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Abstract: Large-amplitude excitations need to be considered for gust load analyses of transport
aircraft in cruise flight conditions. Nonlinear amplitude effects in transonic flow are, however,
only marginally taken into account. The present work aims at closing this gap by means of systematic
unsteady Reynolds-averaged Navier-Stokes simulations. The RAE2822 airfoil is analyzed for a variety
of sinusoidal gust excitations at different transonic Mach numbers. Responses are evaluated with
respect to lift and moment coefficients, their derivatives and the unsteady shock motion. A strong
dependency on inflow Mach number and excitation frequency is observed. Generally, amplitude
effects decrease with lower Mach numbers or higher excitation frequencies. The unsteady nonlinear
simulations predict lower maximum lift values and lower lift and moment derivatives compared
to their linear counterparts for lower frequencies in combination with large-amplitude excitations.
For the mid-frequency range, trends are not as clear. Additionally, it is shown that the variables of
harmonic distortion and maximum shock motion might not be reasonable indicators to predict a
nonlinear response.

Keywords: CFD; URANS; transonic flow; nonlinear aerodynamics; gust response; shock motion

1. Introduction

For aircraft design, large numbers of load cases need to be taken into account.
Large-amplitude excitations need to be considered especially for gust load computations.
Any large-amplitude excitation in transonic flow implies a nonlinear response and therefore
requires nonlinear methods for an adequate prediction. However, industrial practice still in-
volves time-linearized methods which are amplitude-independent [1–3]. There are multiple
reasons for that, such as short computational times and the robustness of the methods.

Since the 1970s, potential-theory-based methods were used as cornerstones in aircraft
industry, where one of them is the unsteady linear Doublet-Lattice method (DLM) [4].
Some of the method’s deficiencies can be eliminated easily using one of numerous DLM-
corrections [1,5–10]. In this way their short computational time can be preserved, which is
of paramount importance during an industrial design process. Lately, the increase in
computational power facilitated the application of time-linearized Reynolds-averaged
Navier-Stokes (RANS) equations in industry [3,11]. The equations include additional
physical effects such as the viscosity of the fluid. Still, they are independent of the excitation
amplitude, which makes them physically correct only for small-amplitude excitations.
This shortcoming needs to be accepted since the application of the nonlinear unsteady
RANS (URANS) equations seems still prohibitive with respect to computational time and
robustness in the industrial context.

A more modern branch in aircraft research focuses on the development of reduced-
order models (ROMs) for fast predictions of unsteady nonlinear flows, e.g., [12–15].
All these approaches are based on mathematical models only and underlying assumptions
are independent of the flow physics involved. Though physics-based models exist for the
prediction of unsteady nonlinear subsonic flow [16–18], it seems to be an open question if
such models can be developed for transonic flow with unsteady shock-induced separation
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as well. A theoretical framework based on physical correlations is currently not available
for this type of flow. In fact, there are only a few publications which focus on the physics of
unsteady nonlinear transonic flow. To the author’s knowledge, there are no experimental
studies on that topic and so the discussion is restricted to numerical data.

A publication by Dowell et al. [19] from 1983 seems to be the only one covering that
topic on a more fundamental level. The physics of large-amplitude excitations are studied
for a pitching NACA64A006 using a low-frequency transonic small-disturbance solver.
Lift and moment coefficients and their derivatives, as well as the unsteady shock motion
are analyzed at several inflow Mach numbers. A frequency- and amplitude-dependent
boundary between linear and nonlinear aerodynamic behavior is defined. The term
‘nonlinear’ is referring to 5% deviation from the linear pitching moment derivative. It is
shown that this boundary corresponds to a maximum motion of the recompression shock
of about 5% over the airfoil chord. Another central finding of Dowell et al. [19] is that
nonlinear effects decrease with increasing excitation frequency, in general. For a change of
the inflow Mach number the trend is not as clear.

After 1983, additional physical insight on transonic unsteady nonlinear effects was
gained only in the last decade [9,12,20–23], with increasing computational power and
growing trust in RANS-based methods for separated flows. Most studies analyze com-
plex three-dimensional, aeroelastically-coupled configurations encountering ‘1-cos’ gusts
since these broadband excitations are demanded by the Certification Specifications [24].
It is found that the application of nonlinear methods can either decrease or increase
computed peak loads in comparison to linear methods, depending on gust lengths and am-
plitudes [12,21,22]. Mallik and Raveh [22] suggest that this trend is also present for purely
aerodynamic responses of an airfoil. Observations in the frequency-domain reveal that an
increase of the gust amplitude leads to smaller response derivatives at lower excitation
frequencies, and larger response derivatives at higher frequencies [23]. This study also
shows that long ’1-cos’ gusts are more affected by amplitude effects than shorter gusts,
which is in agreement with [22].

The present work investigates if the results from the aeroelastically-coupled three-
dimensional simulations can also be reproduced for a purely aerodynamic system of a
two-dimensional airfoil in transonic flow conditions. Moreover, the results will provide a
variety of reference test cases for possible benchmark tests of unsteady nonlinear reduced-
order models.

The flow around the RAE2822 airfoil is computed using URANS simulations in time-
domain, which include the necessary physical effects. Sinusoidal gusts with different
amplitudes and gust lengths (i.e. frequencies) serve as excitation signals. Similar to Dow-
ell et al. [19], physical quantities such as lift and moment coefficients and their derivatives,
as well as the unsteady shock motion are assessed for four transonic Mach numbers and
two turbulence models. Additionally, the harmonic distortion and the maximum shock
motion during one period of excitation are examined. Their applicability with respect to
their judgment on the extent of arising nonlinearities is assessed.

