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Abstract: This paper addresses the problem of leader–follower synchronization of uncertain
Euler–Lagrange systems under input constraints. The problem is solved in a distributed model
reference adaptive control framework that includes positive µ-modification to address input
constraints. The proposed design has the distinguishing features of updating the gains to synchronize
the uncertain systems and of providing stable adaptation in the presence of input saturation. By using
a matching condition assumption, a distributed inverse dynamics architecture is adopted to guarantee
convergence to common dynamics. The design is studied analytically, and its performance is validated
in simulation using spacecraft dynamics.

Keywords: adaptive control; saturation; Euler–Lagrange systems; heterogeneous uncertain systems;
inverse dynamics control

1. Introduction

The main task of synchronization is to achieve coherent collective behavior in a network of
agents. The objective of synchronization can be achieved by using a centralized approach or a
distributed approach. In centralized schemes, agents have access to global information, while in
distributed schemes, only access to local information from a few neighboring agents is available [1–3].
The synchronization problem is sometimes referred to as the consensus problem where the behavior
to be achieved is a constant value [4,5]. The distributed approach gives more advantages due to its
applicability in the presence of communication constraints [6–8].

There is a wide range of applications that require distributed synchronization such as spacecraft
formation flying [9], distributed sensor networks [10], cooperative cruise adaptive control [11],
power grid synchronization [12], synchronization of multiple unmanned aerial, ground and
underwater robots [13–15], and many more applications. The distributed synchronization plays an
important role in the cyber-physical system in which the nature of the system is physically distributed
and contains uncertainties. The uncertainties caused by the attack on the network can be handled by
proposing the adaptive controller framework [16].

The synchronization of homogeneous agents can be achieved by introducing fixed coupling
gains [17]. In the synchronization of heterogeneous agents, the adaptive coupling gains are necessary
where the uncertainty is a big concern. In the presence of a matched system, these adaptive coupling
gains can be designed to synchronize the agents that utilize the approach of model reference
adaptive control [18]. The synchronization of linear heterogeneous uncertain agents via distributed
model reference adaptive control has been proposed, leading to asymptotic synchronization without
any sliding mode [19]. The distributed model reference adaptive control framework allows the
states/output and the input to be shared between the neighbors [20,21]. The extended version of
the framework in the nonlinear domain has been proposed to synchronize uncertain heterogenous
Euler–Lagrange (EL) in the directed acyclic networks [22]. In the presence of communication
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constraints such as time-varying delay and packet dropout, the distributed synchronization algorithm
has been designed to synchronize the EL agents [23–25]. In the presence of cyclic networks, it was
shown that distributed model reference adaptive control can still work with suitable modifications [26].

The model reference adaptive control design in the presence of input saturation has attracted
many researchers [27,28]. This problem arises because saturation may create instability. This case has
been solved by introducing the positive µ-modification that extends the capability of model reference
adaptive control to handle input saturation [29]. In a distributed scheme, adaptive mechanisms
properly designed against saturation are missing, with the recent exception of [30], which discusses a
saturation mechanism tailored to cooperative vehicles.

In this work, we focus on a class of heterogeneous uncertain EL dynamics with input saturation
due to the actuator model. We obtain that the distributed model reference adaptive control with
positive µ-modification, gives a positive answer to the synchronization of the entire network in the
presence of input saturation.

The article is organized as follows: Section 2 introduces preliminary results to support the proposed
methodology. Section 3 presents the proposed method for leader-reference model synchronization
and follower-leader synchronization in the presence of input saturation. Section 4 presents a test
case based on the attitude control of the spacecraft. Section 5 presents the simulation to show the
effectiveness of the proposed solution. Finally, Section 6 provides conclusions and proposes directions
for further research.

Notation: The notation in this article is standard. The notation P = PT > 0 indicates a symmetric
positive definite matrix. The identity matrix of compatible dimensions is denoted by 1, and diag {. . .}
represents a block-diagonal matrix. The set R represents the set of real numbers. The x ∈ Rn represents
a vector signal.

2. Preliminary Results

2.1. Euler–Lagrange Systems

The dynamics of the agents are described by Euler–Lagrange (EL) equations defined as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τi, i = {1, . . . , N} (1)

where qi, q̇i ∈ Rn are the vector of generalized coordinates and the vector of generalized velocities,
respectively; Mi(qi) is the mass/inertia matrix, Ci(qi, q̇i) is centrifugal/Coriolis matrix, and the term
Gi(qi) is the vector of potential forces and τi represents the generalized control input. For each EL
system defined in (1) the following assumptions will be adopted [31]:

Assumption 1. Independent control input for each degree of freedom of the system.

Assumption 2. The mass/inertia matrix Mi(qi) is symmetric positive definite, and both Mi(qi) and Mi(qi)
−1

are uniformly bounded as a function of qi ∈ Rn.

Assumption 3. All the parameters such as link masses, the moment of inertia, etc. appear in the linear-in-the
parameter form, and the value is constant.

Remark 1. Assumption 1 concludes that the system is fully actuated. Assumptions 2 and 3 hold for most
EL systems such as robotic manipulator and mobile robot. In this work, we focus on synchronization of fully
actuated EL system where the relevant topic has done in most EL synchronization literature [32–39]. For the
under-actuated system, a control allocator should be used to transform the control input into the actual input of
the system [40].
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2.2. Inverse Dynamic Based Control

The objective of inverse dynamic based control is to cancel all the non-linearities in the system and
introduce simple PD control so that the closed-loop system is linear. Let us consider the EL systems
dynamics (1), the inverse dynamic controller satisfying

τi = Mi(qi)ai + Ci(qi, q̇i)q̇i + Gi(qi) (2)

where ai is defined as
ai = q̈d − Kv ėi − Kpei (3)

with ei = qi − qd, ėi = q̇i − q̇d and Kp, Kv being the proportional and derivative gains of the PD
controller; qd, q̇d,and q̈d are desired trajectories, velocities, and accelerations to be defined by the user.
By substituting (2) into (1), it can be verified that the system becomes linear

