρv2 + p

ρvH

 (2)

where ρ is the density, u and v are the velocity components, p is the pressure, and E and H
refer to the total energy and enthalpy, respectively.

For an ideal gas with a constant specific heat ratio, the pressure and enthalpy can be
expressed as Equations (3) and (4):

p = (γ− 1)
[
ρE− 1/2ρ

(
u2 + v2

)]
(3)

H = E + p/ρ (4)

When the stator and rotor pitches are inconsistent, the phase-shifted periodic condi-
tions is applied. It means that the pitch-wise boundaries R1/R2 and S1/S2 are periodic
to each other at different times. Figure 2 shows that the relative positions of R1 and S1
at a certain time t0 are the same as those of R2 and S2 at the time t0 + ∆T. Thus, the flow
conditions on rotor and stator boundaries can be given as:

UR1(x, y, t) = UR2(x, y, t + ∆T) (5)

US1(x, y, t) = US2(x, y, t + ∆T) (6)

∆T =
PR − PS

VR
(7)

where PR and PS are the rotor and stator pitches, respectively, and VR is the velocity of
the rotor.

Figure 2. Phase-shifted periodic boundary conditions.
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Then, the set of space–time transformations in Equation (8) was applied to the new
coordinate system. It is sloped in time such that if a node at y = 0 is at time t, then the
periodic node at y = PR,S is at time t + ∆T. Thus, one can achieve the spatial periodicity
simply in this new computational plane with a fixed computational time, as shown in
Equations (10) and (11).

x′ = x y′ = y t′ = t− λR,Sy (8)

For rotor : λR = ∆T/PR For stator : λS = ∆T/PS (9)

UR1
(

x′, y′, t′
)
= UR2

(
x′, y′ + PR, t′

)
(10)

US1
(
x′, y′, t′

)
= US2

(
x′, y′ + PS, t′

)
(11)

where (x, y) are the physical spatial coordinates, t is the physical time. (x′, y′) are the
transformed spatial coordinates, t′ is the transformed time or computational time.

The Euler equations were solved in the (x′, y′, t′) transformed space–time domain,
which can be written as Equation (12).

∂

∂t′
(U− λG) +

∂F
∂x′

+
∂G
∂y′

= 0 (12)

The rotor and stator passages have the different period T and time-step size ∆t,
as shown in Equations (13) and (14).

TS = PR/VR = n∆tS (13)

TR = PS/VR = n∆tR (14)

The frequency error then can be resolved by the combination of time transformation
applied in the governing equations and the time-step difference at the interface.

2.2. Prediction of the Damping

The damping consists of the mechanical damping and aerodynamic damping.
The former mainly includes the material damping and the dry friction damping related to
the junction at the structure parts interface. For the blisks, the mechanical damping was
very small and can be neglected compared with the aerodynamic damping.

Aerodynamic damping is related to the coupled action between the unsteady forces
and blade motion. The unsteady forces are generated by the motion of the blade itself.
The aerodynamic damping is calculated by the energy method [22] with the isolated CFD
model in this study. It assumes that the blade vibrates at the interested natural frequency,
mode shape, and nodal diameter. Then, the unsteady flow and mesh deformation due to
the blade vibration can be predicted. Finally, the aerodynamic work Waero in one vibration
period was calculated by Equation (15).

Waero =
∫ t0+T

t0

∫
s

p
→
v ·→n dSdt (15)

where T is the vibration period, S is the blade surface area, p is the pressure on the blade
surface, v is the velocity, and n is the surface unit normal vector.

The aerodynamic damping ratio ζaero based on the concept of equivalent viscous
damping proposed by Moffatt [23] can be calculated by Equation (16)

ζaero = − Waero

2πA2
cfdω2

(16)

where Acfd refers to the vibration amplitude in the CFD simulation, and ω refers to the
vibration angular frequency.
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2.3. Prediction of the Vibration Response

The basic equation of motion solved by the transient dynamic analysis is:

M
..
X(t) + C

.
X(t) + KX(t) = F(t) (17)

where M, C, and K are mass, damping, and stiffness matrixes, respectively.
..
X,

.
X, and X are

the nodal acceleration vector, the velocity vector, and the displacement vector, respectively.
F refers to the load vector.