The paper is structured as follows: Section 2 presents the applied flow solver. The nu-
merical mesh that is used for the computations is shown in Section 3. Test cases and
corresponding numerical settings are listed in Sections 4 and 5 presents the results. Steady
computations are shown in Section 5.1. The physical analysis of the nonlinear gust re-
sponses is covered in Section 5.2. Section 5.3 discusses the applicability of the harmonic
distortion and the maximum shock motion for their judgment on the extent of nonlinear-
ities. The conclusion is drawn in Section 6 and the Appendixes A and B list additional
information on convergence studies and the verification of linearity for the small-amplitude
excitations.

2. Flow Solver: DLR TAU-Code

Simulations are carried out using the DLR TAU-Code [25,26], which is a Finite-Volume-
RANS solver. A multigrid algorithm is used for all computations to improve convergence.
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The fluxes are spatially discretized applying a 2nd order central scheme. The solution is
marched to steady state using a local time stepping scheme [27] and the dual time stepping
algorithm of Jameson [28] is applied for the unsteady gust calculations with the field
velocity method [29]. Additional details on the numerical settings are given in Section 4.

For turbulent closure, the Spalart-Allmaras (SA) one-equation model [30] is chosen.
At far-field boundaries, the model is initialized using the ratio of turbulent to molecular
dynamic viscosity of µturb/µ = 0.5, see [31]. The SA model is a turbulence model that
is widely used in aircraft aerodynamics. Though it uses only one equation for turbulent
closure, it contains the most important physics that are necessary to compute transonic
separated flow in a reasonable agreement to experiments [32]. Moreover, it is a numerically
robust model, which is a very important aspect for a broad parameter study such as the
one considered in the current paper. Some of the test cases are also computed using the
two-equation model Menter Shear-Stress Transport (SST) [33] in order to estimate the
impact of a different turbulence model, see Section 5.2.7.

3. Numerical Mesh for the RAE2882 Airfoil

The RAE2822 airfoil was designed and extensively tested in wind tunnels during the
1970s [34]. Its design condition is defined at Mach 0.66 at an angle of attack of α = 1.06 deg,
where the airfoil shows a subsonic rooftop-type pressure distribution with rear-loading [34].
At higher Mach numbers, transonic pressure distributions develop that are similar to the
ones from typical supercritical airfoils. The RAE2822 airfoil has a maximum thickness
of 12.1% and is widely used for validation of turbulence models in transonic flow condi-
tions [35–37].

The results are presented for a CFD mesh with about 240.000 nodes, which is depicted
in Figure 1. The upper and lower surface of the airfoil are discretized with 300 cells each.
The cell size on the main part of the airfoil is about x/c = 0.004, whereas the leading edge
has a finer spacing. It is a hybrid mesh which consists of quadrilateral cells in the vicinity
and the wake of the airfoil, see Figure 1b,c, and triangular cells in the remaining parts of
the mesh. The farfield extends to a distance of 100 chords in every direction from the airfoil,
see Figure 1a. A wall-resolved approach is used and the distances of the first off-body
grid nodes satisfy y+(1) < 1.0. A grid convergence study is shown in Appendix A.1 and
demonstrates the validity of the current mesh.

(a) (b) (c)

Figure 1. Hybrid CFD mesh for the RAE2822 airfoil with about 240.000 nodes. (a) Far-field mesh,
(b) Quads in the near-field and the wake, (c) Close-up of the near-field mesh.

4. Test Cases and Numerical Settings

Gust encounters are simulated for four different transonic Mach numbers. The Reynolds
number of 6.5 Mio is based on the reference chord length of lre f = c = 1 m. Figure 2 depicts
the sinusoidal gust velocity WG(t, x) around an airfoil, which is used for the excitation of
the flow field. The gust length is denoted by LG and the gust amplitude by ŴG. The gust
moves over the airfoil with the freestream velocity U∞. So each point in space x is ex-
cited by a gust with the same angular frequency ωG, but with a different phase shift
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φG(x). This phase shift depends on a reference coordinate xre f and the actual coordinate x.
The vertical gust velocity WG is defined by

WG(t, x) = ŴG · sin(ωG · t + φG(x)) (1)

= ŴG · sin
(

2πL−1
G

(
U∞t + xre f − x

))
. (2)

Figure 2. Sketch of a sinusoidal gust that is used for the excitation of the flow.

Gust lengths are varied between 2.5 m and 125.5 m, which results in reduced frequen-
cies k of 2.51 down to 0.05 using lre f = c:

k = ωGlre f U−1
∞ = 2πlre f L−1

G . (3)

The time step differs slightly for each Mach number, see Table 1, with a non-dimensional
time step size of τ = (∆x/U∞)/(c/U∞) = 0.0417. The time step size is held fixed for all
simulated gust lengths at one single Mach number, in order to be able to resolve the same
physical effects for each gust length. As a consequence, short gusts are simulated with less
time steps per period than long gusts, see Table 2. A convergence study for the time step
can be found in Appendix A.2. In any case, the applied CFL number is equal to 50.

Based on the convergence of the mean lift response and the first and second harmonic
response, it is decided to define three groups concerning the number of periods computed:
shorter gusts are simulated for 20 periods, longer gusts are simulated for 5 periods and all
gust lengths in between are simulated for 10 periods, see Table 2. The smallest simulated
gust amplitude is as low as ŴG = 10−6 m/s in order to guarantee a linear gust response,
see Appendix B. Gust amplitudes are increased up to 15.0 m/s, which is a gust amplitude
in the range as demanded by the Certification Specifications. All simulated gust amplitudes
are listed in Table 3.

Table 1. Time step size: ∆x = 4.17%c per time step for each Mach number.

Mach U∞ [m/s] dt [s] Inner Iterations

0.66 218.65 1.91× 10−4 400
0.68 225.28 1.85× 10−4 400
0.70 231.90 1.80× 10−4 400
0.72 238.52 1.75× 10−4 400
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Table 2. Numerical settings for different gust lengths, independent of the Mach number (SPP: steps
per period, ndt: total number of time steps).