Mi(qi)(q̈i − q̈d + Kv ėi + Kpei) = 0

ëi + Kv ėi + Kpei = 0.
(4)

where ëi = q̈i − q̈d. The result leads to second-order error equation defined as[
ėi
ëi

]
=

[
0 1

−Kp −Kv

] [
ei
ėi

]
(5)

or equivalently, [
q̇i
q̈i

]
=

[
0 1

−Kp −Kv

] [
qi
q̇i

]
+

[
0
1

]
(q̈d + Kv q̇d + Kpqd) (6)

where 1 is the identity matrix in the dimension of generalized vectors. The second-order closed-loop
systems (6) must be Hurwitz. It can be achieved by selecting appropriate Kp and Kv. Note that the
control law (2) requires the dynamics of EL agent to be known. In practice, due to the parametric
uncertainty, the dynamics are unknown, and it may lead to an imperfect inversion of the inverse
dynamics based control gives. Then, the control law (2) requires agent i to know the desired trajectories
qd, q̇d, and q̈d. In a multi-agent system, the desired trajectories may not be available to all agents. Hence,
one cannot implement the controller (2) in a distributed manner and in the presence of uncertainty.

2.3. Communication Graph

In this work, let us consider the network of EL agent via a communication graph that describes the
allowed information flow. In the communication graph, agent 0 (the reference), defines the trajectory
of the network. In our case, this node sends information (states and reference signals) to the successor
node, and at the same time, it receives information (control input) from the successor node. To achieve
synchronization, only control input information that is sent back to the predecessor node. In the
case that the states information is sent back to the predecessor node, the distributed model reference
adaptive framework can work with appropriate modifications using parameter projection [21].

The communication graph describing the information flow is defined by the pair G = (V , E , T ),
where V = {1, . . . , N} is a finite nonempty set of nodes, E ⊆ V × V is a set of pairs of nodes,
called edges, and T ⊆ V is the set of target nodes, which receive information from agent 0. Figure 1
provides a simple communication graph where V = {1, 2}, E = {(1, 2), (2, 1)}, and T = {1}. Note that
the target nodes are referred to as leaders in this work because they have access to the agent 0 or the
reference node. In Figure 1, the purpose of agent 1, the leader, is to synchronize its states to agent 0
states, the reference. Simultaneously, the purpose of agent 2, is to synchronize its states to agent 1
states, the leader. The control input information, τi, should be sent back to the predecessor agent to
handle the input saturation.
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Figure 1. Communication graph of multi-agent system.

Given a network G of EL heterogeneous uncertain agents (1), depicted in Figure 1, we find a
distributed control strategy τi that use local measurement, states, and control input, of the neighbors
without any global knowledge of EL systems, and that leads to synchronization of the network for
every agent i in the presence of input saturation.

In Section 3, we will design an adaptive distributed version of the inverse dynamic-based control,
which can be implemented in the presence of uncertainty and input saturation, using only the local
measurement of neighbor input and states.

3. Adaptive Synchronization with Input Constraint

3.1. System Dynamics

In consideration of our main objective, we define the modified reference dynamics satisfying the
following dynamics [

q̇0

q̈0

]
=

[
0 1

−Kp −Kv

]
︸ ︷︷ ︸

Am

[
q0

q̇0

]
︸︷︷ ︸

xm

+

[
0
1

]
︸︷︷︸

Bm

(r + K∗τ1
∆τ∗1ad

)︸ ︷︷ ︸
τ0

(7)

where Am is Hurwitz, q0, q̇0 ∈ Rn are the states of the reference model, r = q̈d + Kv q̇d + Kpqd is a
user-specified reference input, K∗τ1

is an ideal gain that modified the reference control input related to
the control deficiency of the leader, ∆τ1ad . Then, let us consider the leader dynamics in the form of (2)
satisfying the following equation[

q̇1

q̈1

]
=

[
0 1

0 −M−1
1 C1

]
︸ ︷︷ ︸

A1

[
q1

q̇1

]
︸︷︷ ︸

x1

+

[
0

−M−1
1 G1

]
+

[
0

M−1
1

]
︸ ︷︷ ︸

B1

(τ1c + K∗τ2
∆τ∗2ad

)︸ ︷︷ ︸
τ1

(8)

where A1 and B1 are unknown matrices, q1, q̇1 are the states of the leader, and K∗τ2
is an ideal gain that

modified the leader control input related to the control deficiency of the follower, ∆τ2ad . Note that
the leader has access to the desired trajectories q̈d + Kv q̇d + Kpqd. Then, let us define the dynamics
of a follower agent that has no access to the desired trajectories qd, q̇d, and q̈d can still synchronize
to the reference model dynamics (7) by exploiting the signals of neighboring agents for adaptation.
By looking at Figure 1 and without loss of generality, the follower dynamics are denoted with subscript
2, while the dynamics of the neighboring (hierarchically superior) agent are denoted with subscript 1.
The dynamics of any follower in the form (2) can be written in the state-space form[

q̇2

q̈2

]
=

[
0 1

0 −M−1
2 C2

]
︸ ︷︷ ︸

A2

[
q2

q̇2

]
︸︷︷ ︸

x2

+

[
0

−M−1
2 G2

]
+

[
0

M−1
2

]
︸ ︷︷ ︸

B2

τ2 (9)

where A2 and B2 are unknown matrices, q2, q̇2 are the states of the leader. Note that the follower
with no predecessor agent leads to a dynamic without a control deficiency of the predecessor agent.
In practical cases, the actuator limits the control input, τ1,τ2, which leads to a control input saturation.
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To support our main objective, let us define the control input for the reference and the agents using the
following actuator model

τi = τimax sat(
τic

τimax

) =

{
τic |τic | ≤ τimax

τimax sgn(τic) |τic | ≥ τimax

(10)

where i = 0, 1, 2, τic(t) is the commanded control law of agent i, τimax > 0 is the amplitude saturation
of the actuator of agent i. Due to the actuator model in (10), we can define the deficiency control
as ∆τi = τi − τc. In the following section, we will design the control law that associated with the
deficiency control.