According to the characteristics of the aerodynamic excitations in the forced vibra-
tion, nodal forces and displacements can be expressed as multi-harmonics, as shown in
Equation (18). This makes it possible to obtain the response level by harmonic analysis,
which requires the loads to vary harmonically with time. The harmonic forced-response
method solves the response in the frequency domain with harmonic forces from the un-
steady simulations; the flow chart of this method is shown in Figure 3.

Figure 3. Flow chart of the harmonic forced-response method.

For the harmonic loads, the information of amplitude, phase angle, and forcing
frequency is required. In most cases, only the excitation corresponding to the resonance
crossing, such as the first harmonic of the upstream wake excitation here, has attracted
much attention. The amplitude and phase angle of the loads are determined by fast Fourier
transform (FFT) analysis. The out-of-phase loads are specified in real and imaginary
components, as shown in Equation (19). Then, the Equation (17) can be rewritten in
Equation (21), which calculates only the steady-state vibration response of the structure.

F(t) = ∑ fje
iωjt X(t) = ∑ xje

iωjt (18)

f = faeiψeiωt = (f1 + if2)e
iωt (19)

x = xaeiψ′eiωt = (x1 + ix2)eiωt (20)(
−ω2M + iωC + K

)
(x1 + ix2) = (f1 + if2) (21)

where:

• fa and ψ are the amplitude and the phase angle of the loads;
• f1 and f2 are the real and imaginary parts of the loads;
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• xa and ψ′ are the amplitude and the phase angle of the displacements;
• x1 and x2 are the real and imaginary parts of the displacements.

Besides, the mode-superposition method is used to solve the Equation (21). This pro-
jection on the modal space in Equation (22) allows to solve the problem by few modal
degrees of freedom.

x = φq (22)

where φ is the mode shape matrix and has the form as φ = [ϕ1ϕ2ϕ3 · · ·ϕl ]. q refers to the
participation of the individual mode shape in the response.

Then, the vibration equation in the modal coordinate can finally be derived as
Equation (24):

φT
(
−ω2M + iωC + K

)
φq = φTf (23)(

−ω2m + iωc + k
)

q = g (24)

where m = φTMφ, c = φTCφ, k = φTKφ, and g = φTf are mass, damping, stiffness,
and aerodynamic force matrixes in modal space, respectively.

The damping is modeled as the Rayleigh damping, expressed as Equations (25)–(27).

C = αM + βK (25)

α =
2ζiωj − 2ζ jωi

ω2
j −ω2

i
ωiωj (26)

β =
2ζiωi − 2ζ jωj

ω2
i −ω2

j
(27)

where ζ is the damping ratio, ω is the vibration angular frequency, and i and j refer to the
modal orders.

3. Test Case

The transonic compressor geometry studied here was a 1.5-stage low-pressure com-
pressor (LPC) with 19 adjustable variable inlet guide vanes (VIGV), 22 rotor blades, and
42 stator blades, as shown in Figure 4. The density of the rotor blade was 4680 kg/m3;
the elastic modulus was 112 GPa; and the Poisson’s ratio was 0.313. The FE model of the
rotor blade is shown in Figure 5, which was composed of eight-node hexahedral elements.
Figure 5 shows the positions of the maximum value of each physical quantity in the re-
sponse analysis. Fixed boundary conditions were imposed on the blade root. The static
structural analysis was performed under the consideration of the centrifugal force. Then,
the pre-stressed modal analysis was carried out for various rotational speeds to determine
the mode shapes and vibration frequencies.