LG [m] k SPP nr. of Periods ndt

2.5 2.51 60 20 1200
...

...
...

...
...

18.0 0.35 432 20 8640

21.0 0.30 504 10 5040
25.0 0.25 600 10 6000
31.5 0.20 756 10 7560
42.0 0.15 1008 10 10,080

62.5 0.10 1500 5 7500
125.5 0.05 3012 5 15,060

Table 3. Gust velocities and gust-induced angles of attack at Mach 0.70, using α̂G = arctan(ŴG/U∞).

ŴG [m/s] α̂G [◦]

1× 10−6 2.5× 10−7

0.1 0.025
1.0 0.25
3.0 0.74
5.0 1.24
7.5 1.85

10.0 2.47
12.5 3.09
15.0 3.70

5. Results
5.1. Steady CFD Results

Steady polars are computed for four different Mach numbers: Mach 0.66, 0.68, 0.70
and 0.72 at a Reynolds number of 6.5 Mio. Lift and moment polars are plotted in Figure 3.
All lift curves show typical results: with an increase of the Mach number, the maximum
lift decreases, but the linear lift curve slope increases. Pitching moment coefficients are
referenced to the quarter-chord and show more nonlinear trends than the lift coefficient.
The dashed vertical lines mark the steady angle of attack α0 = 3 deg, which is used
during the gust encounters. Pressure distributions for all Mach numbers reveal tran-
sonic conditions, see Figure 4a, and the skin friction coefficients show fully attached flow,
see Figure 4b.

Figure 5 gives an overview about separation and reattachment behavior for this airfoil
at the different Mach numbers. Within this work, a shock is detected, if the pressure
coefficient is lower than the isentropic critical pressure value Cp,crit, i.e., the local Mach
number is higher than 1.0. Then, the x-position of the maximum pressure gradient is
defined to be the shock position. Separation occurs if the x-component of the skin friction
vector C f x is lower than zero. The qualitative trends of the shock motion and separation
are independent from the Mach number: with increasing angle of attack, the shock moves
downstream. Until at some condition, shock-induced separation sets in and a separation
bubble is formed. Shortly after that angle of attack, the shock reaches its maximum
steady position and starts moving upstream, the so-called inverse shock motion sets in.
In this specific setting, trailing edge (TE) separation starts at an angle of attack which
roughly corresponds to the shock position furthest downstream. This specific fact is
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just a coincidence and cannot be generalized, as the onset of trailing edge separation is
very sensitive to the numerical settings, such as the CFD mesh and turbulence model.
At some higher angle of attack, the separation bubble at the shock foot and the trailing
edge separation merge and the flow behind the shock starts to be fully separated. Inverse
shock motion continues up to the maximum simulated angle of attack. There is a rather
large difference in the shock position for the different Mach numbers during the regular
shock motion, whereas shock positions during inverse shock motion seem to be almost
independent of the Mach number, and more depending on the steady angle of attack.
For lower Mach numbers, the transition from fully attached to fully separated flow happens
more gradual, i.e., over a wider range of angles of attack, than for higher Mach numbers.
Note that the maximum lift coefficient occurs when the shock-induced separation has set
in already, but before the flow is fully separated, compare with Figure 3a.

(a) (b)

Figure 3. Steady polars for the RAE2822 airfoil. (a) Lift, (b) Pitching moment.

(a) (b)

Figure 4. Local coefficients for different Mach numbers at 3 deg. (a) Pressure coefficients, (b) Skin
friction coefficients.

5.2. Unsteady Nonlinear Aerodynamic Responses
5.2.1. Definition of Variables

All gust computations are initiated based on the converged steady-state solutions
shown in the previous section. The unsteady lift increment ∆CL(t) is defined by

∆CL(t, ŴG) = CL(t, ŴG)− CL,0 , (4)

where CL,0 = CL(α0) which corresponds to the steady lift coefficient.
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Figure 5. Trends in separation and reattachment for the different Mach numbers.

For an evaluation of the system behavior, an amplitude-dependent frequency response
function (FRF) of the lift, CL,αG , can be defined using a discrete fourier transform (DFT)
such that

CL,αG (k, ŴG) =
N

∑
n=0

Cn
L,αG

=
N

∑
n=0

Cn
L

α1
G

(5)

=
DFT

(
∆CL(t, ŴG

)
DFT

(
αG(t, ŴG)

) . (6)

The complex-valued Fourier-coefficients of the lift are denoted by Cn
L for the respective

harmonic n, where the highest harmonic N is limited by the steps per period (SPP) for
each frequency N = SPP/2 + 1. The Fourier-coefficient of the first harmonic gust-induced
angle of attack is denoted by α1

G. Due to the purely sinusoidal excitation, the input signal
consists of only one harmonic. Note that only the very last period of each of the computed
time signals is used for the DFT.

As it is shown in Appendix B, the responses for the lowest gust amplitude of ŴG =
10−6 m/s can be regarded as approximately linear and therefore the computed first har-
monic of the FRF can be taken as linear reference value

C1,Lin
L,αG

(k) = C1
L,αG

(k, ŴG = 10−6m/s). (7)

The incremental linear maximum lift value then results in

∆CMax,Lin
L (k, ŴG) = |C1,Lin

L,αG
(k)| · |α1

G(ŴG)|. (8)

The same definitions hold for the pitching moment.

5.2.2. Time-Domain Representation

Exemplarily, Figure 6 shows lift and moment coefficients as a function of time for
two different gust lengths and the various amplitudes. The responses to both gust lengths
are differently affected by the amplitude nonlinearities, compare Figure 6a,b. They have
in common, that an increase in the gust amplitude leads to growing nonlinearities and
generally, the pitching moment coefficient is more affected by the large amplitudes. A non-
linear response leads to an earlier breakdown of the lift compared to the linear counter-
parts. For both gust lengths, first visible deviations from linearity are noticeable at about
ŴG = 7.5 m/s.