Remark 2. In consideration of input saturation, one should modify the agent dynamics in the presence of the
predecessor agent. In our case, only the follower that does not have any predecessor agent is shown in Figure 1.
The modified dynamics is associated with adaptive control deficiency.

3.2. Adaptive Synchronization of the Leader to the Reference Model

The main focus in this section is to find the control law τ1(t) of the leader that synchronizes its
dynamics to the reference. The proposed control law provides stable adaptation in the presence of
control input saturation/actuator defined in (10). In the presence of multiple leaders, the proposed
method is a trivial extension. Then, let us propose the ideal commanded control law τ∗1c

to match the
leader dynamics to the reference dynamics

τ∗1c
=

[
F̄∗′1

¯̄F∗′1

]
︸ ︷︷ ︸

F∗′1

[
q1

q̇1

]
+ D∗′1 + L∗′1 r + µ∆τ∗1c

= τ∗1ad
+ µ∆τ∗1c

(11)

where

∆τ∗1c
= τδ

1max
sat(

τ∗1c

τδ
1max

)− τ∗1c (12)

where F̄∗′1 , ¯̄F∗′1 , D∗′1 , L∗′1 are the ideal gains. The term τ∗1ad
defines the ideal nonlinear version of model

reference adaptive control law, µ is the design constant, and ∆τ1c denotes the control deficiency due to
the virtual bound τδ

1max
. The term τδ

1max
defines the virtual bound satisfying

τδ
1max

= τ1max − δ , 0 < δ < τ1max . (13)

By adding and substracting B1τ1c to (8) then substituting τ1c in (11), gives the following closed-loop
leader dynamics[

q̇1

q̈1

]
=

[
0 1

M−1
1 F̄∗′1 −M−1

1 C1 + M−1
1

¯̄F∗′1

] [
q1

q̇1

]
+

[
0

−M−1
1 G1 + M−1

1 D∗′1

]

+

[
0

M−1
1

] [
0

L∗′1 r + ∆τ∗1ad
+ K∗τ2

∆τ∗2ad

] (14)

where adaptive control deficiency of the leader and follower satisfying ∆τ∗1ad
= τ∗1 − τ∗1ad

and
∆τ∗2ad

= τ∗2 − τ∗2ad
, respectively. Note that the propose of gain K∗τ2

is to handle input saturation of the
follower to be defined in the next section. The following proposition tells how to find matching gains.
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Proposition 1. There exists an ideal commanded control law in the form of (11) that matches the leader
dynamics (8) to the reference model dynamics (7) and also provides stable adaptation under input constraint,
where the ideal gains F̄∗1 , ¯̄F∗1 , D∗1 , L∗1and K∗τ1

are satisfying

F̄∗′1 = −M1Kp L∗′1 = M1
¯̄F∗′1 = −M1Kv + C1 D∗′i = G1

K∗τ1
= M−1

1 .

(15)

We see that Proposition 1 is verified for the ideal commanded control law

τ∗1c
= −M1Kpq1 −M1Kv q̇1 + C1q̇1 + G1 + M1r + µ∆τ∗1c

. (16)

Being the system matrices in (8) unknown, the controller (11) cannot be implemented, and the
synchronization task has to be achieved adaptively. Then, inspired by the ideal controller (11), we propose
the controller

τ1c = Θ′M1
φM1︸ ︷︷ ︸

M̂1

(−Kpq1 − Kv q̇1 + r) + Θ′C1
φC1︸ ︷︷ ︸

Ĉ1

q̇1 + Θ′G1
φG1︸ ︷︷ ︸

Ĝ1

+µ∆τ1c

= τ1ad + µ∆τ1c

(17)

where the estimates M̂1, Ĉ1, Ĝ1 of the ideal matrices have been split in a linear-in-the-parameter form. Clearly,
in view of Assumption 3, an appropriate linear-in-the-parameter form M1 = Θ∗′M1

φM1 , C1 = Θ∗′C1
φC1 and

G1 = Θ∗′G1
φG1 can always be found. In case, µ ≥ 0, the commanded control law (17) and the control deficiency

(12) gives the commanded control law in term of convex combination of τδ
1max

sat(
τ1ad

(t)

τδ
1max

) and τ1ad

τ1c =
1

1 + µ
(τ1ad + µτδ

1max
sat(

τ1ad(t)
τδ

1max

))

=


τ1ad |τ1ad | ≤ τδ

1max
),

1
1+µ (τ1ad + µτδ

1max
), |τ1ad | > τδ

1max
),

1
1+µ (τ1ad − µτδ

1max
), |τ1ad | < −τδ

1max
).

(18)

Let us define the error e1 = x1 − xm, whose dynamics are

ė1 = Ame1 + B1(
˜̄F′1q1 +

˜̄̄F′1q̇1 + D̃′1 + L̃′1r)− BmK̃′τ1
∆τ1ad

= Ame1 + B1(Θ̃′M1
φM1(−Kpq1 − Kv q̇1 + r) + Θ̃′C1

φC1 q̇1 + Θ̃′G1
φG1)− BmK̃τ1 ∆τ1ad

(19)

where ˜̄F1 = F̄1 − F̄∗1 , ˜̄̄F1 = ¯̄F1 − ¯̄F∗1 , L̃1 = L1 − L∗1 , Θ̃M1 = ΘM1 − Θ∗M1
, Θ̃C1 = ΘC1 − Θ∗C1

, Θ̃G1 =

ΘG1 −Θ∗G1
, and K̃τ1 = Kτ1 − K∗τ1

.