From the results of the modal analysis, the Campbell diagram is illustrated in Figure 6
to determine the operating points for further investigation, in which the rotational speed
was normalized by the design rotation frequency and the frequency by an arbitrary value.
The possible resonance crossings with the BPF (EO19, EO42) and its multiples (EO38)
can be identified within the operating speed range of the compressor. According to the
vibration test, the vibration stress was significant at a 74% rotational speed. Thus, it was
chosen for the investigation, where the vibration mode M8 occurs due to the upstream
wake excitation. The predicted mode shape of the M8 is depicted in Figure 7, which is
a high-order mode with a large vibration amplitude near the leading edge at the blade
tip region. The comparisons of the different methods were also limited to the resonance
rotational speed of 74% rotational speed and the M8 mode.
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Figure 4. Model of the multistage compressor.

Figure 5. FE model of the rotor blade.

Figure 6. Campbell diagram for the BPF and multiples.
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Figure 7. Rotor blade M8 mode shape (left: total displacement, right: von Mises stress).

4. Results and Discussion

This section follows the presented workflow in Figure 1, whereby the comparison
of the two simulation approaches, the TM and the TT method, prediction of the aerody-
namic damping, and sections on the validation of the harmonic forced response method
are included.

4.1. Aerodynamic Excitation
4.1.1. Steady Simulation

The multi-block hexahedral grids were generated using ANSYS Turbogrid software.
A constant tip clearance of 0.63% of the rotor tip chord was modeled in the rotor blade.
The inlet and outlet domains were extended away from the stator blades to about 1.5 times
the blade chord length. After an additional mesh dependency study, the mesh was illus-
trated in Figure 8. It contains approximately 450,000 nodes for each passage, with a suitable
near wall thickness for the k–ε turbulence model. All CFD computations were simulated as
an ideal gas with the second-order spatial and temporal discretization. A mixing-plane
interface was used for the rotor/stator connection in the steady simulation. A non-slip
and adiabatic wall condition was set for all walls. The inlet boundary conditions were
specified with constant total pressure, total temperature (101325 Pa, 288.15 K), and axial
inflow. The average static pressure boundary was used to traverse the speedline from
choke to near stall.

Figure 8. Computation mesh for the CFD simulation.

The performance map for the 1.5 multistage compressor at the 74% rotational speed
was computed, and the operating point was determined based on the experimental data,
as shown in Figure 9. It was normalized by the mass flow and pressure ratio at the operat-
ing point. It can be seen that the efficiency of the operating point was almost the highest.
For a better understating of the flow properties at the operating point, the Mach number
and surface streamline distributions are given in Figures 10 and 11. It can be observed that
due to the low rotational speed, there was no shock wave in the passage, and most areas
were subsonic flow. In addition, obvious low-speed regions existed after the rotating axis of
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the VIGV and the leading edge of the R1 at the suction surface. The range of the low-speed
region became larger with the increase in the blade span. From the streamline distribution,
it can be intuitively seen that large-scale separation occurs at the suction surface of the
VIGV and the leading edge of the R1 in the tip region, which was accompanied by the
intense three-dimensional radial flow.

Figure 9. Performance map for the multistage compressor.

Figure 10. Mach number distribution of the operating point.

Figure 11. Streamline and pressure distribution of the operating point.
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4.1.2. Unsteady Simulation

For the unsteady simulation, two models of the 1.5 multistage compressor were
created depending on the TM and TT methods. One was a 360 deg full-annulus model for
the TM method, consisting of 19, 22, and 42 passages per row. A sliding interface was used
for the rotor/stator connection. The other contains only a single flow passage both for the
VIGV and R1, as well as two passages for the S1 for the TT method. The time transformation
treatment was used for the rotor/stator interface. In order to capture the dominant blade
passing frequencies from the VIGV and S1 on the rotor blade, the temporal discretization of
1596 timesteps per revolution was defined for the unsteady simulations, which corresponds
to a resolution of 84 timesteps per VIGV pitch and 38 timesteps per S1 pitch. All simulations
were performed for four revolutions to ensure the convergence of the solution. They used
identical conditions except for the rotor/stator interface treatment.

The relative computational effort for the TT and TM methods are listed in Table 1.
The TT method led to a significant reduction in mesh nodes by a factor of 20.7. The memory
consumption refers to the memory required to store the computing solutions in one com-
mon period (one revolution). Obviously, the TT method was much faster than the TM
method considering solely the mesh nodes reduction, as listed in Table 1. In fact, the compu-
tational efficiency of the TT method was higher, because the TT method converged faster.