Aerospace 2021, 8, 7 8 of 25

(a) (b)

(c) (d)

Figure 6. Global coefficients for two gust lengths and various amplitudes at Mach 0.70.
(a) LG = 125.5 m (k = 0.05), (b) LG = 31.5 m (k = 0.20), (c) LG = 125.5 m (k = 0.05), (d) LG = 31.5 m
(k = 0.20).

The amplitude effects can be attributed to unsteady flow separation, which occurs
similarly in subsonic, dynamic stall-type flows [38]. Some details of the flow field are
shown in Section 5.2.6.

5.2.3. Frequency Content

Especially for the longer gust, higher harmonics are present in the high-amplitude
responses, which lead to several peaks in the lift and moment curves. Figure 7 illustrates
the distribution of the frequency content for the two gust lengths and 5 amplitudes each.
For the definition of the frequency content the reader is referred to Equation (6). Larger gust
amplitudes trigger higher harmonic content than smaller gust amplitudes. For the long gust
with ŴG = 15 m/s, even the 10th harmonic is only one order of magnitude lower than the
first harmonic. This large number of significant harmonics explains the multiple local max-
ima in the lift response shown in Figure 6a. For the shorter gust with ŴG = 15 m/s, the 10th
harmonic is at around 10−2 compared to the first harmonic. In a study by Iovnovich [39]
a threshold value for the higher harmonics of 10−3 is defined to mark the limit between
linear and nonlinear responses, while it is admitted that this is a quite arbitrary value.
For the cases treated here, a limit for the first 10 harmonics of |Cn

L|/|C1
L| = 10−3 would

mean that the gust amplitude needs to be lower than ŴG = 0.1 m/s.
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(a)

(b)

Figure 7. Normalized frequency content of the lift coefficient. (a) LG = 125.5 m (k = 0.05),
(b) LG = 31.5 m (k = 0.20).

The curves for the harmonics do not decrease monotonically. This is an important
fact to notice when reduced-order methods are applied such as the harmonic balance
method [15,40]. The shift of the mean value also needs to be taken into account, which is
plotted as 0th harmonic in Figure 7. Note that its values do not increase monotonically
with increasing excitation amplitude.

Figure 8 shows the complex first harmonic of lift and moment coefficients for all
simulated gust encounters. Both, maximum and minimum gust amplitudes are marked
by dotted lines for better identification. As already discussed in the previous section:
large amplitudes lead to deviations from the linear response (dotted blue curve) espe-
cially for low frequencies. The results in Figures 8 and 9 reveal that nonlinear responses
can result in lower or higher first harmonics compared to the linear reference values.
This holds for the lift as well as for the pitching moment, though the latter is not shown
here. Large amplitudes affect the frequency response functions up to a certain ’limiting
frequency’. This limiting frequency strongly depends on the variable studied. There is not
only a difference between lift and moment, but also between magnitude and phase. For the
gust test cases computed here, the limiting frequencies vary between k = 0.30 and k = 1.5,
compare Figures 8a–d.

Figure 9 shows the variations for the first harmonic of the lift FRF that result from
a change of the inflow Mach number. The maximum gust amplitude of ŴG = 15 m/s
has only little effect on the values for Mach 0.66, whereas at Mach 0.72, gust amplitudes
of even 1 m/s deviate from the linear results. This emphasizes the significant effect of
the steady-state conditions onto the unsteady results, which are also mentioned in [19].
Moreover, the sudden change of the trend for the larger amplitudes at Mach 0.72 and
k = 0.15 might be a hint to an involvement of different concurrent unsteady effects.
This ’kink’ can be observed with increasing intensity for all four Mach numbers.
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(a) (b)

(c) (d)

Figure 8. First harmonic of lift and moment frequency response functions (FRFs) for all simulated
excitations at Mach 0.70. (a) Magnitude of lift first harmonic, (b) Magnitude of moment first harmonic,
(c) Phase of lift first harmonic, (d) Phase of moment first harmonic.

(a) (b) (c)

Figure 9. Magnitude of lift first harmonic. (a) Mach 0.66, (b) Mach 0.68, (c) Mach 0.72.

Though the computed FRFs result out of gust excitations, qualitatively similar trends
can be expected for e.g., a pitching excitation. When the responses are compared for the
same excitation amplitude, gust responses are milder than those for a pitching motion [20].
The reason is that gusts do not excite the complete airfoil at the same time, but they are
moving over the chord of the airfoil gradually.

5.2.4. Maximum Lift Coefficient

The maximum lift is a relevant value for the loads assessment of an aircraft. Figure 10
summarizes the incremental maximum unsteady lift ∆CMax

L = max(∆CL(t, ŴG)) for all
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computed gust encounters. Responses to smaller gust amplitudes show a monotonic
behavior with increasing frequency, which is a hint for the linearity of the responses.
Large amplitudes deviate from the linear results in the range of small frequencies but are
almost on-spot for the higher frequencies. Comparing each of the nonlinearly computed
maximum lift with its linear reference values (dash-dotted lines), it is noted that first visible
deviations occur at ŴG = 5.0 m/s. These first deviations occur at lift values that are lower
than the static maximum lift. The monotonic trend of the curves is lost when the static
maximum lift is overshot for one of the frequencies. With increasing excitation amplitude,
the maximum lift moves to higher frequencies. For the cases computed here, there is no
saturation found in the maximum lift, but increasing the amplitude leads to higher and
higher maximum values. For reduced frequencies higher than 0.7, deviations between
linear and nonlinear are not visible anymore. By coincidence, the intersection of each
∆CMax,Lin

L with the static maximum lift value seems to mark the onset of the nonlinear
responding range of frequencies at Mach 0.70. This fact is contradicted when looking at
the results for the different Mach numbers, see Figure 11. Though all responses which
result in a dynamic overshoot deviate from the linear response, it is not the other way
round: Maximum lift values that are lower than the static maximum value can also be
the result from a nonlinear response. Note that a reduction of the Mach number to Mach
0.66 and Mach 0.68 seems to trigger an overestimation of the nonlinearly computed results
compared to the linear ones, whereas an increase of the Mach number to Mach 0.72 seems
to facilitate the opposite.