Theorem 1. Consider the reference model (7), the unknown leader dynamics (8), and controller (18). Under the
assumption that a matrix S1 exists such that

L∗1S1 = S′1L∗′1 > 0 (20)
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then, the adaptive laws

Θ̇′M1
= −S1B′mPe1(−Kpq1 − Kv q̇1 + r)′φ′D1

Θ̇′C1
= −S1B′mPe1q̇′1φ′C1

Θ̇′G1
= −S1B′mPe1φ′g1

K̇′τ1
= Λ1B′mPe1∆τ′1ad

(21)

where Λ is any positive diagonal matrix to be defined by the user. P = P′ > 0 is satisfying

PAm + A′mP = −Q, Q > 0 (22)

guarantee synchronization of the leader dynamics (8) to the reference model (7) , e1 → 0, in the presence of
input saturation.

Proof. To show the asymptotic convergence of the synchronization error between the leader and the
model reference analytically, and provides stable adaptation in the presence of input constraints, let us
introduce the following Lyapunov function

V1(e1, Θ̃M1 , Θ̃C1 , Θ̃G1 , K̃τ1) = e′1Pe1 + tr(Θ̃M1 S−1
1 L∗−1

1 Θ̃′M1
) + tr(Θ̃C1 S−1

1 L∗−1
1 Θ̃′C1

)

+ tr(Θ̃G1 S−1
1 L∗−1

1 Θ̃′G1
) + tr(K̃τ1 Λ−1K̃′τ1

).
(23)

Then it is possible to verify

V̇1(e1, Θ̃M1 , Θ̃C1 , Θ̃G1 , K̃τ1) = e′1(PAm + A′mP)e1 + 2e′1PB1(Θ̃′M1
φM1(−Kpq1 − Kv q̇1 + r) + Θ̃′C1

φC1 q̇1

+ Θ̃′G1
φG1)− 2e′1PBmK̃′τ1

∆τ1ad + 2tr(Θ̃M1 S−1
1 L∗−1

1
˙̃Θ′M1

)

+ 2tr(Θ̃C1 S−1
1 L∗−1

1
˙̃Θ′C1

) + 2tr(Θ̃G1 S−1
1 L∗−1

1 Θ̃′G1
) + 2tr(K̃τ1 Λ−1K̃′τ1

)

= −e′1Qe1 + 2tr(Θ̃M1 L∗−1
1 (B′mPe1(−Kpq1 − Kv q̇1 + r)′φ′M1

+ S−1
1

˙̃Θ′M1
))

+ 2tr(Θ̃C1 L∗−1
1 (B′mPe1q̇′1φ′C1

+ S−1
1

˙̃Θ′C1
))

+ 2tr(Θ̃G1 L∗−1
1 (B′mPe1φ′G1

+ S−1
1

˙̃Θ′G1
))

+ 2tr(K̃τ1(−B′mPe1∆τ′1ad
+ Λ−1 ˙̃K′τ1

))

= −e′1Qe1.

(24)

From (24), we obtain that V1 has a finite limit, so e1, Θ̃M1 ,Θ̃C1 ,Θ̃G1 , K̃τ1 ∈ L∞. However,
the asymptotic tracking error to zero cannot be concluded because the modification of the reference
dynamics. So that we need to show that at least one of the states, x1 or xm, stay bounded in the
modified of the reference dynamics. Note that the matrix Am in (7) is Hurwitz matrix. Then, let us
introduce the following Lyapunov function

Vm(xm) = x′mPxm (25)

where P = P′ > 0 is such that (22) holds. Since ∆τ1 6= 0, we obtain that the commanded control law of
the leader exceeds the maximum/minimum control input allowed |τ1c | > τ1max . This may also lead to
reference input saturation |τ0| > τ0max . In saturation case, we obtain τi = τimax sgn(τic), and the ideal
reference dynamics in (7) becomes

ẋm = Amxm + Bmτ0max sgn(τ0) (26)



Aerospace 2020, 7, 127 8 of 20

To prove asymptotic stability, we define

V̇m(xm) = −xmQxm + 2x′mPBmτ0max sgn(τ0)

≤ λmin(Q)||xm||2 + 2τ0max ||xm|| ||PBm||
(27)

where λmin(Q) is the minimum eigenvalue of Q. We obtain that V̇m(xm) < 0 if ||xm|| >

2τ0max ||PBm||/λmin(Q). Because e1 ∈ L∞ and xm ∈ L∞, then we have x1 ∈ L∞. Consequently,
we can obtain τ1c ∈ L∞. Therefore, all signals in the closed-loop systems are bounded. This concludes
the proof of the boundedness of all closed-loop signal and convergence e1 → 0 as t→ ∞.

Remark 3. In the case of multiple leaders, one can implement for each leader, a control law in form (18) to
synchronize the leader dynamics to the reference model dynamics (7) in the presence of input saturation.

Remark 4. In most of the practical interest of EL systems, it can be verified that matrix M1 is symmetric.
In (15), it can be verified that matrix L∗1 also symmetric. Consequently, the condition (20) can be achieved by
simply selecting S = γ1 for any positive scalar γ.