Table 1. Comparison of computational effort.

Method Passages
Required

Total
Time-Steps

Relative
Mesh Nodes

Relative Cost in
Memory

Relative
Computing Time

TT 4 6384 1 1 1
TM 83 6384 20.7 1106.6 19.8

For the forced response analysis, it was important to validate the predict accuracy of
the unsteady pressure and the dominant BPF from the VIGV and S1 on the rotor blade.
An accurate prediction at the tip region was crucial for the evaluation of the aerodynamic
excitation because most vibration modes showed significant amplitudes at this location.
Four characteristic time steps were selected to compare the pressure distributions at the
95% span from the TM and TT methods, as shown in Figure 12. The transient interaction
of the stator wake with the rotor at the interface showed a good agreement. The largest
difference between the two methods is that the TM method presented non-uniformity
along the circumferential direction (as shown in the dotted circle); however, the TT method
cannot simulate this phenomenon. While there are some differences in detail, the predicted
flow properties were very similar.

After the comparison of the flow field simulation, closer attention to the frequency
capture ability was also required. The time-resolved pressure data for a single revolution
were transferred into the frequency domain by an FFT analysis, as shown in Figure 13.
Based on the results in Figure 12, four monitors placed at the 95% span were selected.
One monitor was placed at the VIGV passage at an approximately 85% axial location,
while the others were placed in the rotor passage at the 35%, 70%, and, in the S1 passage,
at the 15% axial locations. Again, comparisons between the TM and TT methods were
made. The spectrum of the pressure had a good agreement and showed the influence of the
corresponding BPF as well as its harmonics, as expected. At the stator monitors (a and d),
the rotor passing frequency fR1 and higher harmonics were captured in both the TM and
the TT methods. At the rotor monitors (b and c), the signals were much more complex
from both the interaction of the VIGV and S1. The TT predictions were close to the TM
solution but had a loss of some harmonics, such as the linear combination of fS1 and fVIGV.



Aerospace 2021, 8, 312 12 of 21

Figure 12. Comparison of instantaneous pressure distributions at the 95% span.

Figure 13. Comparison of the pressure spectrum for the four monitors.
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The harmonic pressure amplitude from the VIGV wake, which was responsible for the
blade excitation for the M8 mode, was compared by the two methods at 65% and 90% spans,
as shown in Figure 14. A better accordance with the TM method can be observed at the
suction surface. Though, the amplitude showed relevant differences at the pressure surface,
the comparison showed qualitatively the same distribution along the blade chord.

Figure 14. Harmonic pressure amplitude at 65% span (left) and 90% span (right).

For further comparison, the distributions of the mean pressure and harmonic pressure
from the VIGV wake on the whole rotor blade surface are given in Figures 15 and 16.
It showed an excellent agreement at the mean pressure distribution, and the error in most
areas was in the range of −2% to 2%. In terms of the harmonic pressure, it could be
observed that the TT method delivered some deviations compared with the TM method.
In the critical area for the M8 mode, the tip region near the leading edge, the TT method
delivered a similar prediction on the blade surface with the TM method. There was a
discrepancy of ±25% at most positions expect for the blade root. Fortunately, the harmonic
pressure amplitude was small and the vibration amplitude close to zero at these locations,
which would not affect the vibration at the tip region.

Figure 15. Mean pressure amplitude distribution of rotor blade, error = ( PTT − PTM)/PTM.
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Figure 16. Harmonic pressure amplitude distribution of rotor blade, error = ( PTT − PTM)/PTM

This was a highly encouraging result, since the TT method consists of only 4 passages,
whereas the TM method requires 83 passages. Given the acceptable relative deviation of
the harmonic pressure and the highly reduced computational time, the TT method can be
utilized to predict the aerodynamic excitation for the forced response analysis.