Figure 10. Maximum lift during one period of excitation at Mach 0.70, compared to ∆CMax,Lin
L .

The term ’dynamic overshoot’ is often used in the context of helicopter dynamic
stall [38] in subsonic flows and describes a dynamic exceeding of static maximum loads.
Related physical mechanisms are discussed in detail in Ericsson and Reding [41]: dynamic
effects lead to a more stable boundary layer and so the onset of flow separation is delayed.
In consequence, higher dynamic loads than static loads can occur. The existence of dynamic
overshoots in transonic flow, however, is not well investigated and one of the early dynamic
stall publications is even questioning their existence [42]. An evidence of transonic dynamic
overshoots can be found in [23] for a clean wing configuration under gust excitation and
can also be confirmed by the findings in this study. Mainly low excitation frequencies
and large amplitudes lead to an overshoot of the static maximum value, independently of
the Mach number, see Figures 10 and 11. For Mach 0.72, excitations up to k = 2.0 lead to
dynamic overshoots, whereas for Mach 0.66, they occur only up to k = 0.3.
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(a) (b) (c)

Figure 11. Maximum lift increment during one period of excitation. (a) Mach 0.66, (b) Mach 0.68,
(c) Mach 0.72.

5.2.5. Unsteady Shock Motion

One of the prominent features of transonic airfoil flow is the occurence of recompres-
sion shocks, which can be detected using the pressure values on the surface of the airfoil,
as described in Section 5.1. The surface solutions from the current simulations are stored
for 48 samples each period only, and so the shock motion curves are less smooth than
e.g., the curves for lift and moment coefficients, compare with Figure 6.

Trends for the unsteady shock motion are shown in Figure 12 for two different gust
lengths and various amplitudes. The maximum shock position per excitation period
moves further downstream with increasing excitation amplitude. However, a certain
saturation of the shock position seems to be reached slightly downstream of the steady
maximum position.

Deviations from the sinusoidal shock motion start to show off as early as ŴG = 3 m/s.
This is significantly earlier than it is the case for lift and moment values, see Section 5.2.2.
During one period of excitation, the shock starts to vanish for the first time at ŴG = 10 m/s
for LG = 125.5 m and at ŴG = 12 m/s for LG = 31.5 m. The shock motion in upstream
direction from the steady-state shock position is much larger than the shock motion in
downstream direction.

(a) (b)

Figure 12. Shock motion for two gust lengths and various amplitudes at Mach 0.70. (a) LG = 125.5 m
(k = 0.05), (b) LG = 31.5 m (k = 0.20).

Figure 13 summarizes maximum and minimum x-coordinates for the location of
the shock for all excitations at Mach 0.70. The previously mentioned saturation in the
maximum downstream shock position occurs up to reduced frequencies of about 0.5.
There seems to be a certain mechanism in the flow field which prevents the shock from a
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further downstream motion. In general, maximum and minimum shock positions show a
significant frequency-dependence. Whereas the shock travels by almost 50% over the airfoil
chord at lower frequencies, the total shock motion is less than 10% for reduced frequencies
as high as 2.0. The shock vanishes partly during one period for lower frequencies and
amplitudes larger than 10 m/s.

Figure 13. Minimum and maximum x-coordinates for the shock position during one period of
excitation at Mach 0.70.

Differences between the shock motion at lower and higher frequencies increase with
increasing Mach number, see Figure 14. The maximum shock motion ∆xMax

S is defined by

∆xMax
S = max(xS(t))−min(xS(t)). (9)

(a) (b) (c)

Figure 14. Maximum shock motion during one period of excitation. (a) Mach 0.66, (b) Mach 0.68,
(c) Mach 0.72.

For Mach 0.66 and Mach 0.68, trends with respect to the frequency are relatively
smooth. For Mach 0.72, the maximum shock motion is as large as 50% of the airfoil
chord for reduced frequencies up to 0.6 and rapidly decreases down to 16% for a reduced
frequency of 0.7. The saturation in the shock motion that is observed for Mach 0.70 is also
found in the data for the other Mach numbers. The static maximum shock position for each
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Mach number seems to be a good indicator at least for the range of occuring maximum
shock motion. However, its exact value is overshot in any case by a few percent.

5.2.6. Examples of Instantaneous Flow Fields

An impression of the flow field for the test case at Mach 0.7 and α = 3 deg with
LG = 125.5 m and ŴG = 15 m/s is given in Figure 15. For this long gust, the real time for
one period of oscillations amounts to 0.54 s. Some time histories and the locations of the
snapshots (a)–(g) are presented in Figure 15h.

Supersonic regions which extend to almost 50% of the airfoil chord can be observed
in snapshots (a)–(f). This is in agreement with the identified shock position shown in
Figure 15h. For this specific case, lift and shock motion show three local maxima during
one period of oscillation each. Note that the lift curve has a slight lag with respect to the
shock motion curve. The snapshot couples (a)–(b) and (c)–(d) reveal a similar dynamic
behavior for the first two maxima: just before the peaks, a large supersonic region and
a separation bubble about mid-chord of the airfoil are found, see snapshots (a) and (c).
The supersonic region then grows further, i.e., the shock moves downstream, until at some
point the shock eventually starts to move upstream together with an enlarging region of
reversed flow, see snapshots (b) and (d). After snapshot (d), the flow attaches again shortly
before snapshot (e) is reached. The third peak in the curves comes without such a big
region of reversed flow and is probably limited by the now decreasing edge of the gust
velocity. With the decrease of the excitation velocity down to WG = − 15 m/s the flow
reaches a purely subsonic state, see snapshot (g), which explains the interrupted shock
motion curve in Figure 15h.