3.3. Adaptive Synchronization of the Follower to the Leader

The main focus in this section is to find the control law τ2(t) of the follower that synchronizes its
dynamics to the leader. The proposed control laws provide stable adaptation in the presence of control
input saturation. Note that the follower has no access to the desired trajectories. Then, let us propose
the ideal commanded control law τ∗2c

to match the follower dynamics (9) to the leader dynamics (8)

τ∗2c
=

[
F̄∗′21

¯̄F∗′21

]
︸ ︷︷ ︸

F∗′21

[
q1

q̇1

]
+

[
F̄∗′2

¯̄F∗′2

]
︸ ︷︷ ︸

F∗′2

[
q2 − q1

q̇2 − q̇1

]
︸ ︷︷ ︸

e21

+D∗′2 + L∗′21τ1 + µ∆τ∗2c

= τ∗2ad
+ µ∆τ∗2c

(28)

where

∆τ∗2c
= τδ

2max
sat(

τ∗2c

τδ
2max

)− τ∗2c (29)

where F̄∗′21, ¯̄F∗′21, D∗′2 , L∗′21 are the adaptive coupling gains. The term τ∗2ad
defined the ideal nonlinear

version of model reference adaptive control law, µ is the design constant, and ∆τ2c denotes the control
deficiency due to the virtual bound τδ

2max
. The term τδ

2max
defines the virtual bound satisfying

τδ
2max

= τ2max − δ , 0 < δ < τ2max . (30)

By adding and substracting B2τ2c in (9) then substituting τ2c in (28), gives the following closed-loop
follower dynamics[

q̇2

q̈2

]
=

[
0 1

M−1
2 F̄∗′2 M−1

2 ( ¯̄F∗′2 − C2)

] [
q2

q̇2

]
+

[
0 0

M−1
2 (F̄∗′21 − F̄∗′2 ) M−1

2 ( ¯̄F∗′21 − ¯̄F∗′2 )

] [
q1

q̇1

]

+

[
0

−M−1
2 (−G2 + D∗′2 )

]
+

[
0

M−1
2 L∗′21

] [
0

τ1 + ∆τ∗2ad

]
.

(31)

The following proposition explains how to find the matching control gains.
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Proposition 2. There exists an ideal control law in the form (28) that matches the follower dynamics (9) to the
leader dynamics (8) and also provides stable adaptation under input constraint, whose gains F̄∗2 , ¯̄F∗2 , F̄∗21, ¯̄F∗21, L∗21,
D∗2 , and K∗τ2

are

F̄∗′2 = −M2Kp F̄∗′21 = 0 D∗′2 = G2 K∗τ2
= M−1

2 L∗′21M1 = 1

¯̄F∗′2 = −M2Kv + C2
¯̄F∗′21 = C2 −M2M−1

1 C1 L∗′21 = M2M−1
1 .

(32)

It is easy to see that Proposition 2 is verified for the ideal control law

τ∗2c
= C2q̇1 −M2M−1

1 C1q̇1 −M2Kp ē21 −M2Kv ¯̄e21 + C2 ¯̄e21 + G2 + M2M−1
1 τ1 + µ∆τ∗2c

= C2q̇2 + M2M−1
1 τ1 −M2M−1

1 C1q̇1 −M2(Kp ē21 + Kv ¯̄e21) + G2 + µ∆τ∗2c

(33)

where ē21 = q2 − q1, ¯̄e21 = q̇2 − q̇1.

Remark 5. Proposition 2 gives us matching conditions among follower agent. The Equation (33) implies the
existence of coupling gains F̄∗′21, ¯̄F∗′21, L∗′21 satisfying

F̄∗′21 = F̄∗′2 − L∗′21 F̄∗′1
¯̄F∗′21 = ¯̄F∗′2 − L′21

¯̄F∗′1

L∗′21 = L∗′2 (L∗′1 )−1

(34)

where L∗2 = M2. Therefore, Proposition 2 can be interpreted as a distributed matching condition among
neighboring agents.

Being the system matrices in (9) unknown, the control (28) cannot be implemented, and the
synchronization task has to be achieved adaptively. Then, inspired by the ideal controller (33),
we propose the controller

τ2c = −Θ′M2
φM2︸ ︷︷ ︸

M̂2

(Kp ē21 + Kv ¯̄e21) + Θ′C2
φC2︸ ︷︷ ︸

Ĉ2

q̇2 + Θ′M2 M1
φM2 M1︸ ︷︷ ︸

M̂2 M1

τ1 −Θ′M2 M1C1
φM2 M1C1︸ ︷︷ ︸

M̂2 M1C1

q̇1

+ Θ′g2
φg2︸ ︷︷ ︸

ĝ2

+µ∆τ2c

= τ2ad + µ∆τ2c

(35)

where the estimates M̂2, Ĉ2, M̂2M1, M̂2M1C1, Ĝ2 of the ideal matrices have been split in a
linear-in-the-parameter form. In fact, Assumption 3 guarantees M2 = Θ∗′M2

φM2 , C2 = Θ∗′C2
φC2 ,

g2 = Θ∗′G2
φg2 , M2M1 = Θ∗′M2 M1

φM2 M1 and M2M1C1 = Θ∗′M2 M1C1
φM2 M1C1 . In case, µ ≥ 0, the control law

(35) and the control deficiency (29) gives the commanded control law in term of convex combination

of τδ
2max

sat(
τ2ad

(t)

τδ
2max

) and τ2ad

τ2c =
1

1 + µ
(τ2ad + µτδ

2max
sat(

τ2ad(t)
τδ

2max

))

=


τ2ad |τ2ad | ≤ τδ

2max
),

1
1+µ (τ2ad + µτδ

2max
), |τ2ad | > τδ

2max
),

1
1+µ (τ2ad − µτδ

2max
), |τ2ad | < −τδ

2max
).