4.2. Aerodynamic Damping

An isolated rotor model with two passages was created for the aerodynamic damp-
ing calculation. The boundary conditions, including the total pressure, total tempera-
ture, flow velocity for the inlet boundary, and the static pressure for the outlet boundary,
were extracted from the steady simulation at the operating point. The global maximum vi-
bration amplitude of the blade was imposed at approximately 0.3% of the tip chord length.

It was set to resolve only one frequency and mode shape by the energy method
presented in Section 2.2, corresponding to the investigated resonance crossing M8 mode.
Furthermore, according to the resonance theory [24], only a nodal diameter of three can
be excited for the resonance crossings with the EO19, and the wave type was a forward-
traveling wave (FTW). Figure 17 represents the aerowork density distribution for the nodal
diameter of three. It is clear that the aerowork density at most areas was close to zero,
except that there was a large negative aerowork density at the leading edge in the tip
region, which corresponds to the position with large vibration amplitude of the M8 mode.
This led to a positive damping ratio of 0.3%.

Figure 17. Aerowork density distribution on blade surface for ND = 3 (FTW).
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4.3. Harmonic Forced Response

In this study, the normal component of forces resulting from the static pressure
was taken into account for the aerodynamic excitation. For the forced response analysis,
a transfer of the aerodynamic excitation from the CFD mesh to the FE mesh was required.
In the Ansys mechanical software, the X, Y, and Z components needed to be given for the
force loading. In the process of interpolation, the nearest neighbor approach can ensure
that the value of the variable is credible. However, the deviations of the force directions
might occur. Thus, the pressure interpolation was applied, which can automatically load
along the normal direction of the blade surface in the software.

A transfer of the harmonic pressure of the EO19 from the CFD simulation to the FE
mesh is depicted in Figure 18. The comparison shows excellent agreement between the
CFD and FE mesh with the pressure interpolation.

Figure 18. Comparison of the pressure interpolation.

According to the results of the aerodynamic damping ratio, the Rayleigh damping
coefficients α and β in Equation (25) were calculated by giving the damping ratio of the M8
and M9 modes as 0.3%. Due to the effect of damping and aerodynamic forces, the vibration
frequency of the structure will change compared with Figure 6, resulting in the offset of
the resonance point. In order to obtain the peak stress concerned in response analysis,
several calculations were carried out near the predetermined resonance frequency. In the
calculation, assuming that the aerodynamic excitation and damping remained unchanged,
the excitation frequency was changed at an interval of 0.5 Hz, and finally the peak stress as
well as its corresponding frequency (regarded as resonance frequency) could be obtained.

For the transient dynamic method, the aerodynamic excitation was determined as
1596 time-steps per revolution, corresponding to 84 steps in one period for EO19 excitation,
which can ensure the accuracy of the calculation results. In order to ensure the convergence
of the simulation, a total of 30 cycles were applied. Figure 19 shows the convergence history
of the monitor Usum in Figure 5. It can be seen that the results are convergent, indicating
that the choice of calculation cycle was appropriate. The subsequent spectrum analysis
extracted the stable results for the FFT analysis.
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Figure 19. Convergence of transient dynamic calculation.

For the harmonic forced response method, the result did not depend on the time-steps
but on the selected modes. All modes need to be considered in theory to obtain accurate
response results, but this is unrealistic. For the M8 mode resonance concerned in this study,
the 10, 20, and 50 modes were selected to describe the response characteristics of the blade.
The results showed that the stress difference between the 10 and the 50 modes was about
5%, and the difference between the 20 and the 50 modes was less than 1%. Therefore,
the subsequent analysis used the 20 modes for calculation.

The harmonic analysis was compared with the transient analysis regarding the pre-
dicted results under the EO19 aerodynamic excitation at the resonance frequency, as shown
in Figures 20–22. The distributions of the fundamental physical quantities at the blade
surface, including three displacement variables Ux, Uy, and Uz; three normal stress vari-
ables Sx, Sy, and Sz; and three shear stress variables Sxy, Syz, and Sxz showed an excellent
agreement by the two methods, both at the real component and the imaginary component.