Due to the complexity of the phenomena involved, further details of the flow fields
and related physical effects are planned to be published in a separate paper. Further work
will also include an analysis of other test cases computed.

(a) t/T = 3.33 (b) t/T = 3.40

(c) t/T = 3.46 (d) t/T = 3.50

Figure 15. Cont.
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(e) t/T = 3.54 (f) t/T = 3.60

(g) t/T = 3.93 (h) Overview over one period of excitation.

Figure 15. (a–g): Snapshots of Mach number contours including velocity vectors. Additionally,
the yellow line in the field plots shows the contour for x-velocity = 0. (h): Lift, shock motion and

normalized gust velocity W̃G = 0.5
(

WG/ŴG + 1
)

during one period of excitation.

5.2.7. Influence of the Turbulence Model

In order to judge the influence of the turbulence model on the results, some of the gust
encounters are re-computed using the two-equation turbulence model Menter SST [33].
The impact of the different modeling on the global response variables is displayed in
Figure 16.

(a) (b)

Figure 16. Global variables in comparison between Spalart-Allmaras (solid lines) and Menter
SST (symbols) at Mach 0.70. (a) First harmonic of the lift FRF, (b) Maximum lift.

Most importantly, none of the previously described trend changes when changing
the turbulence model. There are, however, slight differences between the quantitative
values of the different models. The first harmonic response is more affected than the
maximum lift coefficient, where the results of both models are almost identical. The first
harmonic computed with Menter SST is lower than the counterpart computed with the SA
model. The deviations in the steady maximum lift coefficient are significantly larger than
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the differences in the unsteady results. Generally, the deviations nearly vanish for small
amplitudes or high frequencies.

The influence of the turbulence model is larger when local variables are assessed, see
Figure 17. The SA model predicts all shock positions further downstream than Menter
SST, see Figure 17a, which is observed in several publications [35,37,43]. The agreement
between the models is improved for the maximum shock motion, see Figure 17b.

(a) (b)

Figure 17. Shock motion in comparison between Spalart-Allmaras (solid lines) and Menter SST (sym-
bols) at Mach 0.70, (a) Minimum and maximum x-coordinates for the shock position, (b) Maximum
shock motion during one period of excitation.

5.3. Possible Indicators for the Assessment of Nonlinear Responses
5.3.1. Definition of Variables

Often, the linear response to a specific excitation is not known a priori. It is hard to
tell if (and how much) a computed response deviates from the linear reference though
this knowledge would be helpful in, e.g., loads or aeroelastic analyses. Therefore, this
section examines if the harmonic distortion of the lift, HDCL, or the maximum shock motion
during one period of excitation, ∆xMax

S , can be correlated with the extent of nonlinearity of
a response.

The following definitions are used for the variables and can similarly be applied to
the pitching moment coefficient: The harmonic distortion of the lift response, HDCL, is
defined as

HDCL(k, ŴG) =

√
∑N

n=2 Mag
(

Cn
L,αG

)2

Mag(C1
L,αG

)
· 100%. (10)

Values between N = 3 and N = 50 are considered in the analysis of the results.
The deviation from the first harmonic of the linear lift response δC1

L, or in shorter form
’harmonic deviation’ is calculated by

δC1
L(k, ŴG) =

|C1
L,αG

(k, ŴG)| − |C1,Lin
L,αG

(k)|

|C1,Lin
L,αG

(k)|
· 100%. (11)

In order to assess the deviation of the computed maximum lift value from the linear
lift maximum, ∆CMax,Lin

L , the relative maximum lift δCMax
L is defined using the follow-

ing equation

δCMax
L (k, ŴG) =

∆CMax
L − ∆CMax,Lin

L

∆CMax,Lin
L

· 100%. (12)
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5.3.2. Harmonic Distortion

The harmonic distortion weights the amount of higher harmonics with respect to the
first harmonic of the response, see Equation (10). It is a common variable in signal analysis
to measure the extent of nonlinearity of a response [44,45]. Figure 18 depicts the harmonic
distortion for lift and moment coefficients at Mach 0.70 for four different gust amplitudes.
Additionally, different numbers of harmonics are considered for the highest gust amplitude,
ŴG = 15 m/s: n = {3, 5, 10, 20, 50}. For the lift coefficient, 10 harmonics are relevant to
represent the harmonic content, whereas even 20 harmonics are necessary for the moment
coefficient. These values specifically apply to k = 0.05 for this test case. The number
of relevant harmonics decreases with increasing frequency. The harmonic distortion for
the moment coefficient is significantly higher than the distortion for the lift coefficient,
which matches the observations from the previous sections. For low-amplitude excitations,
the values generally decrease down to at least single-digit values, see Appendix B.

(a) (b)

Figure 18. Harmonic distortion for Mach 0.70, (a) HDCL (Note: lines for n = 50 and n = 20 coincide
with n = 10 and are not displayed), (b) HDCMy (Note: the line for n = 50 coincides with n = 20 and is
not displayed).