(36)



Aerospace 2020, 7, 127 10 of 20

Then, let us define the error e21 = x2 − x1, whose dynamics are

ė21 = Ame21 + B2(F̃2
′e21 + F̃21

′x1 + L̃′21τ1 + D̃′2)− B1K̃τ2 ∆τ2ad

= Ame21 + B2( ˜̄F′2 ē21 +
˜̄̄F′2 ¯̄e21 +

˜̄F′21q1 +
˜̄̄F′21q̇1 + L̃′21τ1 + D̃′2)− B1K̃τ2 ∆τ2ad

= Ame21 + B2(Θ̃′C2
φC2 q̇2 + Θ̃′M2 M1

φM2 M1 τ1 − Θ̃′M2 M1C1
φM2 M1C1 q̇1 − Θ̃′M2

φM2(Kp ē21 + Kv ¯̄e21)

+ Θ̃′G2
φG2)− B1K̃τ2 ∆τ2ad

(37)

where F̃2 = F2 − F∗2 , F̃21 = F21 − F∗21, L̃21 = L21 − L∗21, Θ̃M2 = ΘM2 − Θ∗M2
, Θ̃C2 = ΘC2 − Θ∗C2

,
Θ̃G2 = ΘG2 −Θ∗G2

, Θ̃M2 M1 = ΘM2 M1 −Θ∗M2 M1
and Θ̃M2 M1C1 = ΘM2 M1C1 −Θ∗M2 M1C1

, K̃τ2 = Kτ2 − K∗τ2
.

The following theorem provides the follower-leader synchronization.

Theorem 2. Consider the reference model (7), the unknown leader dynamics (8), the unknown follower dynamics
(9), and controller (36). Provided that there exists a matrix S2 such that

L∗2S2 = S′2L∗′2 > 0 (38)

then, the adaptive laws

Θ̇′C2
= −S2B′mPe21q̇′2φ′C2

Θ̇′M2
= S2B′mPe21(Kp ē21 + Kv ¯̄e21)

′φ′M2

Θ̇′M2 M1
= −S2B′mPe21τ′1φ′M2 M1

Θ̇′G2
= −S2B′mPe21φ′G2

Θ̇′M2 M1C1
= S2B′mPe21q̇′1φ′M2 M1C1

K̇τ2 = Λ2B′mPe1∆τ2ad

(39)

where Λ2 is any positive diagonal matrix to be defined by the user and P = P′ > 0 is such that (18) holds,
guarantee synchronization of the follower dynamics (9) to the leader dynamics (8) in the presence of input
constraint, i.e., e21 → 0.

Proof. To show the asymptotic convergence of the synchronization error between the follower and the
leader analytically, and provides stable adaptation in the presence of input constraints, let us introduce
the following Lyapunov function

V2 = e′21Pe21 + tr(Θ̃C2 S−1
2 L∗−1

2 Θ̃′C2
) + tr(Θ̃M2 M1 S−1

2 L∗−1
2 Θ̃′M2 M1

) + tr(Θ̃M2 M1C1 S−1
2 L∗−1

2 Θ̃′M2 M1C1
)

+ tr(Θ̃M2 S−1
2 L∗−1

2 Θ̃′M2
) + tr(Θ̃G2 S−1

2 L∗−1
2 Θ̃′g2

) + tr(K̃τ2 ∆−1K̃′τ2
).

(40)

Then it is possible to verify

V̇2 = −e′21Qe21 + 2e′21PB2(Θ̃′C2
φC2 q̇2 + Θ̃′M2 M1

φM2 M1 τ1 − Θ̃′M2 M1C1
φM2 M1C1 q̇1 − Θ̃′M2

φM2(Kp ē21

+ Kv ¯̄e21) + Θ̃′G2
φG2) + 2tr(Θ̃C2 S−1

2 L∗−1
2

˙̃Θ′C2
) + 2tr(Θ̃M2 M1 S−1

2 L∗−1
2

˙̃Θ′M2 M1
)

+ 2tr(Θ̃M2 M1C1 S−1
2 L∗−1

2
˙̃Θ′M2 M1C1

) + 2tr(Θ̃M2 S−1
2 L∗−1

2
˙̃Θ′M2

) + 2tr(Θ̃G2 S−1
2 L∗−1

2
˙̃Θ′G2

)

+ 2tr(K̃τ2 ∆−1K̃′τ2
)

= −e′21Qe21 + 2tr(Θ̃C2 L∗−1
2 (B′mPe21q̇′2φ′C2

+ S−1
2

˙̃Θ′C2
)) + 2tr(Θ̃M2 M1 L∗−1

2 (B′mPe21τ′1φ′M2 M1

+ S−1
2

˙̃Θ′M2 M1
))− 2tr(Θ̃M2 M1C1 L∗−1

2 (B′mPe21q̇′1φ′M2 M1C1
+ S−1

2
˙̃Θ′M2 M1C1

))− 2tr(Θ̃M2 L∗−1
2

(B′mPe21(Kp ē21 + Kv ¯̄e21)
′φ′M2

+ S−1
2

˙̃Θ′M2
)) + 2tr(Θ̃G2 L∗−1

2 (B′mPe21φ′G2
+ S−1

2
˙̃Θ′G2

))

+ 2tr(K̃τ2(−B′mPe21∆τ′2ad
+ Λ−1 ˙̃K′τ2

))

= −e′21Qe21.

(41)

Following similar steps as in the proof of Theorem 1, from (41) we obtain that V2 has a finite
limit, so e21, Θ̃C2 , Θ̃M2 M1 , Θ̃M2 M1C1 , Θ̃M2 , Θ̃G2 , K̃τ2 ∈ L∞. The asymptotic tracking error to zero can be
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concluded if one of the states, x2 or x1, stay bounded in the modified of the leader dynamics. Then,
let us introduce the following Lyapunov function

V1(x1) = x′1Px1 (42)

where P = P′ > 0 is such that (22) holds. Since ∆τ2 6= 0, we obtain that the commanded control law of
the follower exceeds the maximum/minimum control input allowed |τ2c | > τ2max . This may also lead
to leader control input saturation |τ1| > τ1max . In saturation case, we obtain τi = τimax sgn(τic), and the
ideal leader dynamics in (8) becomes

ẋ1 = A1x1 + B1τ1max sgn(τ1) (43)

To prove asymptotic stability, we define

V̇1(x1) = −x1Qx1 + 2x′1PB1τ1max sgn(τ1)

≤ λmin(Q)||x1||2 + 2τ1max ||x1|| ||PB1||
(44)

where λmin(Q) is the minimum eigenvalue of Q. We obtain that V̇1(x1) < 0 if ||x1|| >

2τ1max ||PB1||/λmin(Q). Because e21 = x2 − x1 ∈ L∞ and x1 ∈ L∞, we have x2 ∈ L∞. This implies x2,
Θ̃C2 , Θ̃M2 M1 , Θ̃M2 M1C1 , Θ̃M2 , Θ̃G2 ∈ L∞. Consequently, we can obtain τ2 ∈ L∞. Therefore, all signals
in the closed-loop systems are bounded. This concludes the proof of the boundedness of all closed-loop
signal and convergence e21 → 0 as t→ ∞.