The above variables are the results in cylindrical coordinates. It can be observed that
for the displacement results, the circumferential and axial components are larger, and the
positions with large displacement were at the leading edge in the tip region, which is
consistent with the M8 mode. For the stress results, the circumferential normal stress Sy
and shear stress Syz were larger, and the larger position was near 20% of the chord length
in the blade tip region.

The relative deviations of the Usum and six stress variables at the positions with the
largest values (shown in Figure 5) were taken as the representative parameters to compare
the differences between the two methods, as listed in Table 2. All errors were in the range of
−2 to 1%, evidencing a great prediction accuracy of the harmonic forced response method.
Due to the transfer to the frequency domain and the steady-state solution, the harmonic
method significantly reduced the computational time by nearly 99% compared with the
transient dynamic analysis. Given the low relative deviations of the fundamental physical
quantities and the highly reduced computational time, the harmonic forced response
method can be utilized for evaluating the resonance response levels.
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Figure 20. Comparison of the displacement variables.
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Figure 21. Comparison of the normal stress variables.
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Figure 22. Comparison of the shear stress variables.
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Table 2. Relative deviation of the harmonic analysis to the transient analysis.

Method Normalized
Resonance Frequency 1

Usum
/mm

Sx
/MPa

Sy
/MPa

Sz
/MPa

Sxy
/MPa

Syz
/MPa

Sxz
/MPa

Computing
Time

Transient 0.7419 0.102 4.37 17.30 5.49 5.12 9.14 2.84 ~30 h
Harmonic 0.7415 0.103 4.29 17.34 5.52 5.15 9.17 2.86 <5 min
Error/% −0.05 0.98 −1.83 0.23 0.55 0.59 0.33 0.70 −

1 Resonance frequency was normalized by the design rotation frequency.

The new method needed to convert the aerodynamic excitation from the time domain
to the frequency domain and express it in the form of amplitude, phase, and frequency.
Therefore, it is only suitable for harmonic loads and cannot simulate random vibration.
However, for the classical forced response caused by the excitation from the wake and
potential disturbances discussed in this study, this method can obtain accurate results.
In addition, although this method cannot obtain the response at all frequencies through one
calculation like the transient dynamic method, it can capture the main response quickly by
determining the significant excitation component in advance through a Campbell diagram.

5. Conclusions

In this study, a weak coupling approach was utilized to assess the blade vibration
response levels caused by the wake excitation in a 1.5 multistage compressor. Forced
response analyses with the FE model were carried out for the resonance crossing of the
M8 mode. The required aerodynamic excitation and damping were calculated by the
CFD simulations. In terms of the aerodynamic excitation, the commonly used unsteady
time-marching method was taken as the reference to validate the prediction accuracy
of the time transformation method. The two methods were compared regarding the
aerodynamic loads for M8 by the mean pressure and the harmonic pressure of BPF from
VIGV. The comparison between the TM and the TT methods showed a discrepancy of
±2% at the mean pressure distribution and ±25% at the harmonic pressure amplitude
in most areas expect for the blade root. Further investigations need to be done to point
out the possible reasons. Fortunately, the harmonic pressure amplitude was small, and
the vibration amplitude was close to zero at the blade root, which would not affect the
vibration at the tip region. It should be noted that the calculation time required by the TT
method was only 5% of that by TM method.

Moreover, the harmonic forced response method was compared to the commonly
used transient dynamic analysis at the investigated resonance crossing. Small differences
in the distributions of the fundamental physical quantities were observed, including three
displacement variables Ux, Uy, and Uz; three normal stress variables Sx, Sy, and Sz; and
three shear stress variables Sxy, Syz, and Sxz. A comparison of the response results by the
two methods at the positions with the maximum values showed that relative deviations
were smaller than 2% with a 1% computing time with respect to the transient analysis,
indicating the high accuracy and efficiency of the harmonic forced response method.

The investigations led to the conclusion that the acceptable relative deviation of the
aerodynamic excitation and accurate predictions of the resonance frequency and response
levels of the blade can be achieved by incorporating the TT method and harmonic analysis
in the weak coupling approach with a nearly 95% reduction in the computing time.
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