If a response to a monofrequent excitation is given, the harmonic distortion can be
computed to give an impression of the amount of higher harmonics present. The curves
in Figure 19 reveal that there is no distinct correlation between the harmonic distortion
and the harmonic deviation of the lift. In other words: the amount of harmonic distortion
does not express how far off a response is in respect to the actual linear first harmonic
at the same reduced frequency. Figure 19a shows that both variables are generally in
the same order of magnitudes, but a harmonic distortion of e.g., 10% can correspond
to either δC1

L = −3% (for 15 m/s) or to δC1
L = −12% (for 10 m/s). With increasing

excitation amplitude, the harmonic distortion tends to larger values compared to the
harmonic deviation, i.e., the curves are located more on the right side of the diagram.
Contrary, for the smallest frequency considered here, this trends is the other way round.
A general shortcoming of the harmonic distortion coefficient is displayed in Figure 19b,
which depicts trends for the different Mach numbers. The coefficient does not predict a
direction, since it only sums up the magnitudes of the higher harmonics. So a harmonic
deviation of e.g., 10% can correspond to either a reduction of the first harmonic magnitude
(δC1

L = −8% for Mach 0.66) or to an augmentation (δC1
L = +9% for Mach 0.72).
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(a) (b)

Figure 19. Harmonic deviation δC1
L as a function of the harmonic distortion of the lift HDCL, which is

computed using 10 harmonics. (a) Mach 0.70, (b) ŴG = 15 m/s.

For the relative maximum lift δCMax
L plotted in Figure 20, similar trends are observed

as for the previous figure and the same conclusion can be drawn for δCMax
L .

(a) (b)

Figure 20. Relative maximum lift δCMax
L as a function of the harmonic distortion of the lift HDCL,

which is computed using 10 harmonics. (a) Mach 0.70, (b) ŴG = 15 m/s.

Summing up, the harmonic distortion does not seem to be well suited to predict devia-
tions neither from the linear first harmonic lift derivative, nor from the linear maximum lift
value. A large amount of higher harmonics does not, in general, indicate a large deviation
from the linear values.

5.3.3. Maximum Shock Motion

The recompression shock is a salient feature of transonic flow. It is investigated in
the following, if the motion of the shock throughout a response period does show any
correlation with the previously described nonlinear trends in the global loads. Such a cor-
relation is published by Dowell et al. [19] using computations based on the low-frequency
transonic small-disturbance approach. Due to the limitations of the numerical method,
only reduced frequencies up to 0.3 and amplitudes up to 1.5deg were computed. It is
shown that shock motions larger than 5% indicate a deviation of more than 5% from the
linear moment derivative.

Data from the current study includes a larger range of parameters and is shown in
Figures 21 and 22. The contours for the harmonic deviation of lift and moment are plotted
against the maximum shock motion in Figure 21. The above-mentioned criterion is met at
Mach 0.7: the first harmonic of lift and moment derivatives do not deviate more than 5%
from their linear counterparts for a maximum shock motion of 5%. As Dowell et al. [19]
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already stated, these 5% are a very conservative value: In order to obtain 5% harmonic
deviation of the lift, the maximum shock motion can be as large as 35% for the lower
frequencies, and even be larger than 45% for reduced frequencies above 0.25. For 5%
harmonic deviation of the moment, 5% maximum shock motion are a relatively good
indicator at the lowest frequencies, but a maximum shock motion of about 25% can be
allowed at higher frequencies. However, the different variables do not correlate very well
in general, but show only piecewise similar trends.

(a) (b)

Figure 21. Harmonic deviation of lift and moment in comparison to the maximum shock motion at
Mach 0.70. (grey dots denote the computed test cases). (a) δC1

L, (b) δC1
My.

The trends for the different Mach numbers are shown in Figure 22. The contour
levels for the shock motion move closer together with increasing Mach number, indicating
larger shock motions with increasing Mach number for the same excitation parameters,
recall Figure 14. Though the absolute values of the shock motion change with Mach
number, their overall trends are very similar, contrary to δC1

My. The harmonic deviation of
the moment changes its overall behavior at every Mach number. Accidentally, the trends
for both types of variables are almost congruent at Mach 0.68.

(a) (b)

(c)

Figure 22. Harmonic deviation of the moment in comparison to the maximum shock motion. (a) Mach
0.66, (b) Mach 0.68, (c) Mach 0.72.
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Summing up, the shock motion does not seem to be a reasonable indicator to judge
the extent of nonlinearity of the response of an airfoil.

6. Conclusions and Outlook

The physics of unsteady nonlinear transonic flow have been studied relatively little
to date and there is a lack especially of fundamental investigations on that topic. In this
paper, a parameter study is carried out and it is analyzed with respect to the physics
of unsteady nonlinear transonic airfoil flow. Computations are based on the URANS-
equations, mainly using the turbulence model Spalart-Allmaras. The flow around the
RAE2822 airfoil is excited by sinusoidal gusts with different lengths (i.e., frequencies) and
amplitudes. The impact of large-amplitude excitations on global and local parameters is
assessed for different inflow Mach numbers.

The results show a clear dependence on the mean steady flow field. Amplitude effects
and corresponding nonlinearities grow with increasing Mach number for all variables.
Low-frequency results are more affected by the large-amplitude excitations than high-
frequency results. Amplitude effects are negligible for the higher frequencies considered,
but the limit for this exclusively linearly-responding frequency range strongly depends on
the examined variable.

It is shown that the first 10 harmonics of the response need to be considered for an
accurate reproduction of the harmonic distortion of the lift coefficient and about 20 harmon-
ics for the moment coefficient. Moreover, it is observed that the first harmonic of lift and
moment derivatives are either augmented or reduced in a nonlinear response compared to
a linear one. An increase of the derivative is mainly found for the mid-frequency range, a
decrease mainly for the lower frequencies.

When nonlinear methods instead of linear methods are used, the predicted maximum
lift value is significantly reduced for the lowest frequencies. Depending on the inflow Mach
number, nonlinear values can exceed the linear values at higher frequencies. Lower Mach
numbers seem to facilitate these overestimates. Additionally, dynamic overshoots of the
maximum static lift in transonic flow are found, as well.