Remark 6. The idea stems from [22], and is the following: In the case of multiple followers, each one can implement
a control law in form (36) to synchronize the follower dynamics (9) to the leader dynamics (8). Due to the distributed
matching conditions, the follower dynamics will indirectly match the reference dynamics.

4. Spacecraft Test Case

In this section, we consider the attitude control of the spacecraft (chapter 5.9 in [41]) as a test case
for the proposed adaptive synchronization algorithm. Let us start by introducing the EL dynamics of a
spacecraft (satellite) as a rigid body. In this case, we consider the following total torque of a rigid body
that rotates in space frame

τ = L̇ + ω× L (45)

where τ is torque, L is angular momentum, and ω is angular velocity. The ωx, ωy, ωz ∈ R are the
angular velocities along axis the body frame axes Xb, Yb, Zb shown in Figure 2.

Figure 2. The body frame of spacecraft.
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Assuming the spacecraft has two planes of symmetry (Jxy = Jxz = Jyz = 0), the spacecraft
dynamics can be defined as follows  Jxω̇x + ωyωz Jz −ωzωy Jy

Jyω̇y −ωxωz Jz + ωzωx Jx

Jzω̇z + ωxωy Jy −ωyωx Jx

 =

τx

τy

τz


Jx 0 0

0 Jy 0
0 0 Jz


︸ ︷︷ ︸

M

ω̇x

ω̇y

ω̇z


︸ ︷︷ ︸

q̈

+

 0 ωz Jz −ωy Jy

−ωz Jz 0 ωx Jx

ωy Jy −ωx Jx 0


︸ ︷︷ ︸

C(q̇)

ωx

ωy

ωz


︸ ︷︷ ︸

q̇

=

τx

τy

τz

 (46)

where G = 0 and all generalized coordinates are expressed in body frame. From (46) it is possible to
see that Assumptions 1–3 are verified. Then, let us derive the control law of the leader in the form
(17) for a satellite indicated by subscript i, and with dynamics as in (46). It is easy to see that the
linear-in-the-parameter forms for Mi and Ci are

Θ∗Mi
=

Jxi 0 0
0 Jyi 0
0 0 Jzi

 φMi =

1 0 0
0 1 0
0 0 1


Θ∗′Ci

=

Jxi 0 0 Jyi 0 0 Jzi 0 0
0 Jxi 0 0 Jyi 0 0 Jzi 0
0 0 Jxi 0 0 Jyi 0 0 Jzi

 φ′Ci
=

0 0 0 0 0 ωyi 0 −ωzi 0
0 0 −ωxi 0 0 0 ωzi 0 0
0 ωxi 0 −ωyi 0 0 0 0 0


(47)

Then, we derive the control law of the follower in the form (35) indicated by subscripts i and j.
The following equations show that the linear-in-the-parameter forms of Mj Mi and Mj MiCi

Θ∗Mj MiCi
=



Γ1 0 0
0 Γ1 0
0 0 Γ1

Γ2 0 0
0 Γ2 0
0 0 Γ2

Γ3 0 0
0 Γ3 0
0 0 Γ3

Γ4 0 0
0 Γ4 0
0 0 Γ4

Γ5 0 0
0 Γ5 0
0 0 Γ5

Γ6 0 0
0 Γ6 0
0 0 Γ6



φMj MiCi =



0 ωzi 0
0 0 0
0 0 0
0 0 −ωyi
0 0 0
0 0 0
0 0 0
−ωzi 0 0

0 0 0
0 0 0
0 0 ωxi
0 0 0
0 0 0
0 0 0

ωyi 0 0
0 0 0
0 0 0
0 ωxi 0



(48)

Θ∗Mj Mi
=


Jxj
Jxi

0 0

0
Jyj
Jyi

0

0 0
Jzj
Jzi

 φMj Mi =

1 0 0
0 1 0
0 0 1

 (49)
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where

Mj M−1
i =


Jxj
Jxi

0 0

0
Jyj
Jyi

0

0 0
Jzj
Jzi

 Mj M−1
i Ci =


0

Jxj Jzi
Jxi

ωzi − Jxj Jyi
Jxi

ωyi

− Jyj Jzi
Jyi

ωzi 0
Jxi Jyj

Jyi
ωxi

Jyi Jzj
Jzi

ωyi − Jxi Jzj
Jzi

ωxi 0

 (50)

Γ1 =
Jxj Jzi

Jxi
Γ3 =

Jyj Jzi

Jyi
Γ5 =

Jyi Jzj

Jzi

Γ2 =
Jxj Jyi

Jxi
Γ4 =

Jxi Jyj

Jyi
Γ6 =

Jxi Jzj

Jzi

(51)

Remark 7. Note that the regressand Θ∗Mi
, Θ∗Ci

, Θ∗gi
, Θ∗Mj Mi

and Θ∗Mj MiCi
are matrices with unknown

parameters whose structure is a priori known. It can be seen in the satellite case, one can use this a priori
knowledge to create the estimates of ΘMi , ΘCi , Θgi , ΘMj Mi and ΘMj MiCi with the same structure and project
other parameters to zero in corresponding the structure [41,42]. By using this approach, the total number of the
estimated parameter will be reduced.