The trend of the unsteady shock motion is affected stronger by amplitude effects than
the trends of lift and moment coefficients. A saturation of the maximum downstream shock
position is observed at lower frequencies for all Mach numbers considered. The maximum
steady shock position does not provide an exact threshold for this maximum unsteady
shock position, but it can serve as an estimate for that value. For lower frequencies,
the maximum shock motion increases with increasing Mach number, but no distinct trend
can be found for higher frequencies.

Examplary snapshots of the flow field reveal an interplay of attached and reversed
flow as a reason for observed peaks that occur in the lift coefficient. However, a deeper
analysis of the phenomena involved remains an aspect of future work.

All of the above-mentioned trends are insensitive with respect to the turbulence model,
numerical mesh and the applied time step size. Lastly, neither the variable ’harmonic
distortion’ nor the variable ’maximum motion of the recompression shock’ seem to be a
reasonable indicator for observed deviations from the linear responses.

Summing up, initially described trends from the literature for three-dimensional aero-
elastically coupled configurations can be reproduced using this geometrically simple and
purely aerodynamic system. The current two-dimensional setup seems to be suitable for
further studies concerning amplitude-nonlinearities without losing the connection to more
complex configurations.

The present parameter study shows the variety of results that needs to be covered by
newly-developed methods. Depending on the mean steady flow field and the excitation
frequency, different trends have to be included. This complicates the development of
physics-based reduced-order models that are accurate and computationally fast at the
same time. Against this background, the current numerical results can specifically be used
to provide reference test cases for the development of unsteady nonlinear ROMs, since
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a variety of flow conditions and physical effects is included. However, having in mind
that mainly the range of lower frequencies is affected by the large-amplitude excitations,
nonlinear ROMs would only need to be set up for that specific range. Cheaper time-
linearized RANS-based methods could be used for predictions at higher frequencies.

In the future, the current results can be additionally exploited with regard to its
unsteady (shock-induced) separation behavior. Similarities and differences to the better
known subsonic dynamic stall can be discussed. Analyses of different mode shapes for
the excitation and different airfoil geometries can help to ensure the independence of the
presented results from this specific application. Finally, it should be emphasized that, to the
author’s knowledge, no experimental data is available that can be used for the analysis of
unsteady nonlinear response problems in transonic flow and the community is encouraged
to publish related data.
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Appendix A. Numerical Sensitivities

Appendix A.1. Grid Sensitivity Study

In order to check the spatial convergence, some of the results are reproduced using
a significantly finer mesh with a total of about 980.000 nodes and 700 cells on upper and
lower surface each. This mesh is denoted as ’fine’ in the following, whereas the mesh used
throughout the main part of the paper is denoted as ”medium”, see Section 3. Additionally
a ’very fine’ mesh is tested, with about 2.9 million nodes in total and 1350 cells on upper
and lower surface each.

The results for the different meshes are presented in Figure A1. It is noted that the
full parameter space is computed for the fine mesh, but only three reduced frequencies are
computed for the very fine mesh, due to computational cost. The findings for the mesh
convergence study are similar to the ones for the turbulence model study in Section 5.2.7.
Overall trends do not change when using the finer meshes and the first harmonic is more
influenced by the mesh than the maximum lift coefficient. The two finer meshes shift
the values for the magnitude of the first harmonic up to slightly higher values and also
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predict a slightly higher maximum lift. Due to the very similar results on all three grids,
the medium grid is chosen for all computations shown in the main part of the paper.

(a) (b)

Figure A1. Comparison of three CFD meshes at Mach 0.70. (a) First harmonic of the lift FRF, (b)
Maximum lift.

Appendix A.2. Time Step Study

Five different time step sizes are used to compute responses to the lowest and
the highest frequency considered, each for the maximum gust amplitude. The results
for the pitching moment coefficient are compared in Figure A2. Time step sizes of
dt = {1/48, 1/24, 1/12, 1/6, 1/3} ·U−1

∞ are tested.
Though the results for both gust lengths show an influence of the time step size,

the shorter gust results are more severely affected. For time steps smaller than dt =
1/12 ·U−1

∞ the results are converged. So for the computations at Mach 0.70 in the main part
of the paper, a time step size of dt = 1/24 ·U−1

∞ = 1.8 · 10−4 s is chosen, see Section 4.

(a) (b)

Figure A2. Comparison of different time step sizes at Mach 0.70. (a) LG = 125.5 m (k = 0.05),
(b) LG = 2.5 m (k = 2.5).

Appendix B. Verification of Linearity for Low-Amplitude Results

It is stated above, that the results for the lowest excitation amplitude can be taken
as linear reference values, which is verified by the data in Figure A3: The first harmonic
response of the lift draws a horizontal line between the results at ŴG = 10−6 m/s and
ŴG = 0.1 m/s, see Figure A3a. That shows that the response is independent of the excita-
tion amplitude and therefore corresponds to the definition of a linear system. The same
derivative values for the first harmonic could be computed using a RANS-based linear
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frequency-domain (LFD) approach such as the TAU-LFD solver [46], see e.g., [47] for a
detailed comparison.

For a verification of the correct calculation of the variable ’harmonic deviation’,
Figure A3b shows its trend for ŴG = 10−6 m/s with respect to the reduced frequency.
As required by its definition, the harmonic deviation results in zero values for all excitation
frequencies. In contrast, the values for ŴG = 0.1 m/s differ from zero, but are still on a
very low level. Recall from Figure 19, that the maximum gust amplitude results in values
in the order of δC1

L = −30%.
As an additional piece of background information, also the harmonic distortion values

of the lift are shown for the two lowest excitation amplitudes. Apart from a few outlier,
the harmonic distortion is very close to zero for ŴG = 10−6 m/s and has only a bit higher
values for ŴG = 0.1 m/s.

(a) (b)

Figure A3. Verification of linearity for low-amplitude results at Mach 0.70. (a) First harmonic of the lift,
(b) Harmonic deviation and and harmonic distortion of the lift for the two lowest excitation amplitudes.
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