Let us now find some matrices Si satisfying conditions (20) or (38)

Li = Mi =

Jxi 0 0
0 Jyi 0
0 0 Jzi

 Si =

Si1 0 0
0 Si2 0
0 0 Si3

 (52)

Therefore, Si can be the identity matrix or any positive values. In next section, we presents the
numerical simulation of the satellites attitude control.

5. Numerical Simulations

The simulations are performed on the directed graph shown in Figure 3, where node 0 is the
reference. Agents 1, 2, and 3 act as the leaders whose dynamics satisfy (8). Agents 4, 5, and 6 act as the
followers whose dynamics satisfy (9).

Figure 3. Communication graph of multi-agent system.
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Let us define the following reference model dynamics and parameters

Am =

[
0 1

−kp1 −kv1

]
Bm =

[
0
1

]
r =

kpφd + kvφ̇d + φ̈d

kpθd + kv θ̇d + θ̈d

kpψd + kvψ̇d + ψ̈d


Q = 101 kp = 50 kv = 10 S1 = S2 = . . . = S6 = 101 Λi = Λj = 1

(53)

where the state of agent i, the leader, is xi =
[
q′i q̇′i

]′
, the state of agent j, the follower, is xj =

[
q′j q̇′j

]′
.

The states of the leader and the follower are the generalized satellite coordinates expressed in the body
frame. We define the desired Euler angle, φd = θd = ψd = 0.75 sin(ω0.33t), the desired Euler angle
rate and the desired Euler angle acceleration equal to zero, actuator constraint τimax = 1, the positive
constant δ is set to 10% of actuator limit. For the sake of simulation, Table 1 shows the unknown
parameters. In our case, we test the constant µ equal to 1 and 100.

In the first case (µ = 1), the synchronization of spacecraft’s states to the states of the reference can
be achieved, as depicted in Figure 4. In Figures 5 and 6, it can be seen that the commanded control
inputs (black dashed line) exceed the actuator limit, and the actuator limits the actual control input
(blue dashed line). The red dashed line is the actuator limit , τimax , and the green dashed line is the
virtual bound, τδ

imax
. The saturation does not cause instability because the dynamics of spacecraft,

which is defined in Equations (8) and (9), is a marginally stable system.
In the second case (µ = 100), the synchronization of spacecraft’s states to the states of the reference

can be achieved, as depicted in Figure 7. It can be observed that the control inputs do not exceed
the actuator limit shown in Figures 8 and 9. It can be concluded that, by choosing µ large enough,
the synchronization problem in the presence of input constraints can be solved. Note that the large
µ leads to the changes in reference dynamics while reducing the control deficiency. By using the
reference dynamics (7), the control input, τ1, of the leader in (8), and the commanded control input,
τ1c in (18), one can verify that µ is proportional to the ∆τ1ad .

Figure 4. Adaptive spacecraft state synchronization for states (φ, θ, ψ, ωx, ωy, ωz) (µ = 1).
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Figure 5. Control input of the leaders (blue is the actual control input and black is the commanded
control input) (µ = 1).

Figure 6. Control input of the followers (blue is the actual control input and black is the commanded
control input) (µ = 1).
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Table 1. Satellite parameters and initial conditions.

Initial Cond.
[φ, θ, ψ]’ (0)

Initial Cond.
[ωx, ωy, ωz]’ (0)

Moment of
Inertia (kg m2)

Agent 0
(Trajectory
Generator)

[0, 0, 0]’ [0, 0, 0]’
0.01 0 0

0. 0.02 0
0. 0 0.01



Agent 1
(Leader 1) [0.1, 0.1, 0.1]’ [0.1, 0.1, 0.1]’

0.02 0 0
0. 0.04 0
0. 0 0.04



Agent 1
(Leader 2) [0.3, 0.3, 0.3]’ [−0.2, −0.2, −0.2]’

0.05 0 0
0. 0.1 0
0. 0 0.05



Agent 1
(Leader 3) [−0.3, −0.3, −0.3]’ [0.2, 0.2, 0.2]’

0.001 0 0
0. 0.002 0
0. 0 0.001



Agent 4
(Follower 1) [0.2, 0.2, 0.2]’ [−0.1, −0.1, −0.1]’

0.03 0 0
0. 0.06 0
0. 0 0.03



Agent 5
(Follower 2) [−0.2, −0.2, −0.2]’ [0.2, 0.2, 0.2]’

0.4 0 0
0. 0.08 0
0. 0 0.04



Agent 6
(Follower 3) [0.4, 0.4, 0.4]’ [0.1, 0.1, 0.1]’

0.001 0 0
0. 0.002 0
0. 0 0.001



Figure 7. Adaptive spacecraft state synchronization for states (φ, θ, ψ, ωx, ωy, ωz) (µ = 100).
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Figure 8. Control input of the leaders (blue is the actual control input) (µ = 100).

Figure 9. Control input of the followers (blue is the actual control input) (µ = 100).

6. Conclusions

This work has shown the possibility to synchronize uncertain heterogeneous agents with
Euler–Lagrange dynamics in the presence of input saturation. The synchronization used distributed
model reference adaptive control which utilizes local states and input information and the existence
distributed nonlinear matching gains between neighboring agents. Then, we proposed the adaptive
control law that estimates these gains. The proposed method was modified with distributed positive
mu-modification that ensure the stability of the adaptation in the presence of input saturation which
requires the predecessor agent to send the control input information to the successor agent. Finally,
numerical simulations of attitude control synchronization were provided to validate the proposed
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method. It was shown that the convergence of the dynamics can be achieved in the presence of
input saturation.

Future work will consider extending the result to rate constrained input or constrained states [43,44].
Other relevant works are, in line with [45], the fast adaptation using high-gain learning rates, whereas,
one can consider the synchronization of under-actuated Euler–Lagrange.